1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * Author: Artem Bityutskiy (Битюцкий Артём)
6 */
7
8 /*
9 * UBI attaching sub-system.
10 *
11 * This sub-system is responsible for attaching MTD devices and it also
12 * implements flash media scanning.
13 *
14 * The attaching information is represented by a &struct ubi_attach_info'
15 * object. Information about volumes is represented by &struct ubi_ainf_volume
16 * objects which are kept in volume RB-tree with root at the @volumes field.
17 * The RB-tree is indexed by the volume ID.
18 *
19 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
20 * objects are kept in per-volume RB-trees with the root at the corresponding
21 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
22 * per-volume objects and each of these objects is the root of RB-tree of
23 * per-LEB objects.
24 *
25 * Corrupted physical eraseblocks are put to the @corr list, free physical
26 * eraseblocks are put to the @free list and the physical eraseblock to be
27 * erased are put to the @erase list.
28 *
29 * About corruptions
30 * ~~~~~~~~~~~~~~~~~
31 *
32 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
33 * whether the headers are corrupted or not. Sometimes UBI also protects the
34 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
35 * when it moves the contents of a PEB for wear-leveling purposes.
36 *
37 * UBI tries to distinguish between 2 types of corruptions.
38 *
39 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
40 * tries to handle them gracefully, without printing too many warnings and
41 * error messages. The idea is that we do not lose important data in these
42 * cases - we may lose only the data which were being written to the media just
43 * before the power cut happened, and the upper layers (e.g., UBIFS) are
44 * supposed to handle such data losses (e.g., by using the FS journal).
45 *
46 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
47 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
48 * PEBs in the @erase list are scheduled for erasure later.
49 *
50 * 2. Unexpected corruptions which are not caused by power cuts. During
51 * attaching, such PEBs are put to the @corr list and UBI preserves them.
52 * Obviously, this lessens the amount of available PEBs, and if at some point
53 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
54 * about such PEBs every time the MTD device is attached.
55 *
56 * However, it is difficult to reliably distinguish between these types of
57 * corruptions and UBI's strategy is as follows (in case of attaching by
58 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
59 * the data area does not contain all 0xFFs, and there were no bit-flips or
60 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
61 * area. Otherwise UBI assumes corruption type 1. So the decision criteria
62 * are as follows.
63 * o If the data area contains only 0xFFs, there are no data, and it is safe
64 * to just erase this PEB - this is corruption type 1.
65 * o If the data area has bit-flips or data integrity errors (ECC errors on
66 * NAND), it is probably a PEB which was being erased when power cut
67 * happened, so this is corruption type 1. However, this is just a guess,
68 * which might be wrong.
69 * o Otherwise this is corruption type 2.
70 */
71
72 #ifndef __UBOOT__
73 #include <log.h>
74 #include <dm/devres.h>
75 #include <linux/err.h>
76 #include <linux/slab.h>
77 #include <linux/crc32.h>
78 #include <linux/random.h>
79 #include <u-boot/crc.h>
80 #else
81 #include <div64.h>
82 #include <linux/bug.h>
83 #include <linux/err.h>
84 #endif
85
86 #include <linux/math64.h>
87
88 #include <ubi_uboot.h>
89 #include "ubi.h"
90
91 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
92
93 /* Temporary variables used during scanning */
94 static struct ubi_ec_hdr *ech;
95 static struct ubi_vid_hdr *vidh;
96
97 /**
98 * add_to_list - add physical eraseblock to a list.
99 * @ai: attaching information
100 * @pnum: physical eraseblock number to add
101 * @vol_id: the last used volume id for the PEB
102 * @lnum: the last used LEB number for the PEB
103 * @ec: erase counter of the physical eraseblock
104 * @to_head: if not zero, add to the head of the list
105 * @list: the list to add to
106 *
107 * This function allocates a 'struct ubi_ainf_peb' object for physical
108 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
109 * It stores the @lnum and @vol_id alongside, which can both be
110 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
111 * If @to_head is not zero, PEB will be added to the head of the list, which
112 * basically means it will be processed first later. E.g., we add corrupted
113 * PEBs (corrupted due to power cuts) to the head of the erase list to make
114 * sure we erase them first and get rid of corruptions ASAP. This function
115 * returns zero in case of success and a negative error code in case of
116 * failure.
117 */
add_to_list(struct ubi_attach_info * ai,int pnum,int vol_id,int lnum,int ec,int to_head,struct list_head * list)118 static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
119 int lnum, int ec, int to_head, struct list_head *list)
120 {
121 struct ubi_ainf_peb *aeb;
122
123 if (list == &ai->free) {
124 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
125 } else if (list == &ai->erase) {
126 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
127 } else if (list == &ai->alien) {
128 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
129 ai->alien_peb_count += 1;
130 } else
131 BUG();
132
133 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
134 if (!aeb)
135 return -ENOMEM;
136
137 aeb->pnum = pnum;
138 aeb->vol_id = vol_id;
139 aeb->lnum = lnum;
140 aeb->ec = ec;
141 if (to_head)
142 list_add(&aeb->u.list, list);
143 else
144 list_add_tail(&aeb->u.list, list);
145 return 0;
146 }
147
148 /**
149 * add_corrupted - add a corrupted physical eraseblock.
150 * @ai: attaching information
151 * @pnum: physical eraseblock number to add
152 * @ec: erase counter of the physical eraseblock
153 *
154 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
155 * physical eraseblock @pnum and adds it to the 'corr' list. The corruption
156 * was presumably not caused by a power cut. Returns zero in case of success
157 * and a negative error code in case of failure.
158 */
add_corrupted(struct ubi_attach_info * ai,int pnum,int ec)159 static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
160 {
161 struct ubi_ainf_peb *aeb;
162
163 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
164
165 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
166 if (!aeb)
167 return -ENOMEM;
168
169 ai->corr_peb_count += 1;
170 aeb->pnum = pnum;
171 aeb->ec = ec;
172 list_add(&aeb->u.list, &ai->corr);
173 return 0;
174 }
175
176 /**
177 * validate_vid_hdr - check volume identifier header.
178 * @ubi: UBI device description object
179 * @vid_hdr: the volume identifier header to check
180 * @av: information about the volume this logical eraseblock belongs to
181 * @pnum: physical eraseblock number the VID header came from
182 *
183 * This function checks that data stored in @vid_hdr is consistent. Returns
184 * non-zero if an inconsistency was found and zero if not.
185 *
186 * Note, UBI does sanity check of everything it reads from the flash media.
187 * Most of the checks are done in the I/O sub-system. Here we check that the
188 * information in the VID header is consistent to the information in other VID
189 * headers of the same volume.
190 */
validate_vid_hdr(const struct ubi_device * ubi,const struct ubi_vid_hdr * vid_hdr,const struct ubi_ainf_volume * av,int pnum)191 static int validate_vid_hdr(const struct ubi_device *ubi,
192 const struct ubi_vid_hdr *vid_hdr,
193 const struct ubi_ainf_volume *av, int pnum)
194 {
195 int vol_type = vid_hdr->vol_type;
196 int vol_id = be32_to_cpu(vid_hdr->vol_id);
197 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
198 int data_pad = be32_to_cpu(vid_hdr->data_pad);
199
200 if (av->leb_count != 0) {
201 int av_vol_type;
202
203 /*
204 * This is not the first logical eraseblock belonging to this
205 * volume. Ensure that the data in its VID header is consistent
206 * to the data in previous logical eraseblock headers.
