1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * tools/testing/selftests/kvm/lib/kvm_util.c
4 *
5 * Copyright (C) 2018, Google LLC.
6 */
7
8 #define _GNU_SOURCE /* for program_invocation_name */
9 #include "test_util.h"
10 #include "kvm_util.h"
11 #include "kvm_util_internal.h"
12 #include "processor.h"
13
14 #include <assert.h>
15 #include <sys/mman.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <unistd.h>
19 #include <linux/kernel.h>
20
21 #define KVM_UTIL_MIN_PFN 2
22
23 static int vcpu_mmap_sz(void);
24
open_path_or_exit(const char * path,int flags)25 int open_path_or_exit(const char *path, int flags)
26 {
27 int fd;
28
29 fd = open(path, flags);
30 if (fd < 0) {
31 print_skip("%s not available (errno: %d)", path, errno);
32 exit(KSFT_SKIP);
33 }
34
35 return fd;
36 }
37
38 /*
39 * Open KVM_DEV_PATH if available, otherwise exit the entire program.
40 *
41 * Input Args:
42 * flags - The flags to pass when opening KVM_DEV_PATH.
43 *
44 * Return:
45 * The opened file descriptor of /dev/kvm.
46 */
_open_kvm_dev_path_or_exit(int flags)47 static int _open_kvm_dev_path_or_exit(int flags)
48 {
49 return open_path_or_exit(KVM_DEV_PATH, flags);
50 }
51
open_kvm_dev_path_or_exit(void)52 int open_kvm_dev_path_or_exit(void)
53 {
54 return _open_kvm_dev_path_or_exit(O_RDONLY);
55 }
56
57 /*
58 * Capability
59 *
60 * Input Args:
61 * cap - Capability
62 *
63 * Output Args: None
64 *
65 * Return:
66 * On success, the Value corresponding to the capability (KVM_CAP_*)
67 * specified by the value of cap. On failure a TEST_ASSERT failure
68 * is produced.
69 *
70 * Looks up and returns the value corresponding to the capability
71 * (KVM_CAP_*) given by cap.
72 */
kvm_check_cap(long cap)73 int kvm_check_cap(long cap)
74 {
75 int ret;
76 int kvm_fd;
77
78 kvm_fd = open_kvm_dev_path_or_exit();
79 ret = ioctl(kvm_fd, KVM_CHECK_EXTENSION, cap);
80 TEST_ASSERT(ret >= 0, "KVM_CHECK_EXTENSION IOCTL failed,\n"
81 " rc: %i errno: %i", ret, errno);
82
83 close(kvm_fd);
84
85 return ret;
86 }
87
88 /* VM Enable Capability
89 *
90 * Input Args:
91 * vm - Virtual Machine
92 * cap - Capability
93 *
94 * Output Args: None
95 *
96 * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
97 *
98 * Enables a capability (KVM_CAP_*) on the VM.
99 */
vm_enable_cap(struct kvm_vm * vm,struct kvm_enable_cap * cap)100 int vm_enable_cap(struct kvm_vm *vm, struct kvm_enable_cap *cap)
101 {
102 int ret;
103
104 ret = ioctl(vm->fd, KVM_ENABLE_CAP, cap);
105 TEST_ASSERT(ret == 0, "KVM_ENABLE_CAP IOCTL failed,\n"
106 " rc: %i errno: %i", ret, errno);
107
108 return ret;
109 }
110
111 /* VCPU Enable Capability
112 *
113 * Input Args:
114 * vm - Virtual Machine
115 * vcpu_id - VCPU
116 * cap - Capability
117 *
118 * Output Args: None
119 *
120 * Return: On success, 0. On failure a TEST_ASSERT failure is produced.
121 *
122 * Enables a capability (KVM_CAP_*) on the VCPU.
123 */
vcpu_enable_cap(struct kvm_vm * vm,uint32_t vcpu_id,struct kvm_enable_cap * cap)124 int vcpu_enable_cap(struct kvm_vm *vm, uint32_t vcpu_id,
125 struct kvm_enable_cap *cap)
126 {
127 struct vcpu *vcpu = vcpu_find(vm, vcpu_id);
128 int r;
129
130 TEST_ASSERT(vcpu, "cannot find vcpu %d", vcpu_id);
131
132 r = ioctl(vcpu->fd, KVM_ENABLE_CAP, cap);
133 TEST_ASSERT(!r, "KVM_ENABLE_CAP vCPU ioctl failed,\n"
134 " rc: %i, errno: %i", r, errno);
135
136 return r;
137 }
138
vm_enable_dirty_ring(struct kvm_vm * vm,uint32_t ring_size)139 void vm_enable_dirty_ring(struct kvm_vm *vm, uint32_t ring_size)
140 {
141 struct kvm_enable_cap cap = { 0 };
142
143 cap.cap = KVM_CAP_DIRTY_LOG_RING;
144 cap.args[0] = ring_size;
145 vm_enable_cap(vm, &cap);
146 vm->dirty_ring_size = ring_size;
147 }
148
vm_open(struct kvm_vm * vm,int perm)149 static void vm_open(struct kvm_vm *vm, int perm)
150 {
151 vm->kvm_fd = _open_kvm_dev_path_or_exit(perm);
152
153 if (!kvm_check_cap(KVM_CAP_IMMEDIATE_EXIT)) {
154 print_skip("immediate_exit not available");
155 exit(KSFT_SKIP);
156 }
157
158 vm->fd = ioctl(vm->kvm_fd, KVM_CREATE_VM, vm->type);
159 TEST_ASSERT(vm->fd >= 0, "KVM_CREATE_VM ioctl failed, "
160 "rc: %i errno: %i", vm->fd, errno);
161 }
162
vm_guest_mode_string(uint32_t i)163 const char *vm_guest_mode_string(uint32_t i)
164 {
165 static const char * const strings[] = {
166 [VM_MODE_P52V48_4K] = "PA-bits:52, VA-bits:48, 4K pages",
167 [VM_MODE_P52V48_64K] = "PA-bits:52, VA-bits:48, 64K pages",
168 [VM_MODE_P48V48_4K] = "PA-bits:48, VA-bits:48, 4K pages",
169 [VM_MODE_P48V48_64K] = "PA-bits:48, VA-bits:48, 64K pages",
170 [VM_MODE_P40V48_4K] = "PA-bits:40, VA-bits:48, 4K pages",
171 [VM_MODE_P40V48_64K] = "PA-bits:40, VA-bits:48, 64K pages",
172 [VM_MODE_PXXV48_4K] = "PA-bits:ANY, VA-bits:48, 4K pages",
173 [VM_MODE_P47V64_4K] = "PA-bits:47, VA-bits:64, 4K pages",
174 [VM_MODE_P44V64_4K] = "PA-bits:44, VA-bits:64, 4K pages",
175 };
176 _Static_assert(sizeof(strings)/sizeof(char *) == NUM_VM_MODES,
177 "Missing new mode strings?");
178
179 TEST_ASSERT(i < NUM_VM_MODES, "Guest mode ID %d too big", i);
180
181 return strings[i];
182 }
183
184 const struct vm_guest_mode_params vm_guest_mode_params[] = {
185 [VM_MODE_P52V48_4K] = { 52, 48, 0x1000, 12 },
186 [VM_MODE_P52V48_64K] = { 52, 48, 0x10000, 16 },
187 [VM_MODE_P48V48_4K] = { 48, 48, 0x1000, 12 },
188 [VM_MODE_P48V48_64K] = { 48, 48, 0x10000, 16 },
189 [VM_MODE_P40V48_4K] = { 40, 48, 0x1000, 12 },
190 [VM_MODE_P40V48_64K] = { 40, 48, 0x10000, 16 },
191 [VM_MODE_PXXV48_4K] = { 0, 0, 0x1000, 12 },
192 [VM_MODE_P47V64_4K] = { 47, 64, 0x1000, 12 },
193 [VM_MODE_P44V64_4K] = { 44, 64, 0x1000, 12 },
194 };
195 _Static_assert(sizeof(vm_guest_mode_params)/sizeof(struct vm_guest_mode_params) == NUM_VM_MODES,
196 "Missing new mode params?");
197
198 /*
199 * VM Create
200 *
201 * Input Args:
202 * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
203 * phy_pages - Physical memory pages
204 * perm - permission
205 *
206 * Output Args: None
207 *
208 * Return:
209 * Pointer to opaque structure that describes the created VM.
