1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * udc.c - Core UDC Framework
4 *
5 * Copyright (C) 2010 Texas Instruments
6 * Author: Felipe Balbi <balbi@ti.com>
7 */
8
9 #define pr_fmt(fmt) "UDC core: " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/list.h>
15 #include <linux/err.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/sched/task_stack.h>
18 #include <linux/workqueue.h>
19
20 #include <linux/usb/ch9.h>
21 #include <linux/usb/gadget.h>
22 #include <linux/usb.h>
23
24 #include "trace.h"
25
26 /**
27 * struct usb_udc - describes one usb device controller
28 * @driver: the gadget driver pointer. For use by the class code
29 * @dev: the child device to the actual controller
30 * @gadget: the gadget. For use by the class code
31 * @list: for use by the udc class driver
32 * @vbus: for udcs who care about vbus status, this value is real vbus status;
33 * for udcs who do not care about vbus status, this value is always true
34 * @started: the UDC's started state. True if the UDC had started.
35 *
36 * This represents the internal data structure which is used by the UDC-class
37 * to hold information about udc driver and gadget together.
38 */
39 struct usb_udc {
40 struct usb_gadget_driver *driver;
41 struct usb_gadget *gadget;
42 struct device dev;
43 struct list_head list;
44 bool vbus;
45 bool started;
46 };
47
48 static struct class *udc_class;
49 static LIST_HEAD(udc_list);
50 static LIST_HEAD(gadget_driver_pending_list);
51 static DEFINE_MUTEX(udc_lock);
52
53 static int udc_bind_to_driver(struct usb_udc *udc,
54 struct usb_gadget_driver *driver);
55
56 /* ------------------------------------------------------------------------- */
57
58 /**
59 * usb_ep_set_maxpacket_limit - set maximum packet size limit for endpoint
60 * @ep:the endpoint being configured
61 * @maxpacket_limit:value of maximum packet size limit
62 *
63 * This function should be used only in UDC drivers to initialize endpoint
64 * (usually in probe function).
65 */
usb_ep_set_maxpacket_limit(struct usb_ep * ep,unsigned maxpacket_limit)66 void usb_ep_set_maxpacket_limit(struct usb_ep *ep,
67 unsigned maxpacket_limit)
68 {
69 ep->maxpacket_limit = maxpacket_limit;
70 ep->maxpacket = maxpacket_limit;
71
72 trace_usb_ep_set_maxpacket_limit(ep, 0);
73 }
74 EXPORT_SYMBOL_GPL(usb_ep_set_maxpacket_limit);
75
76 /**
77 * usb_ep_enable - configure endpoint, making it usable
78 * @ep:the endpoint being configured. may not be the endpoint named "ep0".
79 * drivers discover endpoints through the ep_list of a usb_gadget.
80 *
81 * When configurations are set, or when interface settings change, the driver
82 * will enable or disable the relevant endpoints. while it is enabled, an
83 * endpoint may be used for i/o until the driver receives a disconnect() from
84 * the host or until the endpoint is disabled.
85 *
86 * the ep0 implementation (which calls this routine) must ensure that the
87 * hardware capabilities of each endpoint match the descriptor provided
88 * for it. for example, an endpoint named "ep2in-bulk" would be usable
89 * for interrupt transfers as well as bulk, but it likely couldn't be used
90 * for iso transfers or for endpoint 14. some endpoints are fully
91 * configurable, with more generic names like "ep-a". (remember that for
92 * USB, "in" means "towards the USB host".)
93 *
94 * This routine may be called in an atomic (interrupt) context.
95 *
96 * returns zero, or a negative error code.
97 */
usb_ep_enable(struct usb_ep * ep)98 int usb_ep_enable(struct usb_ep *ep)
99 {
100 int ret = 0;
101
102 if (ep->enabled)
103 goto out;
104
105 /* UDC drivers can't handle endpoints with maxpacket size 0 */
106 if (usb_endpoint_maxp(ep->desc) == 0) {
107 /*
108 * We should log an error message here, but we can't call
109 * dev_err() because there's no way to find the gadget
110 * given only ep.
111 */
112 ret = -EINVAL;
113 goto out;
114 }
115
116 ret = ep->ops->enable(ep, ep->desc);
117 if (ret)
118 goto out;
119
120 ep->enabled = true;
121
122 out:
123 trace_usb_ep_enable(ep, ret);
124
125 return ret;
126 }
127 EXPORT_SYMBOL_GPL(usb_ep_enable);
128
129 /**
130 * usb_ep_disable - endpoint is no longer usable
131 * @ep:the endpoint being unconfigured. may not be the endpoint named "ep0".
132 *
133 * no other task may be using this endpoint when this is called.
134 * any pending and uncompleted requests will complete with status
135 * indicating disconnect (-ESHUTDOWN) before this call returns.
136 * gadget drivers must call usb_ep_enable() again before queueing
137 * requests to the endpoint.
138 *
139 * This routine may be called in an atomic (interrupt) context.
140 *
141 * returns zero, or a negative error code.
142 */
usb_ep_disable(struct usb_ep * ep)143 int usb_ep_disable(struct usb_ep *ep)
144 {
145 int ret = 0;
146
147 if (!ep->enabled)
148 goto out;
149
150 ret = ep->ops->disable(ep);
151 if (ret)
152 goto out;
153
154 ep->enabled = false;
155
156 out:
157 trace_usb_ep_disable(ep, ret);
158
159 return ret;
160 }
161 EXPORT_SYMBOL_GPL(usb_ep_disable);
162
163 /**
164 * usb_ep_alloc_request - allocate a request object to use with this endpoint
165 * @ep:the endpoint to be used with with the request
166 * @gfp_flags:GFP_* flags to use
167 *
168 * Request objects must be allocated with this call, since they normally
169 * need controller-specific setup and may even need endpoint-specific
170 * resources such as allocation of DMA descriptors.
171 * Requests may be submitted with usb_ep_queue(), and receive a single
172 * completion callback. Free requests with usb_ep_free_request(), when
173 * they are no longer needed.
174 *
175 * Returns the request, or null if one could not be allocated.
176 */
usb_ep_alloc_request(struct usb_ep * ep,gfp_t gfp_flags)177 struct usb_request *usb_ep_alloc_request(struct usb_ep *ep,
178 gfp_t gfp_flags)
179 {
180 struct usb_request *req = NULL;
181
182 req = ep->ops->alloc_request(ep, gfp_flags);
183
184 trace_usb_ep_alloc_request(ep, req, req ? 0 : -ENOMEM);
185
186 return req;
187 }
188 EXPORT_SYMBOL_GPL(usb_ep_alloc_request);
189
190 /**
191 * usb_ep_free_request - frees a request object
192 * @ep:the endpoint associated with the request
193 * @req:the request being freed
194 *
195 * Reverses the effect of usb_ep_alloc_request().
196 * Caller guarantees the request is not queued, and that it will
197 * no longer be requeued (or otherwise used).
198 */
usb_ep_free_request(struct usb_ep * ep,struct usb_request * req)199 void usb_ep_free_request(struct usb_ep *ep,
200 struct usb_request *req)
201 {
202 trace_usb_ep_free_request(ep, req, 0);
203 ep->ops->free_request(ep, req);
204 }
205 EXPORT_SYMBOL_GPL(usb_ep_free_request);
206
207 /**
208 * usb_ep_queue - queues (submits) an I/O request to an endpoint.
209 * @ep:the endpoint associated with the request
210 * @req:the request being submitted
211 * @gfp_flags: GFP_* flags to use in case the lower level driver couldn't
212 * pre-allocate all necessary memory with the request.
213 *
214 * This tells the device controller to perform the specified request through
215 * that endpoint (reading or writing a buffer). When the request completes,
216 * including being canceled by usb_ep_dequeue(), the request's completion
217 * routine is called to return the request to the driver. Any endpoint
218 * (except control endpoints like ep0) may have more than one transfer
219 * request queued; they complete in FIFO order. Once a gadget driver
220 * submits a request, that request may not be examined or modified until it
221 * is given back to that driver through the completion callback.
222 *
223 * Each request is turned into one or more packets. The controller driver
224 * never merges adjacent requests into the same packet. OUT transfers
225 * will sometimes use data that's already buffered in the hardware.
226 * Drivers can rely on the fact that the first byte of the request's buffer
227 * always corresponds to the first byte of some USB packet, for both
228 * IN and OUT transfers.