207 */
208
209 if (vol_id != av->vol_id) {
210 ubi_err(ubi, "inconsistent vol_id");
211 goto bad;
212 }
213
214 if (av->vol_type == UBI_STATIC_VOLUME)
215 av_vol_type = UBI_VID_STATIC;
216 else
217 av_vol_type = UBI_VID_DYNAMIC;
218
219 if (vol_type != av_vol_type) {
220 ubi_err(ubi, "inconsistent vol_type");
221 goto bad;
222 }
223
224 if (used_ebs != av->used_ebs) {
225 ubi_err(ubi, "inconsistent used_ebs");
226 goto bad;
227 }
228
229 if (data_pad != av->data_pad) {
230 ubi_err(ubi, "inconsistent data_pad");
231 goto bad;
232 }
233 }
234
235 return 0;
236
237 bad:
238 ubi_err(ubi, "inconsistent VID header at PEB %d", pnum);
239 ubi_dump_vid_hdr(vid_hdr);
240 ubi_dump_av(av);
241 return -EINVAL;
242 }
243
244 /**
245 * add_volume - add volume to the attaching information.
246 * @ai: attaching information
247 * @vol_id: ID of the volume to add
248 * @pnum: physical eraseblock number
249 * @vid_hdr: volume identifier header
250 *
251 * If the volume corresponding to the @vid_hdr logical eraseblock is already
252 * present in the attaching information, this function does nothing. Otherwise
253 * it adds corresponding volume to the attaching information. Returns a pointer
254 * to the allocated "av" object in case of success and a negative error code in
255 * case of failure.
256 */
add_volume(struct ubi_attach_info * ai,int vol_id,int pnum,const struct ubi_vid_hdr * vid_hdr)257 static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
258 int vol_id, int pnum,
259 const struct ubi_vid_hdr *vid_hdr)
260 {
261 struct ubi_ainf_volume *av;
262 struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
263
264 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
265
266 /* Walk the volume RB-tree to look if this volume is already present */
267 while (*p) {
268 parent = *p;
269 av = rb_entry(parent, struct ubi_ainf_volume, rb);
270
271 if (vol_id == av->vol_id)
272 return av;
273
274 if (vol_id > av->vol_id)
275 p = &(*p)->rb_left;
276 else
277 p = &(*p)->rb_right;
278 }
279
280 /* The volume is absent - add it */
281 av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
282 if (!av)
283 return ERR_PTR(-ENOMEM);
284
285 av->highest_lnum = av->leb_count = 0;
286 av->vol_id = vol_id;
287 av->root = RB_ROOT;
288 av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
289 av->data_pad = be32_to_cpu(vid_hdr->data_pad);
290 av->compat = vid_hdr->compat;
291 av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
292 : UBI_STATIC_VOLUME;
293 if (vol_id > ai->highest_vol_id)
294 ai->highest_vol_id = vol_id;
295
296 rb_link_node(&av->rb, parent, p);
297 rb_insert_color(&av->rb, &ai->volumes);
298 ai->vols_found += 1;
299 dbg_bld("added volume %d", vol_id);
300 return av;
301 }
302
303 /**
304 * ubi_compare_lebs - find out which logical eraseblock is newer.
305 * @ubi: UBI device description object
306 * @aeb: first logical eraseblock to compare
307 * @pnum: physical eraseblock number of the second logical eraseblock to
308 * compare
309 * @vid_hdr: volume identifier header of the second logical eraseblock
310 *
311 * This function compares 2 copies of a LEB and informs which one is newer. In
312 * case of success this function returns a positive value, in case of failure, a
313 * negative error code is returned. The success return codes use the following
314 * bits:
315 * o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
316 * second PEB (described by @pnum and @vid_hdr);
317 * o bit 0 is set: the second PEB is newer;
318 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
319 * o bit 1 is set: bit-flips were detected in the newer LEB;
320 * o bit 2 is cleared: the older LEB is not corrupted;
321 * o bit 2 is set: the older LEB is corrupted.
322 */
ubi_compare_lebs(struct ubi_device * ubi,const struct ubi_ainf_peb * aeb,int pnum,const struct ubi_vid_hdr * vid_hdr)323 int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
324 int pnum, const struct ubi_vid_hdr *vid_hdr)
325 {
326 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
327 uint32_t data_crc, crc;
328 struct ubi_vid_hdr *vh = NULL;
329 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
330
331 if (sqnum2 == aeb->sqnum) {
332 /*
333 * This must be a really ancient UBI image which has been
334 * created before sequence numbers support has been added. At
335 * that times we used 32-bit LEB versions stored in logical
336 * eraseblocks. That was before UBI got into mainline. We do not
337 * support these images anymore. Well, those images still work,
338 * but only if no unclean reboots happened.
339 */
340 ubi_err(ubi, "unsupported on-flash UBI format");
341 return -EINVAL;
342 }
343
344 /* Obviously the LEB with lower sequence counter is older */
345 second_is_newer = (sqnum2 > aeb->sqnum);
346
347 /*
348 * Now we know which copy is newer. If the copy flag of the PEB with
349 * newer version is not set, then we just return, otherwise we have to
350 * check data CRC. For the second PEB we already have the VID header,
351 * for the first one - we'll need to re-read it from flash.
352 *
353 * Note: this may be optimized so that we wouldn't read twice.
354 */
355
356 if (second_is_newer) {
357 if (!vid_hdr->copy_flag) {
358 /* It is not a copy, so it is newer */
359 dbg_bld("second PEB %d is newer, copy_flag is unset",
360 pnum);
361 return 1;
362 }
363 } else {
364 if (!aeb->copy_flag) {
365 /* It is not a copy, so it is newer */
366 dbg_bld("first PEB %d is newer, copy_flag is unset",
367 pnum);
368 return bitflips << 1;
369 }
370
371 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
372 if (!vh)
373 return -ENOMEM;
374
375 pnum = aeb->pnum;
376 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
377 if (err) {
378 if (err == UBI_IO_BITFLIPS)
379 bitflips = 1;
380 else {
381 ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d",
382 pnum, err);
383 if (err > 0)
384 err = -EIO;
385
386 goto out_free_vidh;
387 }
388 }
389
390 vid_hdr = vh;
391 }
392
393 /* Read the data of the copy and check the CRC */
394
395 len = be32_to_cpu(vid_hdr->data_size);
396
397 mutex_lock(&ubi->buf_mutex);
398 err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
399 if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
400 goto out_unlock;
401
402 data_crc = be32_to_cpu(vid_hdr->data_crc);
403 crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
404 if (crc != data_crc) {
405 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
406 pnum, crc, data_crc);
407 corrupted = 1;
408 bitflips = 0;
409 second_is_newer = !second_is_newer;
410 } else {
411 dbg_bld("PEB %d CRC is OK", pnum);
412 bitflips |= !!err;
413 }
414 mutex_unlock(&ubi->buf_mutex);
415
416 ubi_free_vid_hdr(ubi, vh);
417
418 if (second_is_newer)
419 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
420 else
421 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
422
423 return second_is_newer | (bitflips << 1) | (corrupted << 2);
424
425 out_unlock:
426 mutex_unlock(&ubi->buf_mutex);
427 out_free_vidh:
428 ubi_free_vid_hdr(ubi, vh);
429 return err;
430 }
431
432 /**
433 * ubi_add_to_av - add used physical eraseblock to the attaching information.
