1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Based on arch/arm/kernel/process.c
4 *
5 * Original Copyright (C) 1995 Linus Torvalds
6 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
7 * Copyright (C) 2012 ARM Ltd.
8 */
9 #include <linux/compat.h>
10 #include <linux/efi.h>
11 #include <linux/elf.h>
12 #include <linux/export.h>
13 #include <linux/sched.h>
14 #include <linux/sched/debug.h>
15 #include <linux/sched/task.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/kernel.h>
18 #include <linux/mman.h>
19 #include <linux/mm.h>
20 #include <linux/nospec.h>
21 #include <linux/stddef.h>
22 #include <linux/sysctl.h>
23 #include <linux/unistd.h>
24 #include <linux/user.h>
25 #include <linux/delay.h>
26 #include <linux/reboot.h>
27 #include <linux/interrupt.h>
28 #include <linux/init.h>
29 #include <linux/cpu.h>
30 #include <linux/elfcore.h>
31 #include <linux/pm.h>
32 #include <linux/tick.h>
33 #include <linux/utsname.h>
34 #include <linux/uaccess.h>
35 #include <linux/random.h>
36 #include <linux/hw_breakpoint.h>
37 #include <linux/personality.h>
38 #include <linux/notifier.h>
39 #include <trace/events/power.h>
40 #include <linux/percpu.h>
41 #include <linux/thread_info.h>
42 #include <linux/prctl.h>
43
44 #include <asm/alternative.h>
45 #include <asm/compat.h>
46 #include <asm/cpufeature.h>
47 #include <asm/cacheflush.h>
48 #include <asm/exec.h>
49 #include <asm/fpsimd.h>
50 #include <asm/mmu_context.h>
51 #include <asm/mte.h>
52 #include <asm/processor.h>
53 #include <asm/pointer_auth.h>
54 #include <asm/stacktrace.h>
55 #include <asm/switch_to.h>
56 #include <asm/system_misc.h>
57
58 #if defined(CONFIG_STACKPROTECTOR) && !defined(CONFIG_STACKPROTECTOR_PER_TASK)
59 #include <linux/stackprotector.h>
60 unsigned long __stack_chk_guard __ro_after_init;
61 EXPORT_SYMBOL(__stack_chk_guard);
62 #endif
63
64 /*
65 * Function pointers to optional machine specific functions
66 */
67 void (*pm_power_off)(void);
68 EXPORT_SYMBOL_GPL(pm_power_off);
69
70 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)71 void arch_cpu_idle_dead(void)
72 {
73 cpu_die();
74 }
75 #endif
76
77 /*
78 * Called by kexec, immediately prior to machine_kexec().
79 *
80 * This must completely disable all secondary CPUs; simply causing those CPUs
81 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
82 * kexec'd kernel to use any and all RAM as it sees fit, without having to
83 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
84 * functionality embodied in smpt_shutdown_nonboot_cpus() to achieve this.
85 */
machine_shutdown(void)86 void machine_shutdown(void)
87 {
88 smp_shutdown_nonboot_cpus(reboot_cpu);
89 }
90
91 /*
92 * Halting simply requires that the secondary CPUs stop performing any
93 * activity (executing tasks, handling interrupts). smp_send_stop()
94 * achieves this.
95 */
machine_halt(void)96 void machine_halt(void)
97 {
98 local_irq_disable();
99 smp_send_stop();
100 while (1);
101 }
102
103 /*
104 * Power-off simply requires that the secondary CPUs stop performing any
105 * activity (executing tasks, handling interrupts). smp_send_stop()
106 * achieves this. When the system power is turned off, it will take all CPUs
107 * with it.
108 */
machine_power_off(void)109 void machine_power_off(void)
110 {
111 local_irq_disable();
112 smp_send_stop();
113 if (pm_power_off)
114 pm_power_off();
115 }
116
117 /*
118 * Restart requires that the secondary CPUs stop performing any activity
119 * while the primary CPU resets the system. Systems with multiple CPUs must
120 * provide a HW restart implementation, to ensure that all CPUs reset at once.
121 * This is required so that any code running after reset on the primary CPU
122 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
123 * executing pre-reset code, and using RAM that the primary CPU's code wishes
124 * to use. Implementing such co-ordination would be essentially impossible.