229 *
230 * Bulk endpoints can queue any amount of data; the transfer is packetized
231 * automatically. The last packet will be short if the request doesn't fill it
232 * out completely. Zero length packets (ZLPs) should be avoided in portable
233 * protocols since not all usb hardware can successfully handle zero length
234 * packets. (ZLPs may be explicitly written, and may be implicitly written if
235 * the request 'zero' flag is set.) Bulk endpoints may also be used
236 * for interrupt transfers; but the reverse is not true, and some endpoints
237 * won't support every interrupt transfer. (Such as 768 byte packets.)
238 *
239 * Interrupt-only endpoints are less functional than bulk endpoints, for
240 * example by not supporting queueing or not handling buffers that are
241 * larger than the endpoint's maxpacket size. They may also treat data
242 * toggle differently.
243 *
244 * Control endpoints ... after getting a setup() callback, the driver queues
245 * one response (even if it would be zero length). That enables the
246 * status ack, after transferring data as specified in the response. Setup
247 * functions may return negative error codes to generate protocol stalls.
248 * (Note that some USB device controllers disallow protocol stall responses
249 * in some cases.) When control responses are deferred (the response is
250 * written after the setup callback returns), then usb_ep_set_halt() may be
251 * used on ep0 to trigger protocol stalls. Depending on the controller,
252 * it may not be possible to trigger a status-stage protocol stall when the
253 * data stage is over, that is, from within the response's completion
254 * routine.
255 *
256 * For periodic endpoints, like interrupt or isochronous ones, the usb host
257 * arranges to poll once per interval, and the gadget driver usually will
258 * have queued some data to transfer at that time.
259 *
260 * Note that @req's ->complete() callback must never be called from
261 * within usb_ep_queue() as that can create deadlock situations.
262 *
263 * This routine may be called in interrupt context.
264 *
265 * Returns zero, or a negative error code. Endpoints that are not enabled
266 * report errors; errors will also be
267 * reported when the usb peripheral is disconnected.
268 *
269 * If and only if @req is successfully queued (the return value is zero),
270 * @req->complete() will be called exactly once, when the Gadget core and
271 * UDC are finished with the request. When the completion function is called,
272 * control of the request is returned to the device driver which submitted it.
273 * The completion handler may then immediately free or reuse @req.
274 */
usb_ep_queue(struct usb_ep * ep,struct usb_request * req,gfp_t gfp_flags)275 int usb_ep_queue(struct usb_ep *ep,
276 struct usb_request *req, gfp_t gfp_flags)
277 {
278 int ret = 0;
279
280 if (WARN_ON_ONCE(!ep->enabled && ep->address)) {
281 ret = -ESHUTDOWN;
282 goto out;
283 }
284
285 ret = ep->ops->queue(ep, req, gfp_flags);
286
287 out:
288 trace_usb_ep_queue(ep, req, ret);
289
290 return ret;
291 }
292 EXPORT_SYMBOL_GPL(usb_ep_queue);
293
294 /**
295 * usb_ep_dequeue - dequeues (cancels, unlinks) an I/O request from an endpoint
296 * @ep:the endpoint associated with the request
297 * @req:the request being canceled
298 *
299 * If the request is still active on the endpoint, it is dequeued and
300 * eventually its completion routine is called (with status -ECONNRESET);
301 * else a negative error code is returned. This routine is asynchronous,
302 * that is, it may return before the completion routine runs.
303 *
304 * Note that some hardware can't clear out write fifos (to unlink the request
305 * at the head of the queue) except as part of disconnecting from usb. Such
306 * restrictions prevent drivers from supporting configuration changes,
307 * even to configuration zero (a "chapter 9" requirement).
308 *
309 * This routine may be called in interrupt context.
310 */
usb_ep_dequeue(struct usb_ep * ep,struct usb_request * req)311 int usb_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
312 {
313 int ret;
314
315 ret = ep->ops->dequeue(ep, req);
316 trace_usb_ep_dequeue(ep, req, ret);
317
318 return ret;
319 }
320 EXPORT_SYMBOL_GPL(usb_ep_dequeue);
321
322 /**
323 * usb_ep_set_halt - sets the endpoint halt feature.
324 * @ep: the non-isochronous endpoint being stalled
325 *
326 * Use this to stall an endpoint, perhaps as an error report.
327 * Except for control endpoints,
328 * the endpoint stays halted (will not stream any data) until the host
329 * clears this feature; drivers may need to empty the endpoint's request
330 * queue first, to make sure no inappropriate transfers happen.
331 *
332 * Note that while an endpoint CLEAR_FEATURE will be invisible to the
333 * gadget driver, a SET_INTERFACE will not be. To reset endpoints for the
334 * current altsetting, see usb_ep_clear_halt(). When switching altsettings,
335 * it's simplest to use usb_ep_enable() or usb_ep_disable() for the endpoints.
336 *
337 * This routine may be called in interrupt context.
338 *
339 * Returns zero, or a negative error code. On success, this call sets
340 * underlying hardware state that blocks data transfers.
341 * Attempts to halt IN endpoints will fail (returning -EAGAIN) if any
342 * transfer requests are still queued, or if the controller hardware
343 * (usually a FIFO) still holds bytes that the host hasn't collected.
344 */
usb_ep_set_halt(struct usb_ep * ep)345 int usb_ep_set_halt(struct usb_ep *ep)
346 {
347 int ret;
348
349 ret = ep->ops->set_halt(ep, 1);
350 trace_usb_ep_set_halt(ep, ret);
351
352 return ret;
353 }
354 EXPORT_SYMBOL_GPL(usb_ep_set_halt);
355
356 /**
357 * usb_ep_clear_halt - clears endpoint halt, and resets toggle
358 * @ep:the bulk or interrupt endpoint being reset
359 *
360 * Use this when responding to the standard usb "set interface" request,
361 * for endpoints that aren't reconfigured, after clearing any other state
362 * in the endpoint's i/o queue.
363 *
364 * This routine may be called in interrupt context.
365 *
366 * Returns zero, or a negative error code. On success, this call clears
367 * the underlying hardware state reflecting endpoint halt and data toggle.
368 * Note that some hardware can't support this request (like pxa2xx_udc),
369 * and accordingly can't correctly implement interface altsettings.
370 */
usb_ep_clear_halt(struct usb_ep * ep)371 int usb_ep_clear_halt(struct usb_ep *ep)
372 {
373 int ret;
374
375 ret = ep->ops->set_halt(ep, 0);
376 trace_usb_ep_clear_halt(ep, ret);
377
378 return ret;
379 }
380 EXPORT_SYMBOL_GPL(usb_ep_clear_halt);
381
382 /**
383 * usb_ep_set_wedge - sets the halt feature and ignores clear requests
384 * @ep: the endpoint being wedged
385 *
386 * Use this to stall an endpoint and ignore CLEAR_FEATURE(HALT_ENDPOINT)
387 * requests. If the gadget driver clears the halt status, it will
388 * automatically unwedge the endpoint.
389 *
390 * This routine may be called in interrupt context.
391 *
392 * Returns zero on success, else negative errno.
393 */
usb_ep_set_wedge(struct usb_ep * ep)394 int usb_ep_set_wedge(struct usb_ep *ep)
395 {
396 int ret;
397
398 if (ep->ops->set_wedge)
399 ret = ep->ops->set_wedge(ep);
400 else
401 ret = ep->ops->set_halt(ep, 1);
402
403 trace_usb_ep_set_wedge(ep, ret);
404
405 return ret;
406 }
407 EXPORT_SYMBOL_GPL(usb_ep_set_wedge);
408
409 /**
410 * usb_ep_fifo_status - returns number of bytes in fifo, or error
411 * @ep: the endpoint whose fifo status is being checked.
412 *
413 * FIFO endpoints may have "unclaimed data" in them in certain cases,
414 * such as after aborted transfers. Hosts may not have collected all
415 * the IN data written by the gadget driver (and reported by a request
416 * completion). The gadget driver may not have collected all the data
417 * written OUT to it by the host. Drivers that need precise handling for
418 * fault reporting or recovery may need to use this call.
419 *
420 * This routine may be called in interrupt context.
421 *
422 * This returns the number of such bytes in the fifo, or a negative
423 * errno if the endpoint doesn't use a FIFO or doesn't support such
424 * precise handling.