210 *
211 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K).
212 * When phy_pages is non-zero, a memory region of phy_pages physical pages
213 * is created and mapped starting at guest physical address 0. The file
214 * descriptor to control the created VM is created with the permissions
215 * given by perm (e.g. O_RDWR).
216 */
vm_create(enum vm_guest_mode mode,uint64_t phy_pages,int perm)217 struct kvm_vm *vm_create(enum vm_guest_mode mode, uint64_t phy_pages, int perm)
218 {
219 struct kvm_vm *vm;
220
221 pr_debug("%s: mode='%s' pages='%ld' perm='%d'\n", __func__,
222 vm_guest_mode_string(mode), phy_pages, perm);
223
224 vm = calloc(1, sizeof(*vm));
225 TEST_ASSERT(vm != NULL, "Insufficient Memory");
226
227 INIT_LIST_HEAD(&vm->vcpus);
228 vm->regions.gpa_tree = RB_ROOT;
229 vm->regions.hva_tree = RB_ROOT;
230 hash_init(vm->regions.slot_hash);
231
232 vm->mode = mode;
233 vm->type = 0;
234
235 vm->pa_bits = vm_guest_mode_params[mode].pa_bits;
236 vm->va_bits = vm_guest_mode_params[mode].va_bits;
237 vm->page_size = vm_guest_mode_params[mode].page_size;
238 vm->page_shift = vm_guest_mode_params[mode].page_shift;
239
240 /* Setup mode specific traits. */
241 switch (vm->mode) {
242 case VM_MODE_P52V48_4K:
243 vm->pgtable_levels = 4;
244 break;
245 case VM_MODE_P52V48_64K:
246 vm->pgtable_levels = 3;
247 break;
248 case VM_MODE_P48V48_4K:
249 vm->pgtable_levels = 4;
250 break;
251 case VM_MODE_P48V48_64K:
252 vm->pgtable_levels = 3;
253 break;
254 case VM_MODE_P40V48_4K:
255 vm->pgtable_levels = 4;
256 break;
257 case VM_MODE_P40V48_64K:
258 vm->pgtable_levels = 3;
259 break;
260 case VM_MODE_PXXV48_4K:
261 #ifdef __x86_64__
262 kvm_get_cpu_address_width(&vm->pa_bits, &vm->va_bits);
263 /*
264 * Ignore KVM support for 5-level paging (vm->va_bits == 57),
265 * it doesn't take effect unless a CR4.LA57 is set, which it
266 * isn't for this VM_MODE.
267 */
268 TEST_ASSERT(vm->va_bits == 48 || vm->va_bits == 57,
269 "Linear address width (%d bits) not supported",
270 vm->va_bits);
271 pr_debug("Guest physical address width detected: %d\n",
272 vm->pa_bits);
273 vm->pgtable_levels = 4;
274 vm->va_bits = 48;
275 #else
276 TEST_FAIL("VM_MODE_PXXV48_4K not supported on non-x86 platforms");
277 #endif
278 break;
279 case VM_MODE_P47V64_4K:
280 vm->pgtable_levels = 5;
281 break;
282 case VM_MODE_P44V64_4K:
283 vm->pgtable_levels = 5;
284 break;
285 default:
286 TEST_FAIL("Unknown guest mode, mode: 0x%x", mode);
287 }
288
289 #ifdef __aarch64__
290 if (vm->pa_bits != 40)
291 vm->type = KVM_VM_TYPE_ARM_IPA_SIZE(vm->pa_bits);
292 #endif
293
294 vm_open(vm, perm);
295
296 /* Limit to VA-bit canonical virtual addresses. */
297 vm->vpages_valid = sparsebit_alloc();
298 sparsebit_set_num(vm->vpages_valid,
299 0, (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
300 sparsebit_set_num(vm->vpages_valid,
301 (~((1ULL << (vm->va_bits - 1)) - 1)) >> vm->page_shift,
302 (1ULL << (vm->va_bits - 1)) >> vm->page_shift);
303
304 /* Limit physical addresses to PA-bits. */
305 vm->max_gfn = vm_compute_max_gfn(vm);
306
307 /* Allocate and setup memory for guest. */
308 vm->vpages_mapped = sparsebit_alloc();
309 if (phy_pages != 0)
310 vm_userspace_mem_region_add(vm, VM_MEM_SRC_ANONYMOUS,
311 0, 0, phy_pages, 0);
312
313 return vm;
314 }
315
316 /*
317 * VM Create with customized parameters
318 *
319 * Input Args:
320 * mode - VM Mode (e.g. VM_MODE_P52V48_4K)
321 * nr_vcpus - VCPU count
322 * slot0_mem_pages - Slot0 physical memory size
323 * extra_mem_pages - Non-slot0 physical memory total size
324 * num_percpu_pages - Per-cpu physical memory pages
325 * guest_code - Guest entry point
326 * vcpuids - VCPU IDs
327 *
328 * Output Args: None
329 *
330 * Return:
331 * Pointer to opaque structure that describes the created VM.
332 *
333 * Creates a VM with the mode specified by mode (e.g. VM_MODE_P52V48_4K),
334 * with customized slot0 memory size, at least 512 pages currently.
335 * extra_mem_pages is only used to calculate the maximum page table size,
336 * no real memory allocation for non-slot0 memory in this function.
337 */
vm_create_with_vcpus(enum vm_guest_mode mode,uint32_t nr_vcpus,uint64_t slot0_mem_pages,uint64_t extra_mem_pages,uint32_t num_percpu_pages,void * guest_code,uint32_t vcpuids[])338 struct kvm_vm *vm_create_with_vcpus(enum vm_guest_mode mode, uint32_t nr_vcpus,
339 uint64_t slot0_mem_pages, uint64_t extra_mem_pages,
340 uint32_t num_percpu_pages, void *guest_code,
341 uint32_t vcpuids[])
342 {
343 uint64_t vcpu_pages, extra_pg_pages, pages;
344 struct kvm_vm *vm;
345 int i;
346
347 /* Force slot0 memory size not small than DEFAULT_GUEST_PHY_PAGES */
348 if (slot0_mem_pages < DEFAULT_GUEST_PHY_PAGES)
349 slot0_mem_pages = DEFAULT_GUEST_PHY_PAGES;
350
351 /* The maximum page table size for a memory region will be when the
352 * smallest pages are used. Considering each page contains x page
353 * table descriptors, the total extra size for page tables (for extra
354 * N pages) will be: N/x+N/x^2+N/x^3+... which is definitely smaller
355 * than N/x*2.