125 */
machine_restart(char * cmd)126 void machine_restart(char *cmd)
127 {
128 /* Disable interrupts first */
129 local_irq_disable();
130 smp_send_stop();
131
132 /*
133 * UpdateCapsule() depends on the system being reset via
134 * ResetSystem().
135 */
136 if (efi_enabled(EFI_RUNTIME_SERVICES))
137 efi_reboot(reboot_mode, NULL);
138
139 /* Now call the architecture specific reboot code. */
140 do_kernel_restart(cmd);
141
142 /*
143 * Whoops - the architecture was unable to reboot.
144 */
145 printk("Reboot failed -- System halted\n");
146 while (1);
147 }
148
149 #define bstr(suffix, str) [PSR_BTYPE_ ## suffix >> PSR_BTYPE_SHIFT] = str
150 static const char *const btypes[] = {
151 bstr(NONE, "--"),
152 bstr( JC, "jc"),
153 bstr( C, "-c"),
154 bstr( J , "j-")
155 };
156 #undef bstr
157
print_pstate(struct pt_regs * regs)158 static void print_pstate(struct pt_regs *regs)
159 {
160 u64 pstate = regs->pstate;
161
162 if (compat_user_mode(regs)) {
163 printk("pstate: %08llx (%c%c%c%c %c %s %s %c%c%c %cDIT %cSSBS)\n",
164 pstate,
165 pstate & PSR_AA32_N_BIT ? 'N' : 'n',
166 pstate & PSR_AA32_Z_BIT ? 'Z' : 'z',
167 pstate & PSR_AA32_C_BIT ? 'C' : 'c',
168 pstate & PSR_AA32_V_BIT ? 'V' : 'v',
169 pstate & PSR_AA32_Q_BIT ? 'Q' : 'q',
170 pstate & PSR_AA32_T_BIT ? "T32" : "A32",
171 pstate & PSR_AA32_E_BIT ? "BE" : "LE",
172 pstate & PSR_AA32_A_BIT ? 'A' : 'a',
173 pstate & PSR_AA32_I_BIT ? 'I' : 'i',
174 pstate & PSR_AA32_F_BIT ? 'F' : 'f',
175 pstate & PSR_AA32_DIT_BIT ? '+' : '-',
176 pstate & PSR_AA32_SSBS_BIT ? '+' : '-');
177 } else {
178 const char *btype_str = btypes[(pstate & PSR_BTYPE_MASK) >>
179 PSR_BTYPE_SHIFT];
180
181 printk("pstate: %08llx (%c%c%c%c %c%c%c%c %cPAN %cUAO %cTCO %cDIT %cSSBS BTYPE=%s)\n",
182 pstate,
183 pstate & PSR_N_BIT ? 'N' : 'n',
184 pstate & PSR_Z_BIT ? 'Z' : 'z',
185 pstate & PSR_C_BIT ? 'C' : 'c',
186 pstate & PSR_V_BIT ? 'V' : 'v',
187 pstate & PSR_D_BIT ? 'D' : 'd',
188 pstate & PSR_A_BIT ? 'A' : 'a',
189 pstate & PSR_I_BIT ? 'I' : 'i',
190 pstate & PSR_F_BIT ? 'F' : 'f',
191 pstate & PSR_PAN_BIT ? '+' : '-',
192 pstate & PSR_UAO_BIT ? '+' : '-',
193 pstate & PSR_TCO_BIT ? '+' : '-',
194 pstate & PSR_DIT_BIT ? '+' : '-',
195 pstate & PSR_SSBS_BIT ? '+' : '-',
196 btype_str);
197 }
198 }
199
__show_regs(struct pt_regs * regs)200 void __show_regs(struct pt_regs *regs)
201 {
202 int i, top_reg;
203 u64 lr, sp;
204
205 if (compat_user_mode(regs)) {
206 lr = regs->compat_lr;
207 sp = regs->compat_sp;
208 top_reg = 12;
209 } else {
210 lr = regs->regs[30];
211 sp = regs->sp;
212 top_reg = 29;
213 }
214
215 show_regs_print_info(KERN_DEFAULT);
216 print_pstate(regs);
217
218 if (!user_mode(regs)) {
219 printk("pc : %pS\n", (void *)regs->pc);
220 printk("lr : %pS\n", (void *)ptrauth_strip_insn_pac(lr));
221 } else {
222 printk("pc : %016llx\n", regs->pc);
223 printk("lr : %016llx\n", lr);
224 }
225
226 printk("sp : %016llx\n", sp);
227
228 if (system_uses_irq_prio_masking())
229 printk("pmr_save: %08llx\n", regs->pmr_save);
230
231 i = top_reg;
232
233 while (i >= 0) {
234 printk("x%-2d: %016llx", i, regs->regs[i]);
235
236 while (i-- % 3)
237 pr_cont(" x%-2d: %016llx", i, regs->regs[i]);
238
239 pr_cont("\n");
240 }
241 }
242
show_regs(struct pt_regs * regs)243 void show_regs(struct pt_regs *regs)
244 {
245 __show_regs(regs);
246 dump_backtrace(regs, NULL, KERN_DEFAULT);
247 }
248
tls_thread_flush(void)249 static void tls_thread_flush(void)
250 {
251 write_sysreg(0, tpidr_el0);
252
253 if (is_compat_task()) {
254 current->thread.uw.tp_value = 0;
255
256 /*
257 * We need to ensure ordering between the shadow state and the
258 * hardware state, so that we don't corrupt the hardware state
259 * with a stale shadow state during context switch.