425 */
usb_ep_fifo_status(struct usb_ep * ep)426 int usb_ep_fifo_status(struct usb_ep *ep)
427 {
428 int ret;
429
430 if (ep->ops->fifo_status)
431 ret = ep->ops->fifo_status(ep);
432 else
433 ret = -EOPNOTSUPP;
434
435 trace_usb_ep_fifo_status(ep, ret);
436
437 return ret;
438 }
439 EXPORT_SYMBOL_GPL(usb_ep_fifo_status);
440
441 /**
442 * usb_ep_fifo_flush - flushes contents of a fifo
443 * @ep: the endpoint whose fifo is being flushed.
444 *
445 * This call may be used to flush the "unclaimed data" that may exist in
446 * an endpoint fifo after abnormal transaction terminations. The call
447 * must never be used except when endpoint is not being used for any
448 * protocol translation.
449 *
450 * This routine may be called in interrupt context.
451 */
usb_ep_fifo_flush(struct usb_ep * ep)452 void usb_ep_fifo_flush(struct usb_ep *ep)
453 {
454 if (ep->ops->fifo_flush)
455 ep->ops->fifo_flush(ep);
456
457 trace_usb_ep_fifo_flush(ep, 0);
458 }
459 EXPORT_SYMBOL_GPL(usb_ep_fifo_flush);
460
461 /* ------------------------------------------------------------------------- */
462
463 /**
464 * usb_gadget_frame_number - returns the current frame number
465 * @gadget: controller that reports the frame number
466 *
467 * Returns the usb frame number, normally eleven bits from a SOF packet,
468 * or negative errno if this device doesn't support this capability.
469 */
usb_gadget_frame_number(struct usb_gadget * gadget)470 int usb_gadget_frame_number(struct usb_gadget *gadget)
471 {
472 int ret;
473
474 ret = gadget->ops->get_frame(gadget);
475
476 trace_usb_gadget_frame_number(gadget, ret);
477
478 return ret;
479 }
480 EXPORT_SYMBOL_GPL(usb_gadget_frame_number);
481
482 /**
483 * usb_gadget_wakeup - tries to wake up the host connected to this gadget
484 * @gadget: controller used to wake up the host
485 *
486 * Returns zero on success, else negative error code if the hardware
487 * doesn't support such attempts, or its support has not been enabled
488 * by the usb host. Drivers must return device descriptors that report
489 * their ability to support this, or hosts won't enable it.
490 *
491 * This may also try to use SRP to wake the host and start enumeration,
492 * even if OTG isn't otherwise in use. OTG devices may also start
493 * remote wakeup even when hosts don't explicitly enable it.
494 */
usb_gadget_wakeup(struct usb_gadget * gadget)495 int usb_gadget_wakeup(struct usb_gadget *gadget)
496 {
497 int ret = 0;
498
499 if (!gadget->ops->wakeup) {
500 ret = -EOPNOTSUPP;
501 goto out;
502 }
503
504 ret = gadget->ops->wakeup(gadget);
505
506 out:
507 trace_usb_gadget_wakeup(gadget, ret);
508
509 return ret;
510 }
511 EXPORT_SYMBOL_GPL(usb_gadget_wakeup);
512
513 /**
514 * usb_gadget_set_selfpowered - sets the device selfpowered feature.
515 * @gadget:the device being declared as self-powered
516 *
517 * this affects the device status reported by the hardware driver
518 * to reflect that it now has a local power supply.
519 *
520 * returns zero on success, else negative errno.
521 */
usb_gadget_set_selfpowered(struct usb_gadget * gadget)522 int usb_gadget_set_selfpowered(struct usb_gadget *gadget)
523 {
524 int ret = 0;
525
526 if (!gadget->ops->set_selfpowered) {
527 ret = -EOPNOTSUPP;
528 goto out;
529 }
530
531 ret = gadget->ops->set_selfpowered(gadget, 1);
532
533 out:
534 trace_usb_gadget_set_selfpowered(gadget, ret);
535
536 return ret;
537 }
538 EXPORT_SYMBOL_GPL(usb_gadget_set_selfpowered);
539
540 /**
541 * usb_gadget_clear_selfpowered - clear the device selfpowered feature.
542 * @gadget:the device being declared as bus-powered
543 *
544 * this affects the device status reported by the hardware driver.
545 * some hardware may not support bus-powered operation, in which
546 * case this feature's value can never change.
547 *
548 * returns zero on success, else negative errno.
549 */
usb_gadget_clear_selfpowered(struct usb_gadget * gadget)550 int usb_gadget_clear_selfpowered(struct usb_gadget *gadget)
551 {
552 int ret = 0;
553
554 if (!gadget->ops->set_selfpowered) {
555 ret = -EOPNOTSUPP;
556 goto out;
557 }
558
559 ret = gadget->ops->set_selfpowered(gadget, 0);
560
561 out:
562 trace_usb_gadget_clear_selfpowered(gadget, ret);
563
564 return ret;
565 }
566 EXPORT_SYMBOL_GPL(usb_gadget_clear_selfpowered);
567
568 /**
569 * usb_gadget_vbus_connect - Notify controller that VBUS is powered
570 * @gadget:The device which now has VBUS power.
571 * Context: can sleep
572 *
573 * This call is used by a driver for an external transceiver (or GPIO)
574 * that detects a VBUS power session starting. Common responses include
575 * resuming the controller, activating the D+ (or D-) pullup to let the
576 * host detect that a USB device is attached, and starting to draw power
577 * (8mA or possibly more, especially after SET_CONFIGURATION).
578 *
579 * Returns zero on success, else negative errno.
580 */
usb_gadget_vbus_connect(struct usb_gadget * gadget)581 int usb_gadget_vbus_connect(struct usb_gadget *gadget)
582 {
583 int ret = 0;
584
585 if (!gadget->ops->vbus_session) {
586 ret = -EOPNOTSUPP;
587 goto out;
588 }
589
590 ret = gadget->ops->vbus_session(gadget, 1);
591
592 out:
593 trace_usb_gadget_vbus_connect(gadget, ret);
594
595 return ret;
596 }
597 EXPORT_SYMBOL_GPL(usb_gadget_vbus_connect);
598
599 /**
600 * usb_gadget_vbus_draw - constrain controller's VBUS power usage
601 * @gadget:The device whose VBUS usage is being described
602 * @mA:How much current to draw, in milliAmperes. This should be twice
603 * the value listed in the configuration descriptor bMaxPower field.
604 *
605 * This call is used by gadget drivers during SET_CONFIGURATION calls,
606 * reporting how much power the device may consume. For example, this
607 * could affect how quickly batteries are recharged.
608 *
609 * Returns zero on success, else negative errno.
610 */
usb_gadget_vbus_draw(struct usb_gadget * gadget,unsigned mA)611 int usb_gadget_vbus_draw(struct usb_gadget *gadget, unsigned mA)
612 {
613 int ret = 0;
614
615 if (!gadget->ops->vbus_draw) {
616 ret = -EOPNOTSUPP;
617 goto out;
618 }
619
620 ret = gadget->ops->vbus_draw(gadget, mA);
621 if (!ret)
622 gadget->mA = mA;
623
624 out:
625 trace_usb_gadget_vbus_draw(gadget, ret);
626
627 return ret;
628 }
629 EXPORT_SYMBOL_GPL(usb_gadget_vbus_draw);
630
631 /**
632 * usb_gadget_vbus_disconnect - notify controller about VBUS session end
633 * @gadget:the device whose VBUS supply is being described
634 * Context: can sleep
635 *
636 * This call is used by a driver for an external transceiver (or GPIO)
637 * that detects a VBUS power session ending. Common responses include
638 * reversing everything done in usb_gadget_vbus_connect().
639 *
640 * Returns zero on success, else negative errno.
641 */
usb_gadget_vbus_disconnect(struct usb_gadget * gadget)642 int usb_gadget_vbus_disconnect(struct usb_gadget *gadget)
643 {
644 int ret = 0;
645
646 if (!gadget->ops->vbus_session) {
647 ret = -EOPNOTSUPP;
648 goto out;
649 }
650
651 ret = gadget->ops->vbus_session(gadget, 0);
652
653 out:
654 trace_usb_gadget_vbus_disconnect(gadget, ret);
655
656 return ret;
657 }
658 EXPORT_SYMBOL_GPL(usb_gadget_vbus_disconnect);
659
660 /**
661 * usb_gadget_connect - software-controlled connect to USB host
662 * @gadget:the peripheral being connected
663 *
664 * Enables the D+ (or potentially D-) pullup. The host will start
665 * enumerating this gadget when the pullup is active and a VBUS session
666 * is active (the link is powered).