356 */
357 vcpu_pages = (DEFAULT_STACK_PGS + num_percpu_pages) * nr_vcpus;
358 extra_pg_pages = (slot0_mem_pages + extra_mem_pages + vcpu_pages) / PTES_PER_MIN_PAGE * 2;
359 pages = slot0_mem_pages + vcpu_pages + extra_pg_pages;
360
361 TEST_ASSERT(nr_vcpus <= kvm_check_cap(KVM_CAP_MAX_VCPUS),
362 "nr_vcpus = %d too large for host, max-vcpus = %d",
363 nr_vcpus, kvm_check_cap(KVM_CAP_MAX_VCPUS));
364
365 pages = vm_adjust_num_guest_pages(mode, pages);
366 vm = vm_create(mode, pages, O_RDWR);
367
368 kvm_vm_elf_load(vm, program_invocation_name);
369
370 #ifdef __x86_64__
371 vm_create_irqchip(vm);
372 #endif
373
374 for (i = 0; i < nr_vcpus; ++i) {
375 uint32_t vcpuid = vcpuids ? vcpuids[i] : i;
376
377 vm_vcpu_add_default(vm, vcpuid, guest_code);
378 }
379
380 return vm;
381 }
382
vm_create_default_with_vcpus(uint32_t nr_vcpus,uint64_t extra_mem_pages,uint32_t num_percpu_pages,void * guest_code,uint32_t vcpuids[])383 struct kvm_vm *vm_create_default_with_vcpus(uint32_t nr_vcpus, uint64_t extra_mem_pages,
384 uint32_t num_percpu_pages, void *guest_code,
385 uint32_t vcpuids[])
386 {
387 return vm_create_with_vcpus(VM_MODE_DEFAULT, nr_vcpus, DEFAULT_GUEST_PHY_PAGES,
388 extra_mem_pages, num_percpu_pages, guest_code, vcpuids);
389 }
390
vm_create_default(uint32_t vcpuid,uint64_t extra_mem_pages,void * guest_code)391 struct kvm_vm *vm_create_default(uint32_t vcpuid, uint64_t extra_mem_pages,
392 void *guest_code)
393 {
394 return vm_create_default_with_vcpus(1, extra_mem_pages, 0, guest_code,
395 (uint32_t []){ vcpuid });
396 }
397
398 /*
399 * VM Restart
400 *
401 * Input Args:
402 * vm - VM that has been released before
403 * perm - permission
404 *
405 * Output Args: None
406 *
407 * Reopens the file descriptors associated to the VM and reinstates the
408 * global state, such as the irqchip and the memory regions that are mapped
409 * into the guest.
410 */
kvm_vm_restart(struct kvm_vm * vmp,int perm)411 void kvm_vm_restart(struct kvm_vm *vmp, int perm)
412 {
413 int ctr;
414 struct userspace_mem_region *region;
415
416 vm_open(vmp, perm);
417 if (vmp->has_irqchip)
418 vm_create_irqchip(vmp);
419
420 hash_for_each(vmp->regions.slot_hash, ctr, region, slot_node) {
421 int ret = ioctl(vmp->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
422 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
423 " rc: %i errno: %i\n"
424 " slot: %u flags: 0x%x\n"
425 " guest_phys_addr: 0x%llx size: 0x%llx",
426 ret, errno, region->region.slot,
427 region->region.flags,
428 region->region.guest_phys_addr,
429 region->region.memory_size);
430 }
431 }
432
kvm_vm_get_dirty_log(struct kvm_vm * vm,int slot,void * log)433 void kvm_vm_get_dirty_log(struct kvm_vm *vm, int slot, void *log)
434 {
435 struct kvm_dirty_log args = { .dirty_bitmap = log, .slot = slot };
436 int ret;
437
438 ret = ioctl(vm->fd, KVM_GET_DIRTY_LOG, &args);
439 TEST_ASSERT(ret == 0, "%s: KVM_GET_DIRTY_LOG failed: %s",
440 __func__, strerror(-ret));
441 }
442
kvm_vm_clear_dirty_log(struct kvm_vm * vm,int slot,void * log,uint64_t first_page,uint32_t num_pages)443 void kvm_vm_clear_dirty_log(struct kvm_vm *vm, int slot, void *log,
444 uint64_t first_page, uint32_t num_pages)
445 {
446 struct kvm_clear_dirty_log args = { .dirty_bitmap = log, .slot = slot,
447 .first_page = first_page,
448 .num_pages = num_pages };
449 int ret;
450
451 ret = ioctl(vm->fd, KVM_CLEAR_DIRTY_LOG, &args);
452 TEST_ASSERT(ret == 0, "%s: KVM_CLEAR_DIRTY_LOG failed: %s",
453 __func__, strerror(-ret));
454 }
455
kvm_vm_reset_dirty_ring(struct kvm_vm * vm)456 uint32_t kvm_vm_reset_dirty_ring(struct kvm_vm *vm)
457 {
458 return ioctl(vm->fd, KVM_RESET_DIRTY_RINGS);
459 }
460
461 /*
462 * Userspace Memory Region Find
463 *
464 * Input Args:
465 * vm - Virtual Machine
466 * start - Starting VM physical address
467 * end - Ending VM physical address, inclusive.
468 *
469 * Output Args: None
470 *
471 * Return:
472 * Pointer to overlapping region, NULL if no such region.
473 *
474 * Searches for a region with any physical memory that overlaps with
475 * any portion of the guest physical addresses from start to end
476 * inclusive. If multiple overlapping regions exist, a pointer to any
477 * of the regions is returned. Null is returned only when no overlapping
478 * region exists.
479 */
480 static struct userspace_mem_region *
userspace_mem_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)481 userspace_mem_region_find(struct kvm_vm *vm, uint64_t start, uint64_t end)
482 {
483 struct rb_node *node;
484
485 for (node = vm->regions.gpa_tree.rb_node; node; ) {
486 struct userspace_mem_region *region =
487 container_of(node, struct userspace_mem_region, gpa_node);
488 uint64_t existing_start = region->region.guest_phys_addr;
489 uint64_t existing_end = region->region.guest_phys_addr
490 + region->region.memory_size - 1;
491 if (start <= existing_end && end >= existing_start)
492 return region;
493
494 if (start < existing_start)
495 node = node->rb_left;
496 else
497 node = node->rb_right;
498 }
499
500 return NULL;
501 }
502
503 /*
504 * KVM Userspace Memory Region Find
505 *
506 * Input Args:
507 * vm - Virtual Machine
508 * start - Starting VM physical address
509 * end - Ending VM physical address, inclusive.
510 *
511 * Output Args: None
512 *
513 * Return:
514 * Pointer to overlapping region, NULL if no such region.
515 *
516 * Public interface to userspace_mem_region_find. Allows tests to look up
517 * the memslot datastructure for a given range of guest physical memory.