434 * @ubi: UBI device description object
435 * @ai: attaching information
436 * @pnum: the physical eraseblock number
437 * @ec: erase counter
438 * @vid_hdr: the volume identifier header
439 * @bitflips: if bit-flips were detected when this physical eraseblock was read
440 *
441 * This function adds information about a used physical eraseblock to the
442 * 'used' tree of the corresponding volume. The function is rather complex
443 * because it has to handle cases when this is not the first physical
444 * eraseblock belonging to the same logical eraseblock, and the newer one has
445 * to be picked, while the older one has to be dropped. This function returns
446 * zero in case of success and a negative error code in case of failure.
447 */
ubi_add_to_av(struct ubi_device * ubi,struct ubi_attach_info * ai,int pnum,int ec,const struct ubi_vid_hdr * vid_hdr,int bitflips)448 int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
449 int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
450 {
451 int err, vol_id, lnum;
452 unsigned long long sqnum;
453 struct ubi_ainf_volume *av;
454 struct ubi_ainf_peb *aeb;
455 struct rb_node **p, *parent = NULL;
456
457 vol_id = be32_to_cpu(vid_hdr->vol_id);
458 lnum = be32_to_cpu(vid_hdr->lnum);
459 sqnum = be64_to_cpu(vid_hdr->sqnum);
460
461 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
462 pnum, vol_id, lnum, ec, sqnum, bitflips);
463
464 av = add_volume(ai, vol_id, pnum, vid_hdr);
465 if (IS_ERR(av))
466 return PTR_ERR(av);
467
468 if (ai->max_sqnum < sqnum)
469 ai->max_sqnum = sqnum;
470
471 /*
472 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
473 * if this is the first instance of this logical eraseblock or not.
474 */
475 p = &av->root.rb_node;
476 while (*p) {
477 int cmp_res;
478
479 parent = *p;
480 aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
481 if (lnum != aeb->lnum) {
482 if (lnum < aeb->lnum)
483 p = &(*p)->rb_left;
484 else
485 p = &(*p)->rb_right;
486 continue;
487 }
488
489 /*
490 * There is already a physical eraseblock describing the same
491 * logical eraseblock present.
492 */
493
494 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
495 aeb->pnum, aeb->sqnum, aeb->ec);
496
497 /*
498 * Make sure that the logical eraseblocks have different
499 * sequence numbers. Otherwise the image is bad.
500 *
501 * However, if the sequence number is zero, we assume it must
502 * be an ancient UBI image from the era when UBI did not have
503 * sequence numbers. We still can attach these images, unless
504 * there is a need to distinguish between old and new
505 * eraseblocks, in which case we'll refuse the image in
506 * 'ubi_compare_lebs()'. In other words, we attach old clean
507 * images, but refuse attaching old images with duplicated
508 * logical eraseblocks because there was an unclean reboot.
509 */
510 if (aeb->sqnum == sqnum && sqnum != 0) {
511 ubi_err(ubi, "two LEBs with same sequence number %llu",
512 sqnum);
513 ubi_dump_aeb(aeb, 0);
514 ubi_dump_vid_hdr(vid_hdr);
515 return -EINVAL;
516 }
517
518 /*
519 * Now we have to drop the older one and preserve the newer
520 * one.
521 */
522 cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
523 if (cmp_res < 0)
524 return cmp_res;
525
526 if (cmp_res & 1) {
527 /*
528 * This logical eraseblock is newer than the one
529 * found earlier.
530 */
531 err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
532 if (err)
533 return err;
534
535 err = add_to_list(ai, aeb->pnum, aeb->vol_id,
536 aeb->lnum, aeb->ec, cmp_res & 4,
537 &ai->erase);
538 if (err)
539 return err;
540
541 aeb->ec = ec;
542 aeb->pnum = pnum;
543 aeb->vol_id = vol_id;
544 aeb->lnum = lnum;
545 aeb->scrub = ((cmp_res & 2) || bitflips);
546 aeb->copy_flag = vid_hdr->copy_flag;
547 aeb->sqnum = sqnum;
548
549 if (av->highest_lnum == lnum)
550 av->last_data_size =
551 be32_to_cpu(vid_hdr->data_size);
552
553 return 0;
554 } else {
555 /*
556 * This logical eraseblock is older than the one found
557 * previously.
558 */
559 return add_to_list(ai, pnum, vol_id, lnum, ec,
560 cmp_res & 4, &ai->erase);
561 }
562 }
563
564 /*
565 * We've met this logical eraseblock for the first time, add it to the
566 * attaching information.
567 */
568
569 err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
570 if (err)
571 return err;
572
573 aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
574 if (!aeb)
575 return -ENOMEM;
576
577 aeb->ec = ec;
578 aeb->pnum = pnum;
579 aeb->vol_id = vol_id;
580 aeb->lnum = lnum;
581 aeb->scrub = bitflips;
582 aeb->copy_flag = vid_hdr->copy_flag;
583 aeb->sqnum = sqnum;
584
585 if (av->highest_lnum <= lnum) {
586 av->highest_lnum = lnum;
587 av->last_data_size = be32_to_cpu(vid_hdr->data_size);
588 }
589
590 av->leb_count += 1;
591 rb_link_node(&aeb->u.rb, parent, p);
592 rb_insert_color(&aeb->u.rb, &av->root);
593 return 0;
594 }
595
596 /**
597 * ubi_find_av - find volume in the attaching information.
598 * @ai: attaching information
599 * @vol_id: the requested volume ID
600 *
601 * This function returns a pointer to the volume description or %NULL if there
602 * are no data about this volume in the attaching information.
603 */
ubi_find_av(const struct ubi_attach_info * ai,int vol_id)604 struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
605 int vol_id)
606 {
607 struct ubi_ainf_volume *av;
608 struct rb_node *p = ai->volumes.rb_node;
609
610 while (p) {
611 av = rb_entry(p, struct ubi_ainf_volume, rb);
612
613 if (vol_id == av->vol_id)
614 return av;
615
616 if (vol_id > av->vol_id)
617 p = p->rb_left;
618 else
619 p = p->rb_right;
620 }
621
622 return NULL;
623 }
624
625 /**
626 * ubi_remove_av - delete attaching information about a volume.
627 * @ai: attaching information
628 * @av: the volume attaching information to delete
629 */
ubi_remove_av(struct ubi_attach_info * ai,struct ubi_ainf_volume * av)630 void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
631 {
632 struct rb_node *rb;
633 struct ubi_ainf_peb *aeb;
634
635 dbg_bld("remove attaching information about volume %d", av->vol_id);
636
637 while ((rb = rb_first(&av->root))) {
638 aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
639 rb_erase(&aeb->u.rb, &av->root);
640 list_add_tail(&aeb->u.list, &ai->erase);
641 }
642
643 rb_erase(&av->rb, &ai->volumes);
644 kfree(av);
645 ai->vols_found -= 1;
646 }
647
648 /**
649 * early_erase_peb - erase a physical eraseblock.