667 *
668 * Returns zero on success, else negative errno.
669 */
usb_gadget_connect(struct usb_gadget * gadget)670 int usb_gadget_connect(struct usb_gadget *gadget)
671 {
672 int ret = 0;
673
674 if (!gadget->ops->pullup) {
675 ret = -EOPNOTSUPP;
676 goto out;
677 }
678
679 if (gadget->deactivated) {
680 /*
681 * If gadget is deactivated we only save new state.
682 * Gadget will be connected automatically after activation.
683 */
684 gadget->connected = true;
685 goto out;
686 }
687
688 ret = gadget->ops->pullup(gadget, 1);
689 if (!ret)
690 gadget->connected = 1;
691
692 out:
693 trace_usb_gadget_connect(gadget, ret);
694
695 return ret;
696 }
697 EXPORT_SYMBOL_GPL(usb_gadget_connect);
698
699 /**
700 * usb_gadget_disconnect - software-controlled disconnect from USB host
701 * @gadget:the peripheral being disconnected
702 *
703 * Disables the D+ (or potentially D-) pullup, which the host may see
704 * as a disconnect (when a VBUS session is active). Not all systems
705 * support software pullup controls.
706 *
707 * Following a successful disconnect, invoke the ->disconnect() callback
708 * for the current gadget driver so that UDC drivers don't need to.
709 *
710 * Returns zero on success, else negative errno.
711 */
usb_gadget_disconnect(struct usb_gadget * gadget)712 int usb_gadget_disconnect(struct usb_gadget *gadget)
713 {
714 int ret = 0;
715
716 if (!gadget->ops->pullup) {
717 ret = -EOPNOTSUPP;
718 goto out;
719 }
720
721 if (!gadget->connected)
722 goto out;
723
724 if (gadget->deactivated) {
725 /*
726 * If gadget is deactivated we only save new state.
727 * Gadget will stay disconnected after activation.
728 */
729 gadget->connected = false;
730 goto out;
731 }
732
733 ret = gadget->ops->pullup(gadget, 0);
734 if (!ret) {
735 gadget->connected = 0;
736 gadget->udc->driver->disconnect(gadget);
737 }
738
739 out:
740 trace_usb_gadget_disconnect(gadget, ret);
741
742 return ret;
743 }
744 EXPORT_SYMBOL_GPL(usb_gadget_disconnect);
745
746 /**
747 * usb_gadget_deactivate - deactivate function which is not ready to work
748 * @gadget: the peripheral being deactivated
749 *
750 * This routine may be used during the gadget driver bind() call to prevent
751 * the peripheral from ever being visible to the USB host, unless later
752 * usb_gadget_activate() is called. For example, user mode components may
753 * need to be activated before the system can talk to hosts.
754 *
755 * Returns zero on success, else negative errno.
756 */
usb_gadget_deactivate(struct usb_gadget * gadget)757 int usb_gadget_deactivate(struct usb_gadget *gadget)
758 {
759 int ret = 0;
760
761 if (gadget->deactivated)
762 goto out;
763
764 if (gadget->connected) {
765 ret = usb_gadget_disconnect(gadget);
766 if (ret)
767 goto out;
768
769 /*
770 * If gadget was being connected before deactivation, we want
771 * to reconnect it in usb_gadget_activate().
772 */
773 gadget->connected = true;
774 }
775 gadget->deactivated = true;
776
777 out:
778 trace_usb_gadget_deactivate(gadget, ret);
779
780 return ret;
781 }
782 EXPORT_SYMBOL_GPL(usb_gadget_deactivate);
783
784 /**
785 * usb_gadget_activate - activate function which is not ready to work
786 * @gadget: the peripheral being activated
787 *
788 * This routine activates gadget which was previously deactivated with
789 * usb_gadget_deactivate() call. It calls usb_gadget_connect() if needed.
790 *
791 * Returns zero on success, else negative errno.
792 */
usb_gadget_activate(struct usb_gadget * gadget)793 int usb_gadget_activate(struct usb_gadget *gadget)
794 {
795 int ret = 0;
796
797 if (!gadget->deactivated)
798 goto out;
799
800 gadget->deactivated = false;
801
802 /*
803 * If gadget has been connected before deactivation, or became connected
804 * while it was being deactivated, we call usb_gadget_connect().
805 */
806 if (gadget->connected)
807 ret = usb_gadget_connect(gadget);
808
809 out:
810 trace_usb_gadget_activate(gadget, ret);
811
812 return ret;
813 }
814 EXPORT_SYMBOL_GPL(usb_gadget_activate);
815
816 /* ------------------------------------------------------------------------- */
817
818 #ifdef CONFIG_HAS_DMA
819
usb_gadget_map_request_by_dev(struct device * dev,struct usb_request * req,int is_in)820 int usb_gadget_map_request_by_dev(struct device *dev,
821 struct usb_request *req, int is_in)
822 {
823 if (req->length == 0)
824 return 0;
825
826 if (req->num_sgs) {
827 int mapped;
828
829 mapped = dma_map_sg(dev, req->sg, req->num_sgs,
830 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
831 if (mapped == 0) {
832 dev_err(dev, "failed to map SGs\n");
833 return -EFAULT;
834 }
835
836 req->num_mapped_sgs = mapped;
837 } else {
838 if (is_vmalloc_addr(req->buf)) {
839 dev_err(dev, "buffer is not dma capable\n");
840 return -EFAULT;
841 } else if (object_is_on_stack(req->buf)) {
842 dev_err(dev, "buffer is on stack\n");
843 return -EFAULT;
844 }
845
846 req->dma = dma_map_single(dev, req->buf, req->length,
847 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
848
849 if (dma_mapping_error(dev, req->dma)) {
850 dev_err(dev, "failed to map buffer\n");
851 return -EFAULT;
852 }
853
854 req->dma_mapped = 1;
855 }
856
857 return 0;
858 }
859 EXPORT_SYMBOL_GPL(usb_gadget_map_request_by_dev);
860
usb_gadget_map_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)861 int usb_gadget_map_request(struct usb_gadget *gadget,
862 struct usb_request *req, int is_in)
863 {
864 return usb_gadget_map_request_by_dev(gadget->dev.parent, req, is_in);
865 }
866 EXPORT_SYMBOL_GPL(usb_gadget_map_request);
867
usb_gadget_unmap_request_by_dev(struct device * dev,struct usb_request * req,int is_in)868 void usb_gadget_unmap_request_by_dev(struct device *dev,
869 struct usb_request *req, int is_in)
870 {
871 if (req->length == 0)
872 return;
873
874 if (req->num_mapped_sgs) {
875 dma_unmap_sg(dev, req->sg, req->num_sgs,
876 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
877
878 req->num_mapped_sgs = 0;
879 } else if (req->dma_mapped) {
880 dma_unmap_single(dev, req->dma, req->length,
881 is_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
882 req->dma_mapped = 0;
883 }
884 }
885 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request_by_dev);
886
usb_gadget_unmap_request(struct usb_gadget * gadget,struct usb_request * req,int is_in)887 void usb_gadget_unmap_request(struct usb_gadget *gadget,
888 struct usb_request *req, int is_in)
889 {
890 usb_gadget_unmap_request_by_dev(gadget->dev.parent, req, is_in);
891 }
892 EXPORT_SYMBOL_GPL(usb_gadget_unmap_request);
893
894 #endif /* CONFIG_HAS_DMA */
895
896 /* ------------------------------------------------------------------------- */
897
898 /**
899 * usb_gadget_giveback_request - give the request back to the gadget layer
900 * @ep: the endpoint to be used with with the request
901 * @req: the request being given back
902 *
903 * This is called by device controller drivers in order to return the
904 * completed request back to the gadget layer.