260 */
261 barrier();
262 write_sysreg(0, tpidrro_el0);
263 }
264 }
265
flush_tagged_addr_state(void)266 static void flush_tagged_addr_state(void)
267 {
268 if (IS_ENABLED(CONFIG_ARM64_TAGGED_ADDR_ABI))
269 clear_thread_flag(TIF_TAGGED_ADDR);
270 }
271
flush_thread(void)272 void flush_thread(void)
273 {
274 fpsimd_flush_thread();
275 tls_thread_flush();
276 flush_ptrace_hw_breakpoint(current);
277 flush_tagged_addr_state();
278 }
279
release_thread(struct task_struct * dead_task)280 void release_thread(struct task_struct *dead_task)
281 {
282 }
283
arch_release_task_struct(struct task_struct * tsk)284 void arch_release_task_struct(struct task_struct *tsk)
285 {
286 fpsimd_release_task(tsk);
287 }
288
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)289 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
290 {
291 if (current->mm)
292 fpsimd_preserve_current_state();
293 *dst = *src;
294
295 /* We rely on the above assignment to initialize dst's thread_flags: */
296 BUILD_BUG_ON(!IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK));
297
298 /*
299 * Detach src's sve_state (if any) from dst so that it does not
300 * get erroneously used or freed prematurely. dst's sve_state
301 * will be allocated on demand later on if dst uses SVE.
302 * For consistency, also clear TIF_SVE here: this could be done
303 * later in copy_process(), but to avoid tripping up future
304 * maintainers it is best not to leave TIF_SVE and sve_state in
305 * an inconsistent state, even temporarily.
306 */
307 dst->thread.sve_state = NULL;
308 clear_tsk_thread_flag(dst, TIF_SVE);
309
310 /* clear any pending asynchronous tag fault raised by the parent */
311 clear_tsk_thread_flag(dst, TIF_MTE_ASYNC_FAULT);
312
313 return 0;
314 }
315
316 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
317
copy_thread(unsigned long clone_flags,unsigned long stack_start,unsigned long stk_sz,struct task_struct * p,unsigned long tls)318 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
319 unsigned long stk_sz, struct task_struct *p, unsigned long tls)
320 {
321 struct pt_regs *childregs = task_pt_regs(p);
322
323 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
324
325 /*
326 * In case p was allocated the same task_struct pointer as some
327 * other recently-exited task, make sure p is disassociated from
328 * any cpu that may have run that now-exited task recently.
329 * Otherwise we could erroneously skip reloading the FPSIMD
330 * registers for p.
331 */
332 fpsimd_flush_task_state(p);
333
334 ptrauth_thread_init_kernel(p);
335
336 if (likely(!(p->flags & (PF_KTHREAD | PF_IO_WORKER)))) {
337 *childregs = *current_pt_regs();
338 childregs->regs[0] = 0;
339
340 /*
341 * Read the current TLS pointer from tpidr_el0 as it may be
342 * out-of-sync with the saved value.
343 */
344 *task_user_tls(p) = read_sysreg(tpidr_el0);
345
346 if (stack_start) {
347 if (is_compat_thread(task_thread_info(p)))
348 childregs->compat_sp = stack_start;
349 else
350 childregs->sp = stack_start;
351 }
352
353 /*
354 * If a TLS pointer was passed to clone, use it for the new
355 * thread.