650 * @ubi: UBI device description object
651 * @ai: attaching information
652 * @pnum: physical eraseblock number to erase;
653 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
654 *
655 * This function erases physical eraseblock 'pnum', and writes the erase
656 * counter header to it. This function should only be used on UBI device
657 * initialization stages, when the EBA sub-system had not been yet initialized.
658 * This function returns zero in case of success and a negative error code in
659 * case of failure.
660 */
early_erase_peb(struct ubi_device * ubi,const struct ubi_attach_info * ai,int pnum,int ec)661 static int early_erase_peb(struct ubi_device *ubi,
662 const struct ubi_attach_info *ai, int pnum, int ec)
663 {
664 int err;
665 struct ubi_ec_hdr *ec_hdr;
666
667 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
668 /*
669 * Erase counter overflow. Upgrade UBI and use 64-bit
670 * erase counters internally.
671 */
672 ubi_err(ubi, "erase counter overflow at PEB %d, EC %d",
673 pnum, ec);
674 return -EINVAL;
675 }
676
677 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
678 if (!ec_hdr)
679 return -ENOMEM;
680
681 ec_hdr->ec = cpu_to_be64(ec);
682
683 err = ubi_io_sync_erase(ubi, pnum, 0);
684 if (err < 0)
685 goto out_free;
686
687 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
688
689 out_free:
690 kfree(ec_hdr);
691 return err;
692 }
693
694 /**
695 * ubi_early_get_peb - get a free physical eraseblock.
696 * @ubi: UBI device description object
697 * @ai: attaching information
698 *
699 * This function returns a free physical eraseblock. It is supposed to be
700 * called on the UBI initialization stages when the wear-leveling sub-system is
701 * not initialized yet. This function picks a physical eraseblocks from one of
702 * the lists, writes the EC header if it is needed, and removes it from the
703 * list.
704 *
705 * This function returns a pointer to the "aeb" of the found free PEB in case
706 * of success and an error code in case of failure.
707 */
ubi_early_get_peb(struct ubi_device * ubi,struct ubi_attach_info * ai)708 struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
709 struct ubi_attach_info *ai)
710 {
711 int err = 0;
712 struct ubi_ainf_peb *aeb, *tmp_aeb;
713
714 if (!list_empty(&ai->free)) {
715 aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
716 list_del(&aeb->u.list);
717 dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
718 return aeb;
719 }
720
721 /*
722 * We try to erase the first physical eraseblock from the erase list
723 * and pick it if we succeed, or try to erase the next one if not. And
724 * so forth. We don't want to take care about bad eraseblocks here -
725 * they'll be handled later.
726 */
727 list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
728 if (aeb->ec == UBI_UNKNOWN)
729 aeb->ec = ai->mean_ec;
730
731 err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
732 if (err)
733 continue;
734
735 aeb->ec += 1;
736 list_del(&aeb->u.list);
737 dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
738 return aeb;
739 }
740
741 ubi_err(ubi, "no free eraseblocks");
742 return ERR_PTR(-ENOSPC);
743 }
744
745 /**
746 * check_corruption - check the data area of PEB.
747 * @ubi: UBI device description object
748 * @vid_hdr: the (corrupted) VID header of this PEB
749 * @pnum: the physical eraseblock number to check
750 *
751 * This is a helper function which is used to distinguish between VID header
752 * corruptions caused by power cuts and other reasons. If the PEB contains only
753 * 0xFF bytes in the data area, the VID header is most probably corrupted
754 * because of a power cut (%0 is returned in this case). Otherwise, it was
755 * probably corrupted for some other reasons (%1 is returned in this case). A
756 * negative error code is returned if a read error occurred.
757 *
758 * If the corruption reason was a power cut, UBI can safely erase this PEB.
759 * Otherwise, it should preserve it to avoid possibly destroying important
760 * information.
761 */
check_corruption(struct ubi_device * ubi,struct ubi_vid_hdr * vid_hdr,int pnum)762 static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
763 int pnum)
764 {
765 int err;
766
767 mutex_lock(&ubi->buf_mutex);
768 memset(ubi->peb_buf, 0x00, ubi->leb_size);
769
770 err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
771 ubi->leb_size);
772 if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
773 /*
774 * Bit-flips or integrity errors while reading the data area.
775 * It is difficult to say for sure what type of corruption is
776 * this, but presumably a power cut happened while this PEB was
777 * erased, so it became unstable and corrupted, and should be
778 * erased.
779 */
780 err = 0;
781 goto out_unlock;
782 }
783
784 if (err)
785 goto out_unlock;
786
787 if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
788 goto out_unlock;
789
790 ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
791 pnum);
792 ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
793 ubi_dump_vid_hdr(vid_hdr);
794 pr_err("hexdump of PEB %d offset %d, length %d",
795 pnum, ubi->leb_start, ubi->leb_size);
796 ubi_dbg_print_hex_dump("", DUMP_PREFIX_OFFSET, 32, 1,
797 ubi->peb_buf, ubi->leb_size, 1);
798 err = 1;
799
800 out_unlock:
801 mutex_unlock(&ubi->buf_mutex);
802 return err;
803 }
804
805 /**
806 * scan_peb - scan and process UBI headers of a PEB.
807 * @ubi: UBI device description object
808 * @ai: attaching information
809 * @pnum: the physical eraseblock number
810 * @vid: The volume ID of the found volume will be stored in this pointer
811 * @sqnum: The sqnum of the found volume will be stored in this pointer
812 *
813 * This function reads UBI headers of PEB @pnum, checks them, and adds
814 * information about this PEB to the corresponding list or RB-tree in the
815 * "attaching info" structure. Returns zero if the physical eraseblock was
816 * successfully handled and a negative error code in case of failure.
817 */
scan_peb(struct ubi_device * ubi,struct ubi_attach_info * ai,int pnum,int * vid,unsigned long long * sqnum)818 static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
819 int pnum, int *vid, unsigned long long *sqnum)
820 {
821 long long uninitialized_var(ec);
822 int err, bitflips = 0, vol_id = -1, ec_err = 0;
823
824 dbg_bld("scan PEB %d", pnum);
825
826 /* Skip bad physical eraseblocks */
827 err = ubi_io_is_bad(ubi, pnum);
828 if (err < 0)
829 return err;
830 else if (err) {
831 ai->bad_peb_count += 1;
832 return 0;
833 }
834
835 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
836 if (err < 0)
837 return err;
838 switch (err) {
839 case 0:
840 break;
841 case UBI_IO_BITFLIPS:
842 bitflips = 1;
843 break;
844 case UBI_IO_FF:
845 ai->empty_peb_count += 1;
846 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
847 UBI_UNKNOWN, 0, &ai->erase);
848 case UBI_IO_FF_BITFLIPS:
849 ai->empty_peb_count += 1;
850 return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
851 UBI_UNKNOWN, 1, &ai->erase);
852 case UBI_IO_BAD_HDR_EBADMSG:
853 case UBI_IO_BAD_HDR:
854 /*
855 * We have to also look at the VID header, possibly it is not
856 * corrupted. Set %bitflips flag in order to make this PEB be
857 * moved and EC be re-created.