905 */
usb_gadget_giveback_request(struct usb_ep * ep,struct usb_request * req)906 void usb_gadget_giveback_request(struct usb_ep *ep,
907 struct usb_request *req)
908 {
909 if (likely(req->status == 0))
910 usb_led_activity(USB_LED_EVENT_GADGET);
911
912 trace_usb_gadget_giveback_request(ep, req, 0);
913
914 req->complete(ep, req);
915 }
916 EXPORT_SYMBOL_GPL(usb_gadget_giveback_request);
917
918 /* ------------------------------------------------------------------------- */
919
920 /**
921 * gadget_find_ep_by_name - returns ep whose name is the same as sting passed
922 * in second parameter or NULL if searched endpoint not found
923 * @g: controller to check for quirk
924 * @name: name of searched endpoint
925 */
gadget_find_ep_by_name(struct usb_gadget * g,const char * name)926 struct usb_ep *gadget_find_ep_by_name(struct usb_gadget *g, const char *name)
927 {
928 struct usb_ep *ep;
929
930 gadget_for_each_ep(ep, g) {
931 if (!strcmp(ep->name, name))
932 return ep;
933 }
934
935 return NULL;
936 }
937 EXPORT_SYMBOL_GPL(gadget_find_ep_by_name);
938
939 /* ------------------------------------------------------------------------- */
940
usb_gadget_ep_match_desc(struct usb_gadget * gadget,struct usb_ep * ep,struct usb_endpoint_descriptor * desc,struct usb_ss_ep_comp_descriptor * ep_comp)941 int usb_gadget_ep_match_desc(struct usb_gadget *gadget,
942 struct usb_ep *ep, struct usb_endpoint_descriptor *desc,
943 struct usb_ss_ep_comp_descriptor *ep_comp)
944 {
945 u8 type;
946 u16 max;
947 int num_req_streams = 0;
948
949 /* endpoint already claimed? */
950 if (ep->claimed)
951 return 0;
952
953 type = usb_endpoint_type(desc);
954 max = usb_endpoint_maxp(desc);
955
956 if (usb_endpoint_dir_in(desc) && !ep->caps.dir_in)
957 return 0;
958 if (usb_endpoint_dir_out(desc) && !ep->caps.dir_out)
959 return 0;
960
961 if (max > ep->maxpacket_limit)
962 return 0;
963
964 /* "high bandwidth" works only at high speed */
965 if (!gadget_is_dualspeed(gadget) && usb_endpoint_maxp_mult(desc) > 1)
966 return 0;
967
968 switch (type) {
969 case USB_ENDPOINT_XFER_CONTROL:
970 /* only support ep0 for portable CONTROL traffic */
971 return 0;
972 case USB_ENDPOINT_XFER_ISOC:
973 if (!ep->caps.type_iso)
974 return 0;
975 /* ISO: limit 1023 bytes full speed, 1024 high/super speed */
976 if (!gadget_is_dualspeed(gadget) && max > 1023)
977 return 0;
978 break;
979 case USB_ENDPOINT_XFER_BULK:
980 if (!ep->caps.type_bulk)
981 return 0;
982 if (ep_comp && gadget_is_superspeed(gadget)) {
983 /* Get the number of required streams from the
984 * EP companion descriptor and see if the EP
985 * matches it
986 */
987 num_req_streams = ep_comp->bmAttributes & 0x1f;
988 if (num_req_streams > ep->max_streams)
989 return 0;
990 }
991 break;
992 case USB_ENDPOINT_XFER_INT:
993 /* Bulk endpoints handle interrupt transfers,
994 * except the toggle-quirky iso-synch kind
995 */
996 if (!ep->caps.type_int && !ep->caps.type_bulk)
997 return 0;
998 /* INT: limit 64 bytes full speed, 1024 high/super speed */
999 if (!gadget_is_dualspeed(gadget) && max > 64)
1000 return 0;
1001 break;
1002 }
1003
1004 return 1;
1005 }
1006 EXPORT_SYMBOL_GPL(usb_gadget_ep_match_desc);
1007
1008 /**
1009 * usb_gadget_check_config - checks if the UDC can support the binded
1010 * configuration
1011 * @gadget: controller to check the USB configuration
1012 *
1013 * Ensure that a UDC is able to support the requested resources by a
1014 * configuration, and that there are no resource limitations, such as
1015 * internal memory allocated to all requested endpoints.
1016 *
1017 * Returns zero on success, else a negative errno.
1018 */
usb_gadget_check_config(struct usb_gadget * gadget)1019 int usb_gadget_check_config(struct usb_gadget *gadget)
1020 {
1021 if (gadget->ops->check_config)
1022 return gadget->ops->check_config(gadget);
1023 return 0;
1024 }
1025 EXPORT_SYMBOL_GPL(usb_gadget_check_config);
1026
1027 /* ------------------------------------------------------------------------- */
1028
usb_gadget_state_work(struct work_struct * work)1029 static void usb_gadget_state_work(struct work_struct *work)
1030 {
1031 struct usb_gadget *gadget = work_to_gadget(work);
1032 struct usb_udc *udc = gadget->udc;
1033
1034 if (udc)
1035 sysfs_notify(&udc->dev.kobj, NULL, "state");
1036 }
1037
usb_gadget_set_state(struct usb_gadget * gadget,enum usb_device_state state)1038 void usb_gadget_set_state(struct usb_gadget *gadget,
1039 enum usb_device_state state)
1040 {
1041 gadget->state = state;
1042 schedule_work(&gadget->work);
1043 }
1044 EXPORT_SYMBOL_GPL(usb_gadget_set_state);
1045
1046 /* ------------------------------------------------------------------------- */
1047
usb_udc_connect_control(struct usb_udc * udc)1048 static void usb_udc_connect_control(struct usb_udc *udc)
1049 {
1050 if (udc->vbus)
1051 usb_gadget_connect(udc->gadget);
1052 else
1053 usb_gadget_disconnect(udc->gadget);
1054 }
1055
1056 /**
1057 * usb_udc_vbus_handler - updates the udc core vbus status, and try to
1058 * connect or disconnect gadget
1059 * @gadget: The gadget which vbus change occurs
1060 * @status: The vbus status
1061 *
1062 * The udc driver calls it when it wants to connect or disconnect gadget
1063 * according to vbus status.
1064 */
usb_udc_vbus_handler(struct usb_gadget * gadget,bool status)1065 void usb_udc_vbus_handler(struct usb_gadget *gadget, bool status)
1066 {
1067 struct usb_udc *udc = gadget->udc;
1068
1069 if (udc) {
1070 udc->vbus = status;
1071 usb_udc_connect_control(udc);
1072 }
1073 }
1074 EXPORT_SYMBOL_GPL(usb_udc_vbus_handler);
1075
1076 /**
1077 * usb_gadget_udc_reset - notifies the udc core that bus reset occurs
1078 * @gadget: The gadget which bus reset occurs
1079 * @driver: The gadget driver we want to notify
1080 *
1081 * If the udc driver has bus reset handler, it needs to call this when the bus
1082 * reset occurs, it notifies the gadget driver that the bus reset occurs as
1083 * well as updates gadget state.
1084 */
usb_gadget_udc_reset(struct usb_gadget * gadget,struct usb_gadget_driver * driver)1085 void usb_gadget_udc_reset(struct usb_gadget *gadget,
1086 struct usb_gadget_driver *driver)
1087 {
1088 driver->reset(gadget);
1089 usb_gadget_set_state(gadget, USB_STATE_DEFAULT);
1090 }
1091 EXPORT_SYMBOL_GPL(usb_gadget_udc_reset);
1092
1093 /**
1094 * usb_gadget_udc_start - tells usb device controller to start up
1095 * @udc: The UDC to be started
1096 *
1097 * This call is issued by the UDC Class driver when it's about
1098 * to register a gadget driver to the device controller, before
1099 * calling gadget driver's bind() method.
1100 *
1101 * It allows the controller to be powered off until strictly
1102 * necessary to have it powered on.
1103 *
1104 * Returns zero on success, else negative errno.
1105 */
usb_gadget_udc_start(struct usb_udc * udc)1106 static inline int usb_gadget_udc_start(struct usb_udc *udc)
1107 {
1108 int ret;
1109
1110 if (udc->started) {
1111 dev_err(&udc->dev, "UDC had already started\n");
1112 return -EBUSY;
1113 }
1114
1115 ret = udc->gadget->ops->udc_start(udc->gadget, udc->driver);
1116 if (!ret)
1117 udc->started = true;
1118
1119 return ret;
1120 }
1121
1122 /**
1123 * usb_gadget_udc_stop - tells usb device controller we don't need it anymore
1124 * @udc: The UDC to be stopped
1125 *
1126 * This call is issued by the UDC Class driver after calling
1127 * gadget driver's unbind() method.
1128 *
1129 * The details are implementation specific, but it can go as
1130 * far as powering off UDC completely and disable its data
1131 * line pullups.