518 */
519 struct kvm_userspace_memory_region *
kvm_userspace_memory_region_find(struct kvm_vm * vm,uint64_t start,uint64_t end)520 kvm_userspace_memory_region_find(struct kvm_vm *vm, uint64_t start,
521 uint64_t end)
522 {
523 struct userspace_mem_region *region;
524
525 region = userspace_mem_region_find(vm, start, end);
526 if (!region)
527 return NULL;
528
529 return ®ion->region;
530 }
531
532 /*
533 * VCPU Find
534 *
535 * Input Args:
536 * vm - Virtual Machine
537 * vcpuid - VCPU ID
538 *
539 * Output Args: None
540 *
541 * Return:
542 * Pointer to VCPU structure
543 *
544 * Locates a vcpu structure that describes the VCPU specified by vcpuid and
545 * returns a pointer to it. Returns NULL if the VM doesn't contain a VCPU
546 * for the specified vcpuid.
547 */
vcpu_find(struct kvm_vm * vm,uint32_t vcpuid)548 struct vcpu *vcpu_find(struct kvm_vm *vm, uint32_t vcpuid)
549 {
550 struct vcpu *vcpu;
551
552 list_for_each_entry(vcpu, &vm->vcpus, list) {
553 if (vcpu->id == vcpuid)
554 return vcpu;
555 }
556
557 return NULL;
558 }
559
560 /*
561 * VM VCPU Remove
562 *
563 * Input Args:
564 * vcpu - VCPU to remove
565 *
566 * Output Args: None
567 *
568 * Return: None, TEST_ASSERT failures for all error conditions
569 *
570 * Removes a vCPU from a VM and frees its resources.
571 */
vm_vcpu_rm(struct kvm_vm * vm,struct vcpu * vcpu)572 static void vm_vcpu_rm(struct kvm_vm *vm, struct vcpu *vcpu)
573 {
574 int ret;
575
576 if (vcpu->dirty_gfns) {
577 ret = munmap(vcpu->dirty_gfns, vm->dirty_ring_size);
578 TEST_ASSERT(ret == 0, "munmap of VCPU dirty ring failed, "
579 "rc: %i errno: %i", ret, errno);
580 vcpu->dirty_gfns = NULL;
581 }
582
583 ret = munmap(vcpu->state, vcpu_mmap_sz());
584 TEST_ASSERT(ret == 0, "munmap of VCPU fd failed, rc: %i "
585 "errno: %i", ret, errno);
586 ret = close(vcpu->fd);
587 TEST_ASSERT(ret == 0, "Close of VCPU fd failed, rc: %i "
588 "errno: %i", ret, errno);
589
590 list_del(&vcpu->list);
591 free(vcpu);
592 }
593
kvm_vm_release(struct kvm_vm * vmp)594 void kvm_vm_release(struct kvm_vm *vmp)
595 {
596 struct vcpu *vcpu, *tmp;
597 int ret;
598
599 list_for_each_entry_safe(vcpu, tmp, &vmp->vcpus, list)
600 vm_vcpu_rm(vmp, vcpu);
601
602 ret = close(vmp->fd);
603 TEST_ASSERT(ret == 0, "Close of vm fd failed,\n"
604 " vmp->fd: %i rc: %i errno: %i", vmp->fd, ret, errno);
605
606 ret = close(vmp->kvm_fd);
607 TEST_ASSERT(ret == 0, "Close of /dev/kvm fd failed,\n"
608 " vmp->kvm_fd: %i rc: %i errno: %i", vmp->kvm_fd, ret, errno);
609 }
610
__vm_mem_region_delete(struct kvm_vm * vm,struct userspace_mem_region * region,bool unlink)611 static void __vm_mem_region_delete(struct kvm_vm *vm,
612 struct userspace_mem_region *region,
613 bool unlink)
614 {
615 int ret;
616
617 if (unlink) {
618 rb_erase(®ion->gpa_node, &vm->regions.gpa_tree);
619 rb_erase(®ion->hva_node, &vm->regions.hva_tree);
620 hash_del(®ion->slot_node);
621 }
622
623 region->region.memory_size = 0;
624 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
625 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed, "
626 "rc: %i errno: %i", ret, errno);
627
628 sparsebit_free(®ion->unused_phy_pages);
629 ret = munmap(region->mmap_start, region->mmap_size);
630 TEST_ASSERT(ret == 0, "munmap failed, rc: %i errno: %i", ret, errno);
631
632 free(region);
633 }
634
635 /*
636 * Destroys and frees the VM pointed to by vmp.
637 */
kvm_vm_free(struct kvm_vm * vmp)638 void kvm_vm_free(struct kvm_vm *vmp)
639 {
640 int ctr;
641 struct hlist_node *node;
642 struct userspace_mem_region *region;
643
644 if (vmp == NULL)
645 return;
646
647 /* Free userspace_mem_regions. */
648 hash_for_each_safe(vmp->regions.slot_hash, ctr, node, region, slot_node)
649 __vm_mem_region_delete(vmp, region, false);
650
651 /* Free sparsebit arrays. */
652 sparsebit_free(&vmp->vpages_valid);
653 sparsebit_free(&vmp->vpages_mapped);
654
655 kvm_vm_release(vmp);
656
657 /* Free the structure describing the VM. */
658 free(vmp);
659 }
660
661 /*
662 * Memory Compare, host virtual to guest virtual
663 *
664 * Input Args:
665 * hva - Starting host virtual address
666 * vm - Virtual Machine
667 * gva - Starting guest virtual address
668 * len - number of bytes to compare
669 *
670 * Output Args: None
671 *
672 * Input/Output Args: None
673 *
674 * Return:
675 * Returns 0 if the bytes starting at hva for a length of len
676 * are equal the guest virtual bytes starting at gva. Returns
677 * a value < 0, if bytes at hva are less than those at gva.
678 * Otherwise a value > 0 is returned.
679 *
680 * Compares the bytes starting at the host virtual address hva, for
681 * a length of len, to the guest bytes starting at the guest virtual
682 * address given by gva.
683 */
kvm_memcmp_hva_gva(void * hva,struct kvm_vm * vm,vm_vaddr_t gva,size_t len)684 int kvm_memcmp_hva_gva(void *hva, struct kvm_vm *vm, vm_vaddr_t gva, size_t len)
685 {
686 size_t amt;
687
688 /*
689 * Compare a batch of bytes until either a match is found
690 * or all the bytes have been compared.
691 */
692 for (uintptr_t offset = 0; offset < len; offset += amt) {
693 uintptr_t ptr1 = (uintptr_t)hva + offset;
694
695 /*
696 * Determine host address for guest virtual address
697 * at offset.
698 */
699 uintptr_t ptr2 = (uintptr_t)addr_gva2hva(vm, gva + offset);
700
701 /*
702 * Determine amount to compare on this pass.
703 * Don't allow the comparsion to cross a page boundary.
704 */
705 amt = len - offset;
706 if ((ptr1 >> vm->page_shift) != ((ptr1 + amt) >> vm->page_shift))
707 amt = vm->page_size - (ptr1 % vm->page_size);
708 if ((ptr2 >> vm->page_shift) != ((ptr2 + amt) >> vm->page_shift))
709 amt = vm->page_size - (ptr2 % vm->page_size);
710
711 assert((ptr1 >> vm->page_shift) == ((ptr1 + amt - 1) >> vm->page_shift));
712 assert((ptr2 >> vm->page_shift) == ((ptr2 + amt - 1) >> vm->page_shift));
713
714 /*
715 * Perform the comparison. If there is a difference
716 * return that result to the caller, otherwise need
717 * to continue on looking for a mismatch.