356 */
357 if (clone_flags & CLONE_SETTLS)
358 p->thread.uw.tp_value = tls;
359 } else {
360 /*
361 * A kthread has no context to ERET to, so ensure any buggy
362 * ERET is treated as an illegal exception return.
363 *
364 * When a user task is created from a kthread, childregs will
365 * be initialized by start_thread() or start_compat_thread().
366 */
367 memset(childregs, 0, sizeof(struct pt_regs));
368 childregs->pstate = PSR_MODE_EL1h | PSR_IL_BIT;
369
370 p->thread.cpu_context.x19 = stack_start;
371 p->thread.cpu_context.x20 = stk_sz;
372 }
373 p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
374 p->thread.cpu_context.sp = (unsigned long)childregs;
375 /*
376 * For the benefit of the unwinder, set up childregs->stackframe
377 * as the final frame for the new task.
378 */
379 p->thread.cpu_context.fp = (unsigned long)childregs->stackframe;
380
381 ptrace_hw_copy_thread(p);
382
383 return 0;
384 }
385
tls_preserve_current_state(void)386 void tls_preserve_current_state(void)
387 {
388 *task_user_tls(current) = read_sysreg(tpidr_el0);
389 }
390
tls_thread_switch(struct task_struct * next)391 static void tls_thread_switch(struct task_struct *next)
392 {
393 tls_preserve_current_state();
394
395 if (is_compat_thread(task_thread_info(next)))
396 write_sysreg(next->thread.uw.tp_value, tpidrro_el0);
397 else if (!arm64_kernel_unmapped_at_el0())
398 write_sysreg(0, tpidrro_el0);
399
400 write_sysreg(*task_user_tls(next), tpidr_el0);
401 }
402
403 /*
404 * Force SSBS state on context-switch, since it may be lost after migrating
405 * from a CPU which treats the bit as RES0 in a heterogeneous system.
406 */
ssbs_thread_switch(struct task_struct * next)407 static void ssbs_thread_switch(struct task_struct *next)
408 {
409 /*
410 * Nothing to do for kernel threads, but 'regs' may be junk
411 * (e.g. idle task) so check the flags and bail early.
412 */
413 if (unlikely(next->flags & PF_KTHREAD))
414 return;
415
416 /*
417 * If all CPUs implement the SSBS extension, then we just need to
418 * context-switch the PSTATE field.
419 */
420 if (cpus_have_const_cap(ARM64_SSBS))
421 return;
422
423 spectre_v4_enable_task_mitigation(next);
424 }
425
426 /*
427 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
428 * shadow copy so that we can restore this upon entry from userspace.
429 *
430 * This is *only* for exception entry from EL0, and is not valid until we
431 * __switch_to() a user task.
432 */
433 DEFINE_PER_CPU(struct task_struct *, __entry_task);
434
entry_task_switch(struct task_struct * next)435 static void entry_task_switch(struct task_struct *next)
436 {
437 __this_cpu_write(__entry_task, next);
438 }
439
440 /*
441 * ARM erratum 1418040 handling, affecting the 32bit view of CNTVCT.
442 * Assuming the virtual counter is enabled at the beginning of times:
443 *
444 * - disable access when switching from a 64bit task to a 32bit task
445 * - enable access when switching from a 32bit task to a 64bit task
446 */
erratum_1418040_thread_switch(struct task_struct * prev,struct task_struct * next)447 static void erratum_1418040_thread_switch(struct task_struct *prev,
448 struct task_struct *next)
449 {
450 bool prev32, next32;
451 u64 val;
452
453 if (!IS_ENABLED(CONFIG_ARM64_ERRATUM_1418040))
454 return;
455
456 prev32 = is_compat_thread(task_thread_info(prev));
457 next32 = is_compat_thread(task_thread_info(next));
458
459 if (prev32 == next32 || !this_cpu_has_cap(ARM64_WORKAROUND_1418040))
460 return;
461
462 val = read_sysreg(cntkctl_el1);
463
464 if (!next32)
465 val |= ARCH_TIMER_USR_VCT_ACCESS_EN;
466 else
467 val &= ~ARCH_TIMER_USR_VCT_ACCESS_EN;
468
469 write_sysreg(val, cntkctl_el1);
470 }
471
472 /*
473 * __switch_to() checks current->thread.sctlr_user as an optimisation. Therefore
474 * this function must be called with preemption disabled and the update to
475 * sctlr_user must be made in the same preemption disabled block so that
476 * __switch_to() does not see the variable update before the SCTLR_EL1 one.