1132 */
usb_gadget_udc_stop(struct usb_udc * udc)1133 static inline void usb_gadget_udc_stop(struct usb_udc *udc)
1134 {
1135 if (!udc->started) {
1136 dev_err(&udc->dev, "UDC had already stopped\n");
1137 return;
1138 }
1139
1140 udc->gadget->ops->udc_stop(udc->gadget);
1141 udc->started = false;
1142 }
1143
1144 /**
1145 * usb_gadget_udc_set_speed - tells usb device controller speed supported by
1146 * current driver
1147 * @udc: The device we want to set maximum speed
1148 * @speed: The maximum speed to allowed to run
1149 *
1150 * This call is issued by the UDC Class driver before calling
1151 * usb_gadget_udc_start() in order to make sure that we don't try to
1152 * connect on speeds the gadget driver doesn't support.
1153 */
usb_gadget_udc_set_speed(struct usb_udc * udc,enum usb_device_speed speed)1154 static inline void usb_gadget_udc_set_speed(struct usb_udc *udc,
1155 enum usb_device_speed speed)
1156 {
1157 struct usb_gadget *gadget = udc->gadget;
1158 enum usb_device_speed s;
1159
1160 if (speed == USB_SPEED_UNKNOWN)
1161 s = gadget->max_speed;
1162 else
1163 s = min(speed, gadget->max_speed);
1164
1165 if (s == USB_SPEED_SUPER_PLUS && gadget->ops->udc_set_ssp_rate)
1166 gadget->ops->udc_set_ssp_rate(gadget, gadget->max_ssp_rate);
1167 else if (gadget->ops->udc_set_speed)
1168 gadget->ops->udc_set_speed(gadget, s);
1169 }
1170
1171 /**
1172 * usb_gadget_enable_async_callbacks - tell usb device controller to enable asynchronous callbacks
1173 * @udc: The UDC which should enable async callbacks
1174 *
1175 * This routine is used when binding gadget drivers. It undoes the effect
1176 * of usb_gadget_disable_async_callbacks(); the UDC driver should enable IRQs
1177 * (if necessary) and resume issuing callbacks.
1178 *
1179 * This routine will always be called in process context.
1180 */
usb_gadget_enable_async_callbacks(struct usb_udc * udc)1181 static inline void usb_gadget_enable_async_callbacks(struct usb_udc *udc)
1182 {
1183 struct usb_gadget *gadget = udc->gadget;
1184
1185 if (gadget->ops->udc_async_callbacks)
1186 gadget->ops->udc_async_callbacks(gadget, true);
1187 }
1188
1189 /**
1190 * usb_gadget_disable_async_callbacks - tell usb device controller to disable asynchronous callbacks
1191 * @udc: The UDC which should disable async callbacks
1192 *
1193 * This routine is used when unbinding gadget drivers. It prevents a race:
1194 * The UDC driver doesn't know when the gadget driver's ->unbind callback
1195 * runs, so unless it is told to disable asynchronous callbacks, it might
1196 * issue a callback (such as ->disconnect) after the unbind has completed.
1197 *
1198 * After this function runs, the UDC driver must suppress all ->suspend,
1199 * ->resume, ->disconnect, ->reset, and ->setup callbacks to the gadget driver
1200 * until async callbacks are again enabled. A simple-minded but effective
1201 * way to accomplish this is to tell the UDC hardware not to generate any
1202 * more IRQs.
1203 *
1204 * Request completion callbacks must still be issued. However, it's okay
1205 * to defer them until the request is cancelled, since the pull-up will be
1206 * turned off during the time period when async callbacks are disabled.
1207 *
1208 * This routine will always be called in process context.
1209 */
usb_gadget_disable_async_callbacks(struct usb_udc * udc)1210 static inline void usb_gadget_disable_async_callbacks(struct usb_udc *udc)
1211 {
1212 struct usb_gadget *gadget = udc->gadget;
1213
1214 if (gadget->ops->udc_async_callbacks)
1215 gadget->ops->udc_async_callbacks(gadget, false);
1216 }
1217
1218 /**
1219 * usb_udc_release - release the usb_udc struct
1220 * @dev: the dev member within usb_udc
1221 *
1222 * This is called by driver's core in order to free memory once the last
1223 * reference is released.
1224 */
usb_udc_release(struct device * dev)1225 static void usb_udc_release(struct device *dev)
1226 {
1227 struct usb_udc *udc;
1228
1229 udc = container_of(dev, struct usb_udc, dev);
1230 dev_dbg(dev, "releasing '%s'\n", dev_name(dev));
1231 kfree(udc);
1232 }
1233
1234 static const struct attribute_group *usb_udc_attr_groups[];
1235
usb_udc_nop_release(struct device * dev)1236 static void usb_udc_nop_release(struct device *dev)
1237 {
1238 dev_vdbg(dev, "%s\n", __func__);
1239 }
1240
1241 /* should be called with udc_lock held */
check_pending_gadget_drivers(struct usb_udc * udc)1242 static int check_pending_gadget_drivers(struct usb_udc *udc)
1243 {
1244 struct usb_gadget_driver *driver;
1245 int ret = 0;
1246
1247 list_for_each_entry(driver, &gadget_driver_pending_list, pending)
1248 if (!driver->udc_name || strcmp(driver->udc_name,
1249 dev_name(&udc->dev)) == 0) {
1250 ret = udc_bind_to_driver(udc, driver);
1251 if (ret != -EPROBE_DEFER)
1252 list_del_init(&driver->pending);
1253 break;
1254 }
1255
1256 return ret;
1257 }
1258
1259 /**
1260 * usb_initialize_gadget - initialize a gadget and its embedded struct device
1261 * @parent: the parent device to this udc. Usually the controller driver's
1262 * device.
1263 * @gadget: the gadget to be initialized.
1264 * @release: a gadget release function.
1265 *
1266 * Returns zero on success, negative errno otherwise.
1267 * Calls the gadget release function in the latter case.
1268 */
usb_initialize_gadget(struct device * parent,struct usb_gadget * gadget,void (* release)(struct device * dev))1269 void usb_initialize_gadget(struct device *parent, struct usb_gadget *gadget,
1270 void (*release)(struct device *dev))
1271 {
1272 dev_set_name(&gadget->dev, "gadget");
1273 INIT_WORK(&gadget->work, usb_gadget_state_work);
1274 gadget->dev.parent = parent;
1275
1276 if (release)
1277 gadget->dev.release = release;
1278 else
1279 gadget->dev.release = usb_udc_nop_release;
1280
1281 device_initialize(&gadget->dev);
1282 }
1283 EXPORT_SYMBOL_GPL(usb_initialize_gadget);
1284
1285 /**
1286 * usb_add_gadget - adds a new gadget to the udc class driver list
1287 * @gadget: the gadget to be added to the list.
1288 *
1289 * Returns zero on success, negative errno otherwise.
1290 * Does not do a final usb_put_gadget() if an error occurs.
1291 */
usb_add_gadget(struct usb_gadget * gadget)1292 int usb_add_gadget(struct usb_gadget *gadget)
1293 {
1294 struct usb_udc *udc;
1295 int ret = -ENOMEM;
1296
1297 udc = kzalloc(sizeof(*udc), GFP_KERNEL);
1298 if (!udc)
1299 goto error;
1300
1301 device_initialize(&udc->dev);
1302 udc->dev.release = usb_udc_release;
1303 udc->dev.class = udc_class;
1304 udc->dev.groups = usb_udc_attr_groups;
1305 udc->dev.parent = gadget->dev.parent;
1306 ret = dev_set_name(&udc->dev, "%s",
1307 kobject_name(&gadget->dev.parent->kobj));
1308 if (ret)
1309 goto err_put_udc;
1310
1311 ret = device_add(&gadget->dev);
1312 if (ret)
1313 goto err_put_udc;
1314
1315 udc->gadget = gadget;
1316 gadget->udc = udc;
1317
1318 udc->started = false;
1319
1320 mutex_lock(&udc_lock);
1321 list_add_tail(&udc->list, &udc_list);
1322
1323 ret = device_add(&udc->dev);
1324 if (ret)
1325 goto err_unlist_udc;
1326
1327 usb_gadget_set_state(gadget, USB_STATE_NOTATTACHED);
1328 udc->vbus = true;
1329
1330 /* pick up one of pending gadget drivers */
1331 ret = check_pending_gadget_drivers(udc);
1332 if (ret)
1333 goto err_del_udc;
1334
1335 mutex_unlock(&udc_lock);
1336
1337 return 0;
1338
1339 err_del_udc:
1340 flush_work(&gadget->work);
1341 device_del(&udc->dev);
1342
1343 err_unlist_udc:
1344 list_del(&udc->list);
1345 mutex_unlock(&udc_lock);
1346
1347 device_del(&gadget->dev);
1348
1349 err_put_udc:
1350 put_device(&udc->dev);
1351
1352 error:
1353 return ret;
1354 }
1355 EXPORT_SYMBOL_GPL(usb_add_gadget);
1356
1357 /**
1358 * usb_add_gadget_udc_release - adds a new gadget to the udc class driver list
1359 * @parent: the parent device to this udc. Usually the controller driver's
1360 * device.