718 */
719 int ret = memcmp((void *)ptr1, (void *)ptr2, amt);
720 if (ret != 0)
721 return ret;
722 }
723
724 /*
725 * No mismatch found. Let the caller know the two memory
726 * areas are equal.
727 */
728 return 0;
729 }
730
vm_userspace_mem_region_gpa_insert(struct rb_root * gpa_tree,struct userspace_mem_region * region)731 static void vm_userspace_mem_region_gpa_insert(struct rb_root *gpa_tree,
732 struct userspace_mem_region *region)
733 {
734 struct rb_node **cur, *parent;
735
736 for (cur = &gpa_tree->rb_node, parent = NULL; *cur; ) {
737 struct userspace_mem_region *cregion;
738
739 cregion = container_of(*cur, typeof(*cregion), gpa_node);
740 parent = *cur;
741 if (region->region.guest_phys_addr <
742 cregion->region.guest_phys_addr)
743 cur = &(*cur)->rb_left;
744 else {
745 TEST_ASSERT(region->region.guest_phys_addr !=
746 cregion->region.guest_phys_addr,
747 "Duplicate GPA in region tree");
748
749 cur = &(*cur)->rb_right;
750 }
751 }
752
753 rb_link_node(®ion->gpa_node, parent, cur);
754 rb_insert_color(®ion->gpa_node, gpa_tree);
755 }
756
vm_userspace_mem_region_hva_insert(struct rb_root * hva_tree,struct userspace_mem_region * region)757 static void vm_userspace_mem_region_hva_insert(struct rb_root *hva_tree,
758 struct userspace_mem_region *region)
759 {
760 struct rb_node **cur, *parent;
761
762 for (cur = &hva_tree->rb_node, parent = NULL; *cur; ) {
763 struct userspace_mem_region *cregion;
764
765 cregion = container_of(*cur, typeof(*cregion), hva_node);
766 parent = *cur;
767 if (region->host_mem < cregion->host_mem)
768 cur = &(*cur)->rb_left;
769 else {
770 TEST_ASSERT(region->host_mem !=
771 cregion->host_mem,
772 "Duplicate HVA in region tree");
773
774 cur = &(*cur)->rb_right;
775 }
776 }
777
778 rb_link_node(®ion->hva_node, parent, cur);
779 rb_insert_color(®ion->hva_node, hva_tree);
780 }
781
782 /*
783 * VM Userspace Memory Region Add
784 *
785 * Input Args:
786 * vm - Virtual Machine
787 * src_type - Storage source for this region.
788 * NULL to use anonymous memory.
789 * guest_paddr - Starting guest physical address
790 * slot - KVM region slot
791 * npages - Number of physical pages
792 * flags - KVM memory region flags (e.g. KVM_MEM_LOG_DIRTY_PAGES)
793 *
794 * Output Args: None
795 *
796 * Return: None
797 *
798 * Allocates a memory area of the number of pages specified by npages
799 * and maps it to the VM specified by vm, at a starting physical address
800 * given by guest_paddr. The region is created with a KVM region slot
801 * given by slot, which must be unique and < KVM_MEM_SLOTS_NUM. The
802 * region is created with the flags given by flags.
803 */
vm_userspace_mem_region_add(struct kvm_vm * vm,enum vm_mem_backing_src_type src_type,uint64_t guest_paddr,uint32_t slot,uint64_t npages,uint32_t flags)804 void vm_userspace_mem_region_add(struct kvm_vm *vm,
805 enum vm_mem_backing_src_type src_type,
806 uint64_t guest_paddr, uint32_t slot, uint64_t npages,
807 uint32_t flags)
808 {
809 int ret;
810 struct userspace_mem_region *region;
811 size_t backing_src_pagesz = get_backing_src_pagesz(src_type);
812 size_t alignment;
813
814 TEST_ASSERT(vm_adjust_num_guest_pages(vm->mode, npages) == npages,
815 "Number of guest pages is not compatible with the host. "
816 "Try npages=%d", vm_adjust_num_guest_pages(vm->mode, npages));
817
818 TEST_ASSERT((guest_paddr % vm->page_size) == 0, "Guest physical "
819 "address not on a page boundary.\n"
820 " guest_paddr: 0x%lx vm->page_size: 0x%x",
821 guest_paddr, vm->page_size);
822 TEST_ASSERT((((guest_paddr >> vm->page_shift) + npages) - 1)
823 <= vm->max_gfn, "Physical range beyond maximum "
824 "supported physical address,\n"
825 " guest_paddr: 0x%lx npages: 0x%lx\n"
826 " vm->max_gfn: 0x%lx vm->page_size: 0x%x",
827 guest_paddr, npages, vm->max_gfn, vm->page_size);
828
829 /*
830 * Confirm a mem region with an overlapping address doesn't
831 * already exist.
832 */
833 region = (struct userspace_mem_region *) userspace_mem_region_find(
834 vm, guest_paddr, (guest_paddr + npages * vm->page_size) - 1);
835 if (region != NULL)
836 TEST_FAIL("overlapping userspace_mem_region already "
837 "exists\n"
838 " requested guest_paddr: 0x%lx npages: 0x%lx "
839 "page_size: 0x%x\n"
840 " existing guest_paddr: 0x%lx size: 0x%lx",
841 guest_paddr, npages, vm->page_size,
842 (uint64_t) region->region.guest_phys_addr,
843 (uint64_t) region->region.memory_size);
844
845 /* Confirm no region with the requested slot already exists. */
846 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
847 slot) {
848 if (region->region.slot != slot)
849 continue;
850
851 TEST_FAIL("A mem region with the requested slot "
852 "already exists.\n"
853 " requested slot: %u paddr: 0x%lx npages: 0x%lx\n"
854 " existing slot: %u paddr: 0x%lx size: 0x%lx",
855 slot, guest_paddr, npages,
856 region->region.slot,
857 (uint64_t) region->region.guest_phys_addr,
858 (uint64_t) region->region.memory_size);
859 }
860
861 /* Allocate and initialize new mem region structure. */
862 region = calloc(1, sizeof(*region));
863 TEST_ASSERT(region != NULL, "Insufficient Memory");
864 region->mmap_size = npages * vm->page_size;
865
866 #ifdef __s390x__
867 /* On s390x, the host address must be aligned to 1M (due to PGSTEs) */
868 alignment = 0x100000;
869 #else
870 alignment = 1;
871 #endif
872
873 /*
874 * When using THP mmap is not guaranteed to returned a hugepage aligned
875 * address so we have to pad the mmap. Padding is not needed for HugeTLB
876 * because mmap will always return an address aligned to the HugeTLB
877 * page size.