477 */
update_sctlr_el1(u64 sctlr)478 void update_sctlr_el1(u64 sctlr)
479 {
480 /*
481 * EnIA must not be cleared while in the kernel as this is necessary for
482 * in-kernel PAC. It will be cleared on kernel exit if needed.
483 */
484 sysreg_clear_set(sctlr_el1, SCTLR_USER_MASK & ~SCTLR_ELx_ENIA, sctlr);
485
486 /* ISB required for the kernel uaccess routines when setting TCF0. */
487 isb();
488 }
489
490 /*
491 * Thread switching.
492 */
__switch_to(struct task_struct * prev,struct task_struct * next)493 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
494 struct task_struct *next)
495 {
496 struct task_struct *last;
497
498 fpsimd_thread_switch(next);
499 tls_thread_switch(next);
500 hw_breakpoint_thread_switch(next);
501 contextidr_thread_switch(next);
502 entry_task_switch(next);
503 ssbs_thread_switch(next);
504 erratum_1418040_thread_switch(prev, next);
505 ptrauth_thread_switch_user(next);
506
507 /*
508 * Complete any pending TLB or cache maintenance on this CPU in case
509 * the thread migrates to a different CPU.
510 * This full barrier is also required by the membarrier system
511 * call.
512 */
513 dsb(ish);
514
515 /*
516 * MTE thread switching must happen after the DSB above to ensure that
517 * any asynchronous tag check faults have been logged in the TFSR*_EL1
518 * registers.
519 */
520 mte_thread_switch(next);
521 /* avoid expensive SCTLR_EL1 accesses if no change */
522 if (prev->thread.sctlr_user != next->thread.sctlr_user)
523 update_sctlr_el1(next->thread.sctlr_user);
524
525 /* the actual thread switch */
526 last = cpu_switch_to(prev, next);
527
528 return last;
529 }
530
__get_wchan(struct task_struct * p)531 unsigned long __get_wchan(struct task_struct *p)
532 {
533 struct stackframe frame;
534 unsigned long stack_page, ret = 0;
535 int count = 0;
536
537 stack_page = (unsigned long)try_get_task_stack(p);
538 if (!stack_page)
539 return 0;
540
541 start_backtrace(&frame, thread_saved_fp(p), thread_saved_pc(p));
542
543 do {
544 if (unwind_frame(p, &frame))
545 goto out;
546 if (!in_sched_functions(frame.pc)) {
547 ret = frame.pc;
548 goto out;
549 }
550 } while (count++ < 16);
551
552 out:
553 put_task_stack(p);
554 return ret;
555 }
556
arch_align_stack(unsigned long sp)557 unsigned long arch_align_stack(unsigned long sp)
558 {
559 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
560 sp -= get_random_int() & ~PAGE_MASK;
561 return sp & ~0xf;
562 }
563
564 #ifdef CONFIG_COMPAT
compat_elf_check_arch(const struct elf32_hdr * hdr)565 int compat_elf_check_arch(const struct elf32_hdr *hdr)
566 {
567 if (!system_supports_32bit_el0())
568 return false;
569
570 if ((hdr)->e_machine != EM_ARM)
571 return false;
572
573 if (!((hdr)->e_flags & EF_ARM_EABI_MASK))
574 return false;
575
576 /*
577 * Prevent execve() of a 32-bit program from a deadline task
578 * if the restricted affinity mask would be inadmissible on an
579 * asymmetric system.
580 */
581 return !static_branch_unlikely(&arm64_mismatched_32bit_el0) ||
582 !dl_task_check_affinity(current, system_32bit_el0_cpumask());
583 }
584 #endif
585
586 /*
587 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
588 */
arch_setup_new_exec(void)589 void arch_setup_new_exec(void)
590 {
591 unsigned long mmflags = 0;
592
593 if (is_compat_task()) {
594 mmflags = MMCF_AARCH32;
595
596 /*
597 * Restrict the CPU affinity mask for a 32-bit task so that
598 * it contains only 32-bit-capable CPUs.
599 *
600 * From the perspective of the task, this looks similar to
601 * what would happen if the 64-bit-only CPUs were hot-unplugged
602 * at the point of execve(), although we try a bit harder to
603 * honour the cpuset hierarchy.