858 */
859 ec_err = err;
860 ec = UBI_UNKNOWN;
861 bitflips = 1;
862 break;
863 default:
864 ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d",
865 err);
866 return -EINVAL;
867 }
868
869 if (!ec_err) {
870 int image_seq;
871
872 /* Make sure UBI version is OK */
873 if (ech->version != UBI_VERSION) {
874 ubi_err(ubi, "this UBI version is %d, image version is %d",
875 UBI_VERSION, (int)ech->version);
876 return -EINVAL;
877 }
878
879 ec = be64_to_cpu(ech->ec);
880 if (ec > UBI_MAX_ERASECOUNTER) {
881 /*
882 * Erase counter overflow. The EC headers have 64 bits
883 * reserved, but we anyway make use of only 31 bit
884 * values, as this seems to be enough for any existing
885 * flash. Upgrade UBI and use 64-bit erase counters
886 * internally.
887 */
888 ubi_err(ubi, "erase counter overflow, max is %d",
889 UBI_MAX_ERASECOUNTER);
890 ubi_dump_ec_hdr(ech);
891 return -EINVAL;
892 }
893
894 /*
895 * Make sure that all PEBs have the same image sequence number.
896 * This allows us to detect situations when users flash UBI
897 * images incorrectly, so that the flash has the new UBI image
898 * and leftovers from the old one. This feature was added
899 * relatively recently, and the sequence number was always
900 * zero, because old UBI implementations always set it to zero.
901 * For this reasons, we do not panic if some PEBs have zero
902 * sequence number, while other PEBs have non-zero sequence
903 * number.
904 */
905 image_seq = be32_to_cpu(ech->image_seq);
906 if (!ubi->image_seq)
907 ubi->image_seq = image_seq;
908 if (image_seq && ubi->image_seq != image_seq) {
909 ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d",
910 image_seq, pnum, ubi->image_seq);
911 ubi_dump_ec_hdr(ech);
912 return -EINVAL;
913 }
914 }
915
916 /* OK, we've done with the EC header, let's look at the VID header */
917
918 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
919 if (err < 0)
920 return err;
921 switch (err) {
922 case 0:
923 break;
924 case UBI_IO_BITFLIPS:
925 bitflips = 1;
926 break;
927 case UBI_IO_BAD_HDR_EBADMSG:
928 if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
929 /*
930 * Both EC and VID headers are corrupted and were read
931 * with data integrity error, probably this is a bad
932 * PEB, bit it is not marked as bad yet. This may also
933 * be a result of power cut during erasure.
934 */
935 ai->maybe_bad_peb_count += 1;
936 case UBI_IO_BAD_HDR:
937 if (ec_err)
938 /*
939 * Both headers are corrupted. There is a possibility
940 * that this a valid UBI PEB which has corresponding
941 * LEB, but the headers are corrupted. However, it is
942 * impossible to distinguish it from a PEB which just
943 * contains garbage because of a power cut during erase
944 * operation. So we just schedule this PEB for erasure.
945 *
946 * Besides, in case of NOR flash, we deliberately
947 * corrupt both headers because NOR flash erasure is
948 * slow and can start from the end.
949 */
950 err = 0;
951 else
952 /*
953 * The EC was OK, but the VID header is corrupted. We
954 * have to check what is in the data area.
955 */
956 err = check_corruption(ubi, vidh, pnum);
957
958 if (err < 0)
959 return err;
960 else if (!err)
961 /* This corruption is caused by a power cut */
962 err = add_to_list(ai, pnum, UBI_UNKNOWN,
963 UBI_UNKNOWN, ec, 1, &ai->erase);
964 else
965 /* This is an unexpected corruption */
966 err = add_corrupted(ai, pnum, ec);
967 if (err)
968 return err;
969 goto adjust_mean_ec;
970 case UBI_IO_FF_BITFLIPS:
971 err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
972 ec, 1, &ai->erase);
973 if (err)
974 return err;
975 goto adjust_mean_ec;
976 case UBI_IO_FF:
977 if (ec_err || bitflips)
978 err = add_to_list(ai, pnum, UBI_UNKNOWN,
979 UBI_UNKNOWN, ec, 1, &ai->erase);
980 else
981 err = add_to_list(ai, pnum, UBI_UNKNOWN,
982 UBI_UNKNOWN, ec, 0, &ai->free);
983 if (err)
984 return err;
985 goto adjust_mean_ec;
986 default:
987 ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d",
988 err);
989 return -EINVAL;
990 }
991
992 vol_id = be32_to_cpu(vidh->vol_id);
993 if (vid)
994 *vid = vol_id;
995 if (sqnum)
996 *sqnum = be64_to_cpu(vidh->sqnum);
997 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
998 int lnum = be32_to_cpu(vidh->lnum);
999
1000 /* Unsupported internal volume */
1001 switch (vidh->compat) {
1002 case UBI_COMPAT_DELETE:
1003 if (vol_id != UBI_FM_SB_VOLUME_ID
1004 && vol_id != UBI_FM_DATA_VOLUME_ID) {
1005 ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it",
1006 vol_id, lnum);
1007 }
1008 err = add_to_list(ai, pnum, vol_id, lnum,
1009 ec, 1, &ai->erase);
1010 if (err)
1011 return err;
1012 return 0;
1013
1014 case UBI_COMPAT_RO:
1015 ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode",
1016 vol_id, lnum);
1017 ubi->ro_mode = 1;
1018 break;
1019
1020 case UBI_COMPAT_PRESERVE:
1021 ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found",
1022 vol_id, lnum);
1023 err = add_to_list(ai, pnum, vol_id, lnum,
1024 ec, 0, &ai->alien);
1025 if (err)
1026 return err;
1027 return 0;
1028
1029 case UBI_COMPAT_REJECT:
1030 ubi_err(ubi, "incompatible internal volume %d:%d found",
1031 vol_id, lnum);
1032 return -EINVAL;
1033 }
1034 }
1035
1036 if (ec_err)
1037 ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d",
1038 pnum);
1039 err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1040 if (err)
1041 return err;
1042
1043 adjust_mean_ec:
1044 if (!ec_err) {
1045 ai->ec_sum += ec;
1046 ai->ec_count += 1;
1047 if (ec > ai->max_ec)
1048 ai->max_ec = ec;
1049 if (ec < ai->min_ec)
1050 ai->min_ec = ec;
1051 }
1052
1053 return 0;
1054 }
1055
1056 /**
1057 * late_analysis - analyze the overall situation with PEB.
1058 * @ubi: UBI device description object
1059 * @ai: attaching information
1060 *
1061 * This is a helper function which takes a look what PEBs we have after we
1062 * gather information about all of them ("ai" is compete). It decides whether
1063 * the flash is empty and should be formatted of whether there are too many
1064 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1065 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1066 */
late_analysis(struct ubi_device * ubi,struct ubi_attach_info * ai)1067 static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1068 {
1069 struct ubi_ainf_peb *aeb;
1070 int max_corr, peb_count;
1071
1072 peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1073 max_corr = peb_count / 20 ?: 8;
1074
1075 /*
1076 * Few corrupted PEBs is not a problem and may be just a result of
1077 * unclean reboots. However, many of them may indicate some problems
1078 * with the flash HW or driver.