878 */
879 if (src_type == VM_MEM_SRC_ANONYMOUS_THP)
880 alignment = max(backing_src_pagesz, alignment);
881
882 ASSERT_EQ(guest_paddr, align_up(guest_paddr, backing_src_pagesz));
883
884 /* Add enough memory to align up if necessary */
885 if (alignment > 1)
886 region->mmap_size += alignment;
887
888 region->fd = -1;
889 if (backing_src_is_shared(src_type)) {
890 int memfd_flags = MFD_CLOEXEC;
891
892 if (src_type == VM_MEM_SRC_SHARED_HUGETLB)
893 memfd_flags |= MFD_HUGETLB;
894
895 region->fd = memfd_create("kvm_selftest", memfd_flags);
896 TEST_ASSERT(region->fd != -1,
897 "memfd_create failed, errno: %i", errno);
898
899 ret = ftruncate(region->fd, region->mmap_size);
900 TEST_ASSERT(ret == 0, "ftruncate failed, errno: %i", errno);
901
902 ret = fallocate(region->fd,
903 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, 0,
904 region->mmap_size);
905 TEST_ASSERT(ret == 0, "fallocate failed, errno: %i", errno);
906 }
907
908 region->mmap_start = mmap(NULL, region->mmap_size,
909 PROT_READ | PROT_WRITE,
910 vm_mem_backing_src_alias(src_type)->flag,
911 region->fd, 0);
912 TEST_ASSERT(region->mmap_start != MAP_FAILED,
913 "test_malloc failed, mmap_start: %p errno: %i",
914 region->mmap_start, errno);
915
916 TEST_ASSERT(!is_backing_src_hugetlb(src_type) ||
917 region->mmap_start == align_ptr_up(region->mmap_start, backing_src_pagesz),
918 "mmap_start %p is not aligned to HugeTLB page size 0x%lx",
919 region->mmap_start, backing_src_pagesz);
920
921 /* Align host address */
922 region->host_mem = align_ptr_up(region->mmap_start, alignment);
923
924 /* As needed perform madvise */
925 if ((src_type == VM_MEM_SRC_ANONYMOUS ||
926 src_type == VM_MEM_SRC_ANONYMOUS_THP) && thp_configured()) {
927 ret = madvise(region->host_mem, npages * vm->page_size,
928 src_type == VM_MEM_SRC_ANONYMOUS ? MADV_NOHUGEPAGE : MADV_HUGEPAGE);
929 TEST_ASSERT(ret == 0, "madvise failed, addr: %p length: 0x%lx src_type: %s",
930 region->host_mem, npages * vm->page_size,
931 vm_mem_backing_src_alias(src_type)->name);
932 }
933
934 region->unused_phy_pages = sparsebit_alloc();
935 sparsebit_set_num(region->unused_phy_pages,
936 guest_paddr >> vm->page_shift, npages);
937 region->region.slot = slot;
938 region->region.flags = flags;
939 region->region.guest_phys_addr = guest_paddr;
940 region->region.memory_size = npages * vm->page_size;
941 region->region.userspace_addr = (uintptr_t) region->host_mem;
942 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
943 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
944 " rc: %i errno: %i\n"
945 " slot: %u flags: 0x%x\n"
946 " guest_phys_addr: 0x%lx size: 0x%lx",
947 ret, errno, slot, flags,
948 guest_paddr, (uint64_t) region->region.memory_size);
949
950 /* Add to quick lookup data structures */
951 vm_userspace_mem_region_gpa_insert(&vm->regions.gpa_tree, region);
952 vm_userspace_mem_region_hva_insert(&vm->regions.hva_tree, region);
953 hash_add(vm->regions.slot_hash, ®ion->slot_node, slot);
954
955 /* If shared memory, create an alias. */
956 if (region->fd >= 0) {
957 region->mmap_alias = mmap(NULL, region->mmap_size,
958 PROT_READ | PROT_WRITE,
959 vm_mem_backing_src_alias(src_type)->flag,
960 region->fd, 0);
961 TEST_ASSERT(region->mmap_alias != MAP_FAILED,
962 "mmap of alias failed, errno: %i", errno);
963
964 /* Align host alias address */
965 region->host_alias = align_ptr_up(region->mmap_alias, alignment);
966 }
967 }
968
969 /*
970 * Memslot to region
971 *
972 * Input Args:
973 * vm - Virtual Machine
974 * memslot - KVM memory slot ID
975 *
976 * Output Args: None
977 *
978 * Return:
979 * Pointer to memory region structure that describe memory region
980 * using kvm memory slot ID given by memslot. TEST_ASSERT failure
981 * on error (e.g. currently no memory region using memslot as a KVM
982 * memory slot ID).
983 */
984 struct userspace_mem_region *
memslot2region(struct kvm_vm * vm,uint32_t memslot)985 memslot2region(struct kvm_vm *vm, uint32_t memslot)
986 {
987 struct userspace_mem_region *region;
988
989 hash_for_each_possible(vm->regions.slot_hash, region, slot_node,
990 memslot)
991 if (region->region.slot == memslot)
992 return region;
993
994 fprintf(stderr, "No mem region with the requested slot found,\n"
995 " requested slot: %u\n", memslot);
996 fputs("---- vm dump ----\n", stderr);
997 vm_dump(stderr, vm, 2);
998 TEST_FAIL("Mem region not found");
999 return NULL;
1000 }
1001
1002 /*
1003 * VM Memory Region Flags Set
1004 *
1005 * Input Args:
1006 * vm - Virtual Machine
1007 * flags - Starting guest physical address
1008 *
1009 * Output Args: None
1010 *
1011 * Return: None
1012 *
1013 * Sets the flags of the memory region specified by the value of slot,
1014 * to the values given by flags.
1015 */
vm_mem_region_set_flags(struct kvm_vm * vm,uint32_t slot,uint32_t flags)1016 void vm_mem_region_set_flags(struct kvm_vm *vm, uint32_t slot, uint32_t flags)
1017 {
1018 int ret;
1019 struct userspace_mem_region *region;
1020
1021 region = memslot2region(vm, slot);
1022
1023 region->region.flags = flags;
1024
1025 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
1026
1027 TEST_ASSERT(ret == 0, "KVM_SET_USER_MEMORY_REGION IOCTL failed,\n"
1028 " rc: %i errno: %i slot: %u flags: 0x%x",
1029 ret, errno, slot, flags);
1030 }
1031
1032 /*
1033 * VM Memory Region Move
1034 *
1035 * Input Args:
1036 * vm - Virtual Machine
1037 * slot - Slot of the memory region to move
1038 * new_gpa - Starting guest physical address
1039 *
1040 * Output Args: None
1041 *
1042 * Return: None
1043 *
1044 * Change the gpa of a memory region.
1045 */
vm_mem_region_move(struct kvm_vm * vm,uint32_t slot,uint64_t new_gpa)1046 void vm_mem_region_move(struct kvm_vm *vm, uint32_t slot, uint64_t new_gpa)
1047 {
1048 struct userspace_mem_region *region;
1049 int ret;
1050
1051 region = memslot2region(vm, slot);
1052
1053 region->region.guest_phys_addr = new_gpa;
1054
1055 ret = ioctl(vm->fd, KVM_SET_USER_MEMORY_REGION, ®ion->region);
1056
1057 TEST_ASSERT(!ret, "KVM_SET_USER_MEMORY_REGION failed\n"
1058 "ret: %i errno: %i slot: %u new_gpa: 0x%lx",
1059 ret, errno, slot, new_gpa);
1060 }
1061
1062 /*
1063 * VM Memory Region Delete
1064 *
1065 * Input Args:
1066 * vm - Virtual Machine
1067 * slot - Slot of the memory region to delete
1068 *
1069 * Output Args: None
1070 *
1071 * Return: None
1072 *
1073 * Delete a memory region.