1361 * @gadget: the gadget to be added to the list.
1362 * @release: a gadget release function.
1363 *
1364 * Returns zero on success, negative errno otherwise.
1365 * Calls the gadget release function in the latter case.
1366 */
usb_add_gadget_udc_release(struct device * parent,struct usb_gadget * gadget,void (* release)(struct device * dev))1367 int usb_add_gadget_udc_release(struct device *parent, struct usb_gadget *gadget,
1368 void (*release)(struct device *dev))
1369 {
1370 int ret;
1371
1372 usb_initialize_gadget(parent, gadget, release);
1373 ret = usb_add_gadget(gadget);
1374 if (ret)
1375 usb_put_gadget(gadget);
1376 return ret;
1377 }
1378 EXPORT_SYMBOL_GPL(usb_add_gadget_udc_release);
1379
1380 /**
1381 * usb_get_gadget_udc_name - get the name of the first UDC controller
1382 * This functions returns the name of the first UDC controller in the system.
1383 * Please note that this interface is usefull only for legacy drivers which
1384 * assume that there is only one UDC controller in the system and they need to
1385 * get its name before initialization. There is no guarantee that the UDC
1386 * of the returned name will be still available, when gadget driver registers
1387 * itself.
1388 *
1389 * Returns pointer to string with UDC controller name on success, NULL
1390 * otherwise. Caller should kfree() returned string.
1391 */
usb_get_gadget_udc_name(void)1392 char *usb_get_gadget_udc_name(void)
1393 {
1394 struct usb_udc *udc;
1395 char *name = NULL;
1396
1397 /* For now we take the first available UDC */
1398 mutex_lock(&udc_lock);
1399 list_for_each_entry(udc, &udc_list, list) {
1400 if (!udc->driver) {
1401 name = kstrdup(udc->gadget->name, GFP_KERNEL);
1402 break;
1403 }
1404 }
1405 mutex_unlock(&udc_lock);
1406 return name;
1407 }
1408 EXPORT_SYMBOL_GPL(usb_get_gadget_udc_name);
1409
1410 /**
1411 * usb_add_gadget_udc - adds a new gadget to the udc class driver list
1412 * @parent: the parent device to this udc. Usually the controller
1413 * driver's device.
1414 * @gadget: the gadget to be added to the list
1415 *
1416 * Returns zero on success, negative errno otherwise.
1417 */
usb_add_gadget_udc(struct device * parent,struct usb_gadget * gadget)1418 int usb_add_gadget_udc(struct device *parent, struct usb_gadget *gadget)
1419 {
1420 return usb_add_gadget_udc_release(parent, gadget, NULL);
1421 }
1422 EXPORT_SYMBOL_GPL(usb_add_gadget_udc);
1423
usb_gadget_remove_driver(struct usb_udc * udc)1424 static void usb_gadget_remove_driver(struct usb_udc *udc)
1425 {
1426 dev_dbg(&udc->dev, "unregistering UDC driver [%s]\n",
1427 udc->driver->function);
1428
1429 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1430
1431 usb_gadget_disconnect(udc->gadget);
1432 usb_gadget_disable_async_callbacks(udc);
1433 if (udc->gadget->irq)
1434 synchronize_irq(udc->gadget->irq);
1435 udc->driver->unbind(udc->gadget);
1436 usb_gadget_udc_stop(udc);
1437
1438 udc->driver = NULL;
1439 udc->dev.driver = NULL;
1440 udc->gadget->dev.driver = NULL;
1441 }
1442
1443 /**
1444 * usb_del_gadget - deletes @udc from udc_list
1445 * @gadget: the gadget to be removed.
1446 *
1447 * This will call usb_gadget_unregister_driver() if
1448 * the @udc is still busy.
1449 * It will not do a final usb_put_gadget().
1450 */
usb_del_gadget(struct usb_gadget * gadget)1451 void usb_del_gadget(struct usb_gadget *gadget)
1452 {
1453 struct usb_udc *udc = gadget->udc;
1454
1455 if (!udc)
1456 return;
1457
1458 dev_vdbg(gadget->dev.parent, "unregistering gadget\n");
1459
1460 mutex_lock(&udc_lock);
1461 list_del(&udc->list);
1462
1463 if (udc->driver) {
1464 struct usb_gadget_driver *driver = udc->driver;
1465
1466 usb_gadget_remove_driver(udc);
1467 list_add(&driver->pending, &gadget_driver_pending_list);
1468 }
1469 mutex_unlock(&udc_lock);
1470
1471 kobject_uevent(&udc->dev.kobj, KOBJ_REMOVE);
1472 flush_work(&gadget->work);
1473 device_unregister(&udc->dev);
1474 device_del(&gadget->dev);
1475 }
1476 EXPORT_SYMBOL_GPL(usb_del_gadget);
1477
1478 /**
1479 * usb_del_gadget_udc - deletes @udc from udc_list
1480 * @gadget: the gadget to be removed.
1481 *
1482 * Calls usb_del_gadget() and does a final usb_put_gadget().
1483 */
usb_del_gadget_udc(struct usb_gadget * gadget)1484 void usb_del_gadget_udc(struct usb_gadget *gadget)
1485 {
1486 usb_del_gadget(gadget);
1487 usb_put_gadget(gadget);
1488 }
1489 EXPORT_SYMBOL_GPL(usb_del_gadget_udc);
1490
1491 /* ------------------------------------------------------------------------- */
1492
udc_bind_to_driver(struct usb_udc * udc,struct usb_gadget_driver * driver)1493 static int udc_bind_to_driver(struct usb_udc *udc, struct usb_gadget_driver *driver)
1494 {
1495 int ret;
1496
1497 dev_dbg(&udc->dev, "registering UDC driver [%s]\n",
1498 driver->function);
1499
1500 udc->driver = driver;
1501 udc->dev.driver = &driver->driver;
1502 udc->gadget->dev.driver = &driver->driver;
1503
1504 usb_gadget_udc_set_speed(udc, driver->max_speed);
1505
1506 ret = driver->bind(udc->gadget, driver);
1507 if (ret)
1508 goto err1;
1509 ret = usb_gadget_udc_start(udc);
1510 if (ret) {
1511 driver->unbind(udc->gadget);
1512 goto err1;
1513 }
1514 usb_gadget_enable_async_callbacks(udc);
1515 usb_udc_connect_control(udc);
1516
1517 kobject_uevent(&udc->dev.kobj, KOBJ_CHANGE);
1518 return 0;
1519 err1:
1520 if (ret != -EISNAM)
1521 dev_err(&udc->dev, "failed to start %s: %d\n",
1522 udc->driver->function, ret);
1523 udc->driver = NULL;
1524 udc->dev.driver = NULL;
1525 udc->gadget->dev.driver = NULL;
1526 return ret;
1527 }
1528
usb_gadget_probe_driver(struct usb_gadget_driver * driver)1529 int usb_gadget_probe_driver(struct usb_gadget_driver *driver)
1530 {
1531 struct usb_udc *udc = NULL;
1532 int ret = -ENODEV;
1533
1534 if (!driver || !driver->bind || !driver->setup)
1535 return -EINVAL;
1536
1537 mutex_lock(&udc_lock);
1538 if (driver->udc_name) {
1539 list_for_each_entry(udc, &udc_list, list) {
1540 ret = strcmp(driver->udc_name, dev_name(&udc->dev));
1541 if (!ret)
1542 break;
1543 }
1544 if (ret)
1545 ret = -ENODEV;
1546 else if (udc->driver)
1547 ret = -EBUSY;
1548 else
1549 goto found;
1550 } else {
1551 list_for_each_entry(udc, &udc_list, list) {
1552 /* For now we take the first one */
1553 if (!udc->driver)
1554 goto found;
1555 }
1556 }
1557
1558 if (!driver->match_existing_only) {
1559 list_add_tail(&driver->pending, &gadget_driver_pending_list);
1560 pr_info("couldn't find an available UDC - added [%s] to list of pending drivers\n",
1561 driver->function);
1562 ret = 0;
1563 }
1564
1565 mutex_unlock(&udc_lock);