1079 */
1080 if (ai->corr_peb_count) {
1081 ubi_err(ubi, "%d PEBs are corrupted and preserved",
1082 ai->corr_peb_count);
1083 pr_err("Corrupted PEBs are:");
1084 list_for_each_entry(aeb, &ai->corr, u.list)
1085 pr_cont(" %d", aeb->pnum);
1086 pr_cont("\n");
1087
1088 /*
1089 * If too many PEBs are corrupted, we refuse attaching,
1090 * otherwise, only print a warning.
1091 */
1092 if (ai->corr_peb_count >= max_corr) {
1093 ubi_err(ubi, "too many corrupted PEBs, refusing");
1094 return -EINVAL;
1095 }
1096 }
1097
1098 if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1099 /*
1100 * All PEBs are empty, or almost all - a couple PEBs look like
1101 * they may be bad PEBs which were not marked as bad yet.
1102 *
1103 * This piece of code basically tries to distinguish between
1104 * the following situations:
1105 *
1106 * 1. Flash is empty, but there are few bad PEBs, which are not
1107 * marked as bad so far, and which were read with error. We
1108 * want to go ahead and format this flash. While formatting,
1109 * the faulty PEBs will probably be marked as bad.
1110 *
1111 * 2. Flash contains non-UBI data and we do not want to format
1112 * it and destroy possibly important information.
1113 */
1114 if (ai->maybe_bad_peb_count <= 2) {
1115 ai->is_empty = 1;
1116 ubi_msg(ubi, "empty MTD device detected");
1117 get_random_bytes(&ubi->image_seq,
1118 sizeof(ubi->image_seq));
1119 } else {
1120 ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1121 return -EINVAL;
1122 }
1123
1124 }
1125
1126 return 0;
1127 }
1128
1129 /**
1130 * destroy_av - free volume attaching information.
1131 * @av: volume attaching information
1132 * @ai: attaching information
1133 *
1134 * This function destroys the volume attaching information.
1135 */
destroy_av(struct ubi_attach_info * ai,struct ubi_ainf_volume * av)1136 static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1137 {
1138 struct ubi_ainf_peb *aeb;
1139 struct rb_node *this = av->root.rb_node;
1140
1141 while (this) {
1142 if (this->rb_left)
1143 this = this->rb_left;
1144 else if (this->rb_right)
1145 this = this->rb_right;
1146 else {
1147 aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1148 this = rb_parent(this);
1149 if (this) {
1150 if (this->rb_left == &aeb->u.rb)
1151 this->rb_left = NULL;
1152 else
1153 this->rb_right = NULL;
1154 }
1155
1156 kmem_cache_free(ai->aeb_slab_cache, aeb);
1157 }
1158 }
1159 kfree(av);
1160 }
1161
1162 /**
1163 * destroy_ai - destroy attaching information.
1164 * @ai: attaching information
1165 */
destroy_ai(struct ubi_attach_info * ai)1166 static void destroy_ai(struct ubi_attach_info *ai)
1167 {
1168 struct ubi_ainf_peb *aeb, *aeb_tmp;
1169 struct ubi_ainf_volume *av;
1170 struct rb_node *rb;
1171
1172 list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1173 list_del(&aeb->u.list);
1174 kmem_cache_free(ai->aeb_slab_cache, aeb);
1175 }
1176 list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1177 list_del(&aeb->u.list);
1178 kmem_cache_free(ai->aeb_slab_cache, aeb);
1179 }
1180 list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1181 list_del(&aeb->u.list);
1182 kmem_cache_free(ai->aeb_slab_cache, aeb);
1183 }
1184 list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1185 list_del(&aeb->u.list);
1186 kmem_cache_free(ai->aeb_slab_cache, aeb);
1187 }
1188
1189 /* Destroy the volume RB-tree */
1190 rb = ai->volumes.rb_node;
1191 while (rb) {
1192 if (rb->rb_left)
1193 rb = rb->rb_left;
1194 else if (rb->rb_right)
1195 rb = rb->rb_right;
1196 else {
1197 av = rb_entry(rb, struct ubi_ainf_volume, rb);
1198
1199 rb = rb_parent(rb);
1200 if (rb) {
1201 if (rb->rb_left == &av->rb)
1202 rb->rb_left = NULL;
1203 else
1204 rb->rb_right = NULL;
1205 }
1206
1207 destroy_av(ai, av);
1208 }
1209 }
1210
1211 kmem_cache_destroy(ai->aeb_slab_cache);
1212
1213 kfree(ai);
1214 }
1215
1216 /**
1217 * scan_all - scan entire MTD device.
1218 * @ubi: UBI device description object
1219 * @ai: attach info object
1220 * @start: start scanning at this PEB
1221 *
1222 * This function does full scanning of an MTD device and returns complete
1223 * information about it in form of a "struct ubi_attach_info" object. In case
1224 * of failure, an error code is returned.
1225 */
scan_all(struct ubi_device * ubi,struct ubi_attach_info * ai,int start)1226 static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1227 int start)
1228 {
1229 int err, pnum;
1230 struct rb_node *rb1, *rb2;
1231 struct ubi_ainf_volume *av;
1232 struct ubi_ainf_peb *aeb;
1233
1234 err = -ENOMEM;
1235
1236 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1237 if (!ech)
1238 return err;
1239
1240 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1241 if (!vidh)
1242 goto out_ech;
1243
1244 for (pnum = start; pnum < ubi->peb_count; pnum++) {
1245 cond_resched();
1246
1247 dbg_gen("process PEB %d", pnum);
1248 err = scan_peb(ubi, ai, pnum, NULL, NULL);
1249 if (err < 0)
1250 goto out_vidh;
1251 }
1252
1253 ubi_msg(ubi, "scanning is finished");
1254
1255 /* Calculate mean erase counter */
1256 if (ai->ec_count)
1257 ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1258
1259 err = late_analysis(ubi, ai);
1260 if (err)
1261 goto out_vidh;
1262
1263 /*
1264 * In case of unknown erase counter we use the mean erase counter
1265 * value.