1074 */
vm_mem_region_delete(struct kvm_vm * vm,uint32_t slot)1075 void vm_mem_region_delete(struct kvm_vm *vm, uint32_t slot)
1076 {
1077 __vm_mem_region_delete(vm, memslot2region(vm, slot), true);
1078 }
1079
1080 /*
1081 * VCPU mmap Size
1082 *
1083 * Input Args: None
1084 *
1085 * Output Args: None
1086 *
1087 * Return:
1088 * Size of VCPU state
1089 *
1090 * Returns the size of the structure pointed to by the return value
1091 * of vcpu_state().
1092 */
vcpu_mmap_sz(void)1093 static int vcpu_mmap_sz(void)
1094 {
1095 int dev_fd, ret;
1096
1097 dev_fd = open_kvm_dev_path_or_exit();
1098
1099 ret = ioctl(dev_fd, KVM_GET_VCPU_MMAP_SIZE, NULL);
1100 TEST_ASSERT(ret >= sizeof(struct kvm_run),
1101 "%s KVM_GET_VCPU_MMAP_SIZE ioctl failed, rc: %i errno: %i",
1102 __func__, ret, errno);
1103
1104 close(dev_fd);
1105
1106 return ret;
1107 }
1108
1109 /*
1110 * VM VCPU Add
1111 *
1112 * Input Args:
1113 * vm - Virtual Machine
1114 * vcpuid - VCPU ID
1115 *
1116 * Output Args: None
1117 *
1118 * Return: None
1119 *
1120 * Adds a virtual CPU to the VM specified by vm with the ID given by vcpuid.
1121 * No additional VCPU setup is done.
1122 */
vm_vcpu_add(struct kvm_vm * vm,uint32_t vcpuid)1123 void vm_vcpu_add(struct kvm_vm *vm, uint32_t vcpuid)
1124 {
1125 struct vcpu *vcpu;
1126
1127 /* Confirm a vcpu with the specified id doesn't already exist. */
1128 vcpu = vcpu_find(vm, vcpuid);
1129 if (vcpu != NULL)
1130 TEST_FAIL("vcpu with the specified id "
1131 "already exists,\n"
1132 " requested vcpuid: %u\n"
1133 " existing vcpuid: %u state: %p",
1134 vcpuid, vcpu->id, vcpu->state);
1135
1136 /* Allocate and initialize new vcpu structure. */
1137 vcpu = calloc(1, sizeof(*vcpu));
1138 TEST_ASSERT(vcpu != NULL, "Insufficient Memory");
1139 vcpu->id = vcpuid;
1140 vcpu->fd = ioctl(vm->fd, KVM_CREATE_VCPU, vcpuid);
1141 TEST_ASSERT(vcpu->fd >= 0, "KVM_CREATE_VCPU failed, rc: %i errno: %i",
1142 vcpu->fd, errno);
1143
1144 TEST_ASSERT(vcpu_mmap_sz() >= sizeof(*vcpu->state), "vcpu mmap size "
1145 "smaller than expected, vcpu_mmap_sz: %i expected_min: %zi",
1146 vcpu_mmap_sz(), sizeof(*vcpu->state));
1147 vcpu->state = (struct kvm_run *) mmap(NULL, vcpu_mmap_sz(),
1148 PROT_READ | PROT_WRITE, MAP_SHARED, vcpu->fd, 0);
1149 TEST_ASSERT(vcpu->state != MAP_FAILED, "mmap vcpu_state failed, "
1150 "vcpu id: %u errno: %i", vcpuid, errno);
1151
1152 /* Add to linked-list of VCPUs. */
1153 list_add(&vcpu->list, &vm->vcpus);
1154 }
1155
1156 /*
1157 * VM Virtual Address Unused Gap
1158 *
1159 * Input Args:
1160 * vm - Virtual Machine
1161 * sz - Size (bytes)
1162 * vaddr_min - Minimum Virtual Address
1163 *
1164 * Output Args: None
1165 *
1166 * Return:
1167 * Lowest virtual address at or below vaddr_min, with at least
1168 * sz unused bytes. TEST_ASSERT failure if no area of at least
1169 * size sz is available.
1170 *
1171 * Within the VM specified by vm, locates the lowest starting virtual
1172 * address >= vaddr_min, that has at least sz unallocated bytes. A
1173 * TEST_ASSERT failure occurs for invalid input or no area of at least
1174 * sz unallocated bytes >= vaddr_min is available.
1175 */
vm_vaddr_unused_gap(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1176 static vm_vaddr_t vm_vaddr_unused_gap(struct kvm_vm *vm, size_t sz,
1177 vm_vaddr_t vaddr_min)
1178 {
1179 uint64_t pages = (sz + vm->page_size - 1) >> vm->page_shift;
1180
1181 /* Determine lowest permitted virtual page index. */
1182 uint64_t pgidx_start = (vaddr_min + vm->page_size - 1) >> vm->page_shift;
1183 if ((pgidx_start * vm->page_size) < vaddr_min)
1184 goto no_va_found;
1185
1186 /* Loop over section with enough valid virtual page indexes. */
1187 if (!sparsebit_is_set_num(vm->vpages_valid,
1188 pgidx_start, pages))
1189 pgidx_start = sparsebit_next_set_num(vm->vpages_valid,
1190 pgidx_start, pages);
1191 do {
1192 /*
1193 * Are there enough unused virtual pages available at
1194 * the currently proposed starting virtual page index.
1195 * If not, adjust proposed starting index to next
1196 * possible.
1197 */
1198 if (sparsebit_is_clear_num(vm->vpages_mapped,
1199 pgidx_start, pages))
1200 goto va_found;
1201 pgidx_start = sparsebit_next_clear_num(vm->vpages_mapped,
1202 pgidx_start, pages);
1203 if (pgidx_start == 0)
1204 goto no_va_found;
1205
1206 /*
1207 * If needed, adjust proposed starting virtual address,
1208 * to next range of valid virtual addresses.
1209 */
1210 if (!sparsebit_is_set_num(vm->vpages_valid,
1211 pgidx_start, pages)) {
1212 pgidx_start = sparsebit_next_set_num(
1213 vm->vpages_valid, pgidx_start, pages);
1214 if (pgidx_start == 0)
1215 goto no_va_found;
1216 }
1217 } while (pgidx_start != 0);
1218
1219 no_va_found:
1220 TEST_FAIL("No vaddr of specified pages available, pages: 0x%lx", pages);
1221
1222 /* NOT REACHED */
1223 return -1;
1224
1225 va_found:
1226 TEST_ASSERT(sparsebit_is_set_num(vm->vpages_valid,
1227 pgidx_start, pages),
1228 "Unexpected, invalid virtual page index range,\n"
1229 " pgidx_start: 0x%lx\n"
1230 " pages: 0x%lx",
1231 pgidx_start, pages);
1232 TEST_ASSERT(sparsebit_is_clear_num(vm->vpages_mapped,
1233 pgidx_start, pages),
1234 "Unexpected, pages already mapped,\n"
1235 " pgidx_start: 0x%lx\n"
1236 " pages: 0x%lx",
1237 pgidx_start, pages);
1238
1239 return pgidx_start * vm->page_size;
1240 }
1241
1242 /*
1243 * VM Virtual Address Allocate
1244 *
1245 * Input Args:
1246 * vm - Virtual Machine
1247 * sz - Size in bytes
1248 * vaddr_min - Minimum starting virtual address
1249 * data_memslot - Memory region slot for data pages
1250 * pgd_memslot - Memory region slot for new virtual translation tables
1251 *
1252 * Output Args: None
1253 *
1254 * Return:
1255 * Starting guest virtual address
1256 *
1257 * Allocates at least sz bytes within the virtual address space of the vm
1258 * given by vm. The allocated bytes are mapped to a virtual address >=
1259 * the address given by vaddr_min. Note that each allocation uses a
1260 * a unique set of pages, with the minimum real allocation being at least
1261 * a page.