1566 if (ret)
1567 pr_warn("couldn't find an available UDC or it's busy: %d\n", ret);
1568 return ret;
1569 found:
1570 ret = udc_bind_to_driver(udc, driver);
1571 mutex_unlock(&udc_lock);
1572 return ret;
1573 }
1574 EXPORT_SYMBOL_GPL(usb_gadget_probe_driver);
1575
usb_gadget_unregister_driver(struct usb_gadget_driver * driver)1576 int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
1577 {
1578 struct usb_udc *udc = NULL;
1579 int ret = -ENODEV;
1580
1581 if (!driver || !driver->unbind)
1582 return -EINVAL;
1583
1584 mutex_lock(&udc_lock);
1585 list_for_each_entry(udc, &udc_list, list) {
1586 if (udc->driver == driver) {
1587 usb_gadget_remove_driver(udc);
1588 usb_gadget_set_state(udc->gadget,
1589 USB_STATE_NOTATTACHED);
1590
1591 /* Maybe there is someone waiting for this UDC? */
1592 check_pending_gadget_drivers(udc);
1593 /*
1594 * For now we ignore bind errors as probably it's
1595 * not a valid reason to fail other's gadget unbind
1596 */
1597 ret = 0;
1598 break;
1599 }
1600 }
1601
1602 if (ret) {
1603 list_del(&driver->pending);
1604 ret = 0;
1605 }
1606 mutex_unlock(&udc_lock);
1607 return ret;
1608 }
1609 EXPORT_SYMBOL_GPL(usb_gadget_unregister_driver);
1610
1611 /* ------------------------------------------------------------------------- */
1612
srp_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1613 static ssize_t srp_store(struct device *dev,
1614 struct device_attribute *attr, const char *buf, size_t n)
1615 {
1616 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1617
1618 if (sysfs_streq(buf, "1"))
1619 usb_gadget_wakeup(udc->gadget);
1620
1621 return n;
1622 }
1623 static DEVICE_ATTR_WO(srp);
1624
soft_connect_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t n)1625 static ssize_t soft_connect_store(struct device *dev,
1626 struct device_attribute *attr, const char *buf, size_t n)
1627 {
1628 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1629 ssize_t ret;
1630
1631 mutex_lock(&udc_lock);
1632 if (!udc->driver) {
1633 dev_err(dev, "soft-connect without a gadget driver\n");
1634 ret = -EOPNOTSUPP;
1635 goto out;
1636 }
1637
1638 if (sysfs_streq(buf, "connect")) {
1639 usb_gadget_udc_start(udc);
1640 usb_gadget_connect(udc->gadget);
1641 } else if (sysfs_streq(buf, "disconnect")) {
1642 usb_gadget_disconnect(udc->gadget);
1643 usb_gadget_udc_stop(udc);
1644 } else {
1645 dev_err(dev, "unsupported command '%s'\n", buf);
1646 ret = -EINVAL;
1647 goto out;
1648 }
1649
1650 ret = n;
1651 out:
1652 mutex_unlock(&udc_lock);
1653 return ret;
1654 }
1655 static DEVICE_ATTR_WO(soft_connect);
1656
state_show(struct device * dev,struct device_attribute * attr,char * buf)1657 static ssize_t state_show(struct device *dev, struct device_attribute *attr,
1658 char *buf)
1659 {
1660 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1661 struct usb_gadget *gadget = udc->gadget;
1662
1663 return sprintf(buf, "%s\n", usb_state_string(gadget->state));
1664 }
1665 static DEVICE_ATTR_RO(state);
1666
function_show(struct device * dev,struct device_attribute * attr,char * buf)1667 static ssize_t function_show(struct device *dev, struct device_attribute *attr,
1668 char *buf)
1669 {
1670 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1671 struct usb_gadget_driver *drv = udc->driver;
1672
1673 if (!drv || !drv->function)
1674 return 0;
1675 return scnprintf(buf, PAGE_SIZE, "%s\n", drv->function);
1676 }
1677 static DEVICE_ATTR_RO(function);
1678
1679 #define USB_UDC_SPEED_ATTR(name, param) \
1680 ssize_t name##_show(struct device *dev, \
1681 struct device_attribute *attr, char *buf) \
1682 { \
1683 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \
1684 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1685 usb_speed_string(udc->gadget->param)); \
1686 } \
1687 static DEVICE_ATTR_RO(name)
1688
1689 static USB_UDC_SPEED_ATTR(current_speed, speed);
1690 static USB_UDC_SPEED_ATTR(maximum_speed, max_speed);
1691
1692 #define USB_UDC_ATTR(name) \
1693 ssize_t name##_show(struct device *dev, \
1694 struct device_attribute *attr, char *buf) \
1695 { \
1696 struct usb_udc *udc = container_of(dev, struct usb_udc, dev); \
1697 struct usb_gadget *gadget = udc->gadget; \
1698 \
1699 return scnprintf(buf, PAGE_SIZE, "%d\n", gadget->name); \
1700 } \
1701 static DEVICE_ATTR_RO(name)
1702
1703 static USB_UDC_ATTR(is_otg);
1704 static USB_UDC_ATTR(is_a_peripheral);
1705 static USB_UDC_ATTR(b_hnp_enable);
1706 static USB_UDC_ATTR(a_hnp_support);
1707 static USB_UDC_ATTR(a_alt_hnp_support);
1708 static USB_UDC_ATTR(is_selfpowered);
1709
1710 static struct attribute *usb_udc_attrs[] = {
1711 &dev_attr_srp.attr,
1712 &dev_attr_soft_connect.attr,
1713 &dev_attr_state.attr,
1714 &dev_attr_function.attr,
1715 &dev_attr_current_speed.attr,
1716 &dev_attr_maximum_speed.attr,
1717
1718 &dev_attr_is_otg.attr,
1719 &dev_attr_is_a_peripheral.attr,
1720 &dev_attr_b_hnp_enable.attr,
1721 &dev_attr_a_hnp_support.attr,
1722 &dev_attr_a_alt_hnp_support.attr,
1723 &dev_attr_is_selfpowered.attr,
1724 NULL,
1725 };
1726
1727 static const struct attribute_group usb_udc_attr_group = {
1728 .attrs = usb_udc_attrs,
1729 };
1730
1731 static const struct attribute_group *usb_udc_attr_groups[] = {
1732 &usb_udc_attr_group,
1733 NULL,
1734 };
1735
usb_udc_uevent(struct device * dev,struct kobj_uevent_env * env)1736 static int usb_udc_uevent(struct device *dev, struct kobj_uevent_env *env)
1737 {
1738 struct usb_udc *udc = container_of(dev, struct usb_udc, dev);
1739 int ret;
1740
1741 ret = add_uevent_var(env, "USB_UDC_NAME=%s", udc->gadget->name);
1742 if (ret) {
1743 dev_err(dev, "failed to add uevent USB_UDC_NAME\n");
1744 return ret;
1745 }
1746
1747 if (udc->driver) {
1748 ret = add_uevent_var(env, "USB_UDC_DRIVER=%s",
1749 udc->driver->function);
1750 if (ret) {
1751 dev_err(dev, "failed to add uevent USB_UDC_DRIVER\n");
1752 return ret;
1753 }
1754 }
1755
1756 return 0;
1757 }
1758
usb_udc_init(void)1759 static int __init usb_udc_init(void)
1760 {
1761 udc_class = class_create(THIS_MODULE, "udc");
1762 if (IS_ERR(udc_class)) {
1763 pr_err("failed to create udc class --> %ld\n",
1764 PTR_ERR(udc_class));
1765 return PTR_ERR(udc_class);
1766 }
1767
1768 udc_class->dev_uevent = usb_udc_uevent;
1769 return 0;
1770 }
1771 subsys_initcall(usb_udc_init);
1772
usb_udc_exit(void)1773 static void __exit usb_udc_exit(void)
1774 {
1775 class_destroy(udc_class);
1776 }
1777 module_exit(usb_udc_exit);
1778
1779 MODULE_DESCRIPTION("UDC Framework");
1780 MODULE_AUTHOR("Felipe Balbi <balbi@ti.com>");
1781 MODULE_LICENSE("GPL v2");
1782