1266 */
1267 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1268 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1269 if (aeb->ec == UBI_UNKNOWN)
1270 aeb->ec = ai->mean_ec;
1271 }
1272
1273 list_for_each_entry(aeb, &ai->free, u.list) {
1274 if (aeb->ec == UBI_UNKNOWN)
1275 aeb->ec = ai->mean_ec;
1276 }
1277
1278 list_for_each_entry(aeb, &ai->corr, u.list)
1279 if (aeb->ec == UBI_UNKNOWN)
1280 aeb->ec = ai->mean_ec;
1281
1282 list_for_each_entry(aeb, &ai->erase, u.list)
1283 if (aeb->ec == UBI_UNKNOWN)
1284 aeb->ec = ai->mean_ec;
1285
1286 err = self_check_ai(ubi, ai);
1287 if (err)
1288 goto out_vidh;
1289
1290 ubi_free_vid_hdr(ubi, vidh);
1291 kfree(ech);
1292
1293 return 0;
1294
1295 out_vidh:
1296 ubi_free_vid_hdr(ubi, vidh);
1297 out_ech:
1298 kfree(ech);
1299 return err;
1300 }
1301
alloc_ai(void)1302 static struct ubi_attach_info *alloc_ai(void)
1303 {
1304 struct ubi_attach_info *ai;
1305
1306 ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1307 if (!ai)
1308 return ai;
1309
1310 INIT_LIST_HEAD(&ai->corr);
1311 INIT_LIST_HEAD(&ai->free);
1312 INIT_LIST_HEAD(&ai->erase);
1313 INIT_LIST_HEAD(&ai->alien);
1314 ai->volumes = RB_ROOT;
1315 ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1316 sizeof(struct ubi_ainf_peb),
1317 0, 0, NULL);
1318 if (!ai->aeb_slab_cache) {
1319 kfree(ai);
1320 ai = NULL;
1321 }
1322
1323 return ai;
1324 }
1325
1326 #ifdef CONFIG_MTD_UBI_FASTMAP
1327
1328 /**
1329 * scan_fastmap - try to find a fastmap and attach from it.
1330 * @ubi: UBI device description object
1331 * @ai: attach info object
1332 *
1333 * Returns 0 on success, negative return values indicate an internal
1334 * error.
1335 * UBI_NO_FASTMAP denotes that no fastmap was found.
1336 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1337 */
scan_fast(struct ubi_device * ubi,struct ubi_attach_info ** ai)1338 static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai)
1339 {
1340 int err, pnum, fm_anchor = -1;
1341 unsigned long long max_sqnum = 0;
1342
1343 err = -ENOMEM;
1344
1345 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1346 if (!ech)
1347 goto out;
1348
1349 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1350 if (!vidh)
1351 goto out_ech;
1352
1353 for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1354 int vol_id = -1;
1355 unsigned long long sqnum = -1;
1356 cond_resched();
1357
1358 dbg_gen("process PEB %d", pnum);
1359 err = scan_peb(ubi, *ai, pnum, &vol_id, &sqnum);
1360 if (err < 0)
1361 goto out_vidh;
1362
1363 if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1364 max_sqnum = sqnum;
1365 fm_anchor = pnum;
1366 }
1367 }
1368
1369 ubi_free_vid_hdr(ubi, vidh);
1370 kfree(ech);
1371
1372 if (fm_anchor < 0)
1373 return UBI_NO_FASTMAP;
1374
1375 destroy_ai(*ai);
1376 *ai = alloc_ai();
1377 if (!*ai)
1378 return -ENOMEM;
1379
1380 return ubi_scan_fastmap(ubi, *ai, fm_anchor);
1381
1382 out_vidh:
1383 ubi_free_vid_hdr(ubi, vidh);
1384 out_ech:
1385 kfree(ech);
1386 out:
1387 return err;
1388 }
1389
1390 #endif
1391
1392 /**
1393 * ubi_attach - attach an MTD device.
1394 * @ubi: UBI device descriptor
1395 * @force_scan: if set to non-zero attach by scanning
1396 *
1397 * This function returns zero in case of success and a negative error code in
1398 * case of failure.
1399 */
ubi_attach(struct ubi_device * ubi,int force_scan)1400 int ubi_attach(struct ubi_device *ubi, int force_scan)
1401 {
1402 int err;
1403 struct ubi_attach_info *ai;
1404
1405 ai = alloc_ai();
1406 if (!ai)
1407 return -ENOMEM;
1408
1409 #ifdef CONFIG_MTD_UBI_FASTMAP
1410 /* On small flash devices we disable fastmap in any case. */
1411 if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1412 ubi->fm_disabled = 1;
1413 force_scan = 1;
1414 }
1415
1416 if (force_scan)
1417 err = scan_all(ubi, ai, 0);
1418 else {
1419 err = scan_fast(ubi, &ai);
1420 if (err > 0 || mtd_is_eccerr(err)) {
1421 if (err != UBI_NO_FASTMAP) {
1422 destroy_ai(ai);
1423 ai = alloc_ai();
1424 if (!ai)
1425 return -ENOMEM;
1426
1427 err = scan_all(ubi, ai, 0);
1428 } else {
1429 err = scan_all(ubi, ai, UBI_FM_MAX_START);
1430 }
1431 }
1432 }
1433 #else
1434 err = scan_all(ubi, ai, 0);
1435 #endif
1436 if (err)
1437 goto out_ai;
1438
1439 ubi->bad_peb_count = ai->bad_peb_count;
1440 ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1441 ubi->corr_peb_count = ai->corr_peb_count;
1442 ubi->max_ec = ai->max_ec;
1443 ubi->mean_ec = ai->mean_ec;
1444 dbg_gen("max. sequence number: %llu", ai->max_sqnum);
1445
1446 err = ubi_read_volume_table(ubi, ai);
1447 if (err)
1448 goto out_ai;
1449
1450 err = ubi_wl_init(ubi, ai);
1451 if (err)
1452 goto out_vtbl;
1453
1454 err = ubi_eba_init(ubi, ai);
1455 if (err)
1456 goto out_wl;
1457
1458 #ifdef CONFIG_MTD_UBI_FASTMAP
1459 if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) {
1460 struct ubi_attach_info *scan_ai;
1461
1462 scan_ai = alloc_ai();
1463 if (!scan_ai) {
1464 err = -ENOMEM;
1465 goto out_wl;
1466 }
1467
1468 err = scan_all(ubi, scan_ai, 0);
1469 if (err) {
1470 destroy_ai(scan_ai);
1471 goto out_wl;
1472 }
1473
1474 err = self_check_eba(ubi, ai, scan_ai);
1475 destroy_ai(scan_ai);
1476
1477 if (err)
1478 goto out_wl;
1479 }
1480 #endif
1481
1482 destroy_ai(ai);
1483 return 0;
1484
1485 out_wl:
1486 ubi_wl_close(ubi);
1487 out_vtbl:
1488 ubi_free_internal_volumes(ubi);
1489 vfree(ubi->vtbl);
1490 out_ai:
1491 destroy_ai(ai);
1492 return err;
1493 }
1494
1495 /**
1496 * self_check_ai - check the attaching information.
1497 * @ubi: UBI device description object
1498 * @ai: attaching information
1499 *
1500 * This function returns zero if the attaching information is all right, and a
1501 * negative error code if not or if an error occurred.
1502 */
self_check_ai(struct ubi_device * ubi,struct ubi_attach_info * ai)1503 static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1504 {
1505 int pnum, err, vols_found = 0;
1506 struct rb_node *rb1, *rb2;
1507 struct ubi_ainf_volume *av;
1508 struct ubi_ainf_peb *aeb, *last_aeb;
1509 uint8_t *buf;
1510
1511 if (!ubi_dbg_chk_gen(ubi))
1512 return 0;
1513
1514 /*
1515 * At first, check that attaching information is OK.