604 */
605 if (static_branch_unlikely(&arm64_mismatched_32bit_el0))
606 force_compatible_cpus_allowed_ptr(current);
607 } else if (static_branch_unlikely(&arm64_mismatched_32bit_el0)) {
608 relax_compatible_cpus_allowed_ptr(current);
609 }
610
611 current->mm->context.flags = mmflags;
612 ptrauth_thread_init_user();
613 mte_thread_init_user();
614
615 if (task_spec_ssb_noexec(current)) {
616 arch_prctl_spec_ctrl_set(current, PR_SPEC_STORE_BYPASS,
617 PR_SPEC_ENABLE);
618 }
619 }
620
621 #ifdef CONFIG_ARM64_TAGGED_ADDR_ABI
622 /*
623 * Control the relaxed ABI allowing tagged user addresses into the kernel.
624 */
625 static unsigned int tagged_addr_disabled;
626
set_tagged_addr_ctrl(struct task_struct * task,unsigned long arg)627 long set_tagged_addr_ctrl(struct task_struct *task, unsigned long arg)
628 {
629 unsigned long valid_mask = PR_TAGGED_ADDR_ENABLE;
630 struct thread_info *ti = task_thread_info(task);
631
632 if (is_compat_thread(ti))
633 return -EINVAL;
634
635 if (system_supports_mte())
636 valid_mask |= PR_MTE_TCF_MASK | PR_MTE_TAG_MASK;
637
638 if (arg & ~valid_mask)
639 return -EINVAL;
640
641 /*
642 * Do not allow the enabling of the tagged address ABI if globally
643 * disabled via sysctl abi.tagged_addr_disabled.
644 */
645 if (arg & PR_TAGGED_ADDR_ENABLE && tagged_addr_disabled)
646 return -EINVAL;
647
648 if (set_mte_ctrl(task, arg) != 0)
649 return -EINVAL;
650
651 update_ti_thread_flag(ti, TIF_TAGGED_ADDR, arg & PR_TAGGED_ADDR_ENABLE);
652
653 return 0;
654 }
655
get_tagged_addr_ctrl(struct task_struct * task)656 long get_tagged_addr_ctrl(struct task_struct *task)
657 {
658 long ret = 0;
659 struct thread_info *ti = task_thread_info(task);
660
661 if (is_compat_thread(ti))
662 return -EINVAL;
663
664 if (test_ti_thread_flag(ti, TIF_TAGGED_ADDR))
665 ret = PR_TAGGED_ADDR_ENABLE;
666
667 ret |= get_mte_ctrl(task);
668
669 return ret;
670 }
671
672 /*
673 * Global sysctl to disable the tagged user addresses support. This control
674 * only prevents the tagged address ABI enabling via prctl() and does not
675 * disable it for tasks that already opted in to the relaxed ABI.
676 */
677
678 static struct ctl_table tagged_addr_sysctl_table[] = {
679 {
680 .procname = "tagged_addr_disabled",
681 .mode = 0644,
682 .data = &tagged_addr_disabled,
683 .maxlen = sizeof(int),
684 .proc_handler = proc_dointvec_minmax,
685 .extra1 = SYSCTL_ZERO,
686 .extra2 = SYSCTL_ONE,
687 },
688 { }
689 };
690
tagged_addr_init(void)691 static int __init tagged_addr_init(void)
692 {
693 if (!register_sysctl("abi", tagged_addr_sysctl_table))
694 return -EINVAL;
695 return 0;
696 }
697
698 core_initcall(tagged_addr_init);
699 #endif /* CONFIG_ARM64_TAGGED_ADDR_ABI */
700
701 #ifdef CONFIG_BINFMT_ELF
arch_elf_adjust_prot(int prot,const struct arch_elf_state * state,bool has_interp,bool is_interp)702 int arch_elf_adjust_prot(int prot, const struct arch_elf_state *state,
703 bool has_interp, bool is_interp)
704 {
705 /*
706 * For dynamically linked executables the interpreter is
707 * responsible for setting PROT_BTI on everything except
708 * itself.
709 */
710 if (is_interp != has_interp)
711 return prot;
712
713 if (!(state->flags & ARM64_ELF_BTI))
714 return prot;
715
716 if (prot & PROT_EXEC)
717 prot |= PROT_BTI;
718
719 return prot;
720 }
721 #endif
722