1516 */
1517 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1518 int leb_count = 0;
1519
1520 cond_resched();
1521
1522 vols_found += 1;
1523
1524 if (ai->is_empty) {
1525 ubi_err(ubi, "bad is_empty flag");
1526 goto bad_av;
1527 }
1528
1529 if (av->vol_id < 0 || av->highest_lnum < 0 ||
1530 av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1531 av->data_pad < 0 || av->last_data_size < 0) {
1532 ubi_err(ubi, "negative values");
1533 goto bad_av;
1534 }
1535
1536 if (av->vol_id >= UBI_MAX_VOLUMES &&
1537 av->vol_id < UBI_INTERNAL_VOL_START) {
1538 ubi_err(ubi, "bad vol_id");
1539 goto bad_av;
1540 }
1541
1542 if (av->vol_id > ai->highest_vol_id) {
1543 ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there",
1544 ai->highest_vol_id, av->vol_id);
1545 goto out;
1546 }
1547
1548 if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1549 av->vol_type != UBI_STATIC_VOLUME) {
1550 ubi_err(ubi, "bad vol_type");
1551 goto bad_av;
1552 }
1553
1554 if (av->data_pad > ubi->leb_size / 2) {
1555 ubi_err(ubi, "bad data_pad");
1556 goto bad_av;
1557 }
1558
1559 last_aeb = NULL;
1560 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1561 cond_resched();
1562
1563 last_aeb = aeb;
1564 leb_count += 1;
1565
1566 if (aeb->pnum < 0 || aeb->ec < 0) {
1567 ubi_err(ubi, "negative values");
1568 goto bad_aeb;
1569 }
1570
1571 if (aeb->ec < ai->min_ec) {
1572 ubi_err(ubi, "bad ai->min_ec (%d), %d found",
1573 ai->min_ec, aeb->ec);
1574 goto bad_aeb;
1575 }
1576
1577 if (aeb->ec > ai->max_ec) {
1578 ubi_err(ubi, "bad ai->max_ec (%d), %d found",
1579 ai->max_ec, aeb->ec);
1580 goto bad_aeb;
1581 }
1582
1583 if (aeb->pnum >= ubi->peb_count) {
1584 ubi_err(ubi, "too high PEB number %d, total PEBs %d",
1585 aeb->pnum, ubi->peb_count);
1586 goto bad_aeb;
1587 }
1588
1589 if (av->vol_type == UBI_STATIC_VOLUME) {
1590 if (aeb->lnum >= av->used_ebs) {
1591 ubi_err(ubi, "bad lnum or used_ebs");
1592 goto bad_aeb;
1593 }
1594 } else {
1595 if (av->used_ebs != 0) {
1596 ubi_err(ubi, "non-zero used_ebs");
1597 goto bad_aeb;
1598 }
1599 }
1600
1601 if (aeb->lnum > av->highest_lnum) {
1602 ubi_err(ubi, "incorrect highest_lnum or lnum");
1603 goto bad_aeb;
1604 }
1605 }
1606
1607 if (av->leb_count != leb_count) {
1608 ubi_err(ubi, "bad leb_count, %d objects in the tree",
1609 leb_count);
1610 goto bad_av;
1611 }
1612
1613 if (!last_aeb)
1614 continue;
1615
1616 aeb = last_aeb;
1617
1618 if (aeb->lnum != av->highest_lnum) {
1619 ubi_err(ubi, "bad highest_lnum");
1620 goto bad_aeb;
1621 }
1622 }
1623
1624 if (vols_found != ai->vols_found) {
1625 ubi_err(ubi, "bad ai->vols_found %d, should be %d",
1626 ai->vols_found, vols_found);
1627 goto out;
1628 }
1629
1630 /* Check that attaching information is correct */
1631 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1632 last_aeb = NULL;
1633 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1634 int vol_type;
1635
1636 cond_resched();
1637
1638 last_aeb = aeb;
1639
1640 err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1641 if (err && err != UBI_IO_BITFLIPS) {
1642 ubi_err(ubi, "VID header is not OK (%d)",
1643 err);
1644 if (err > 0)
1645 err = -EIO;
1646 return err;
1647 }
1648
1649 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1650 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1651 if (av->vol_type != vol_type) {
1652 ubi_err(ubi, "bad vol_type");
1653 goto bad_vid_hdr;
1654 }
1655
1656 if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1657 ubi_err(ubi, "bad sqnum %llu", aeb->sqnum);
1658 goto bad_vid_hdr;
1659 }
1660
1661 if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1662 ubi_err(ubi, "bad vol_id %d", av->vol_id);
1663 goto bad_vid_hdr;
1664 }
1665
1666 if (av->compat != vidh->compat) {
1667 ubi_err(ubi, "bad compat %d", vidh->compat);
1668 goto bad_vid_hdr;
1669 }
1670
1671 if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1672 ubi_err(ubi, "bad lnum %d", aeb->lnum);
1673 goto bad_vid_hdr;
1674 }
1675
1676 if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1677 ubi_err(ubi, "bad used_ebs %d", av->used_ebs);
1678 goto bad_vid_hdr;
1679 }
1680
1681 if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1682 ubi_err(ubi, "bad data_pad %d", av->data_pad);
1683 goto bad_vid_hdr;
1684 }
1685 }
1686
1687 if (!last_aeb)
1688 continue;
1689
1690 if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1691 ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum);
1692 goto bad_vid_hdr;
1693 }
1694
1695 if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1696 ubi_err(ubi, "bad last_data_size %d",
1697 av->last_data_size);
1698 goto bad_vid_hdr;
1699 }
1700 }
1701
1702 /*
1703 * Make sure that all the physical eraseblocks are in one of the lists
1704 * or trees.
1705 */
1706 buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1707 if (!buf)
1708 return -ENOMEM;
1709
1710 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1711 err = ubi_io_is_bad(ubi, pnum);
1712 if (err < 0) {
1713 kfree(buf);
1714 return err;
1715 } else if (err)
1716 buf[pnum] = 1;
1717 }
1718
1719 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1720 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1721 buf[aeb->pnum] = 1;
1722
1723 list_for_each_entry(aeb, &ai->free, u.list)
1724 buf[aeb->pnum] = 1;
1725
1726 list_for_each_entry(aeb, &ai->corr, u.list)
1727 buf[aeb->pnum] = 1;
1728
1729 list_for_each_entry(aeb, &ai->erase, u.list)
1730 buf[aeb->pnum] = 1;
1731
1732 list_for_each_entry(aeb, &ai->alien, u.list)
1733 buf[aeb->pnum] = 1;
1734
1735 err = 0;
1736 for (pnum = 0; pnum < ubi->peb_count; pnum++)
1737 if (!buf[pnum]) {
1738 ubi_err(ubi, "PEB %d is not referred", pnum);
1739 err = 1;
1740 }
1741
1742 kfree(buf);
1743 if (err)
1744 goto out;
1745 return 0;
1746
1747 bad_aeb:
1748 ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum);
1749 ubi_dump_aeb(aeb, 0);
1750 ubi_dump_av(av);
1751 goto out;
1752
1753 bad_av:
1754 ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1755 ubi_dump_av(av);
1756 goto out;
1757
1758 bad_vid_hdr:
1759 ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1760 ubi_dump_av(av);
1761 ubi_dump_vid_hdr(vidh);
1762
1763 out:
1764 dump_stack();
1765 return -EINVAL;
1766 }
1767