1262 */
vm_vaddr_alloc(struct kvm_vm * vm,size_t sz,vm_vaddr_t vaddr_min)1263 vm_vaddr_t vm_vaddr_alloc(struct kvm_vm *vm, size_t sz, vm_vaddr_t vaddr_min)
1264 {
1265 uint64_t pages = (sz >> vm->page_shift) + ((sz % vm->page_size) != 0);
1266
1267 virt_pgd_alloc(vm);
1268 vm_paddr_t paddr = vm_phy_pages_alloc(vm, pages,
1269 KVM_UTIL_MIN_PFN * vm->page_size, 0);
1270
1271 /*
1272 * Find an unused range of virtual page addresses of at least
1273 * pages in length.
1274 */
1275 vm_vaddr_t vaddr_start = vm_vaddr_unused_gap(vm, sz, vaddr_min);
1276
1277 /* Map the virtual pages. */
1278 for (vm_vaddr_t vaddr = vaddr_start; pages > 0;
1279 pages--, vaddr += vm->page_size, paddr += vm->page_size) {
1280
1281 virt_pg_map(vm, vaddr, paddr);
1282
1283 sparsebit_set(vm->vpages_mapped,
1284 vaddr >> vm->page_shift);
1285 }
1286
1287 return vaddr_start;
1288 }
1289
1290 /*
1291 * VM Virtual Address Allocate Pages
1292 *
1293 * Input Args:
1294 * vm - Virtual Machine
1295 *
1296 * Output Args: None
1297 *
1298 * Return:
1299 * Starting guest virtual address
1300 *
1301 * Allocates at least N system pages worth of bytes within the virtual address
1302 * space of the vm.
1303 */
vm_vaddr_alloc_pages(struct kvm_vm * vm,int nr_pages)1304 vm_vaddr_t vm_vaddr_alloc_pages(struct kvm_vm *vm, int nr_pages)
1305 {
1306 return vm_vaddr_alloc(vm, nr_pages * getpagesize(), KVM_UTIL_MIN_VADDR);
1307 }
1308
1309 /*
1310 * VM Virtual Address Allocate Page
1311 *
1312 * Input Args:
1313 * vm - Virtual Machine
1314 *
1315 * Output Args: None
1316 *
1317 * Return:
1318 * Starting guest virtual address
1319 *
1320 * Allocates at least one system page worth of bytes within the virtual address
1321 * space of the vm.
1322 */
vm_vaddr_alloc_page(struct kvm_vm * vm)1323 vm_vaddr_t vm_vaddr_alloc_page(struct kvm_vm *vm)
1324 {
1325 return vm_vaddr_alloc_pages(vm, 1);
1326 }
1327
1328 /*
1329 * Map a range of VM virtual address to the VM's physical address
1330 *
1331 * Input Args:
1332 * vm - Virtual Machine
1333 * vaddr - Virtuall address to map
1334 * paddr - VM Physical Address
1335 * npages - The number of pages to map
1336 * pgd_memslot - Memory region slot for new virtual translation tables
1337 *
1338 * Output Args: None
1339 *
1340 * Return: None
1341 *
1342 * Within the VM given by @vm, creates a virtual translation for
1343 * @npages starting at @vaddr to the page range starting at @paddr.
1344 */
virt_map(struct kvm_vm * vm,uint64_t vaddr,uint64_t paddr,unsigned int npages)1345 void virt_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
1346 unsigned int npages)
1347 {
1348 size_t page_size = vm->page_size;
1349 size_t size = npages * page_size;
1350
1351 TEST_ASSERT(vaddr + size > vaddr, "Vaddr overflow");
1352 TEST_ASSERT(paddr + size > paddr, "Paddr overflow");
1353
1354 while (npages--) {
1355 virt_pg_map(vm, vaddr, paddr);
1356 vaddr += page_size;
1357 paddr += page_size;
1358 }
1359 }
1360
1361 /*
1362 * Address VM Physical to Host Virtual
1363 *
1364 * Input Args:
1365 * vm - Virtual Machine
1366 * gpa - VM physical address
1367 *
1368 * Output Args: None
1369 *
1370 * Return:
1371 * Equivalent host virtual address
1372 *
1373 * Locates the memory region containing the VM physical address given
1374 * by gpa, within the VM given by vm. When found, the host virtual
1375 * address providing the memory to the vm physical address is returned.
1376 * A TEST_ASSERT failure occurs if no region containing gpa exists.
1377 */
addr_gpa2hva(struct kvm_vm * vm,vm_paddr_t gpa)1378 void *addr_gpa2hva(struct kvm_vm *vm, vm_paddr_t gpa)
1379 {
1380 struct userspace_mem_region *region;
1381
1382 region = userspace_mem_region_find(vm, gpa, gpa);
1383 if (!region) {
1384 TEST_FAIL("No vm physical memory at 0x%lx", gpa);
1385 return NULL;
1386 }
1387
1388 return (void *)((uintptr_t)region->host_mem
1389 + (gpa - region->region.guest_phys_addr));
1390 }
1391
1392 /*
1393 * Address Host Virtual to VM Physical
1394 *
1395 * Input Args:
1396 * vm - Virtual Machine
1397 * hva - Host virtual address
1398 *
1399 * Output Args: None
1400 *
1401 * Return:
1402 * Equivalent VM physical address
1403 *
1404 * Locates the memory region containing the host virtual address given
1405 * by hva, within the VM given by vm. When found, the equivalent
1406 * VM physical address is returned. A TEST_ASSERT failure occurs if no
1407 * region containing hva exists.
1408 */
addr_hva2gpa(struct kvm_vm * vm,void * hva)1409 vm_paddr_t addr_hva2gpa(struct kvm_vm *vm, void *hva)
1410 {
1411 struct rb_node *node;
1412
1413 for (node = vm->regions.hva_tree.rb_node; node; ) {
1414 struct userspace_mem_region *region =
1415 container_of(node, struct userspace_mem_region, hva_node);
1416
1417 if (hva >= region->host_mem) {
1418 if (hva <= (region->host_mem
1419 + region->region.memory_size - 1))
1420 return (vm_paddr_t)((uintptr_t)
1421 region->region.guest_phys_addr
1422 + (hva - (uintptr_t)region->host_mem));
1423
1424 node = node->rb_right;
1425 } else
1426 node = node->rb_left;
1427 }
1428
1429 TEST_FAIL("No mapping to a guest physical address, hva: %p", hva);
1430 return -1;
1431 }
1432
1433 /*
1434 * Address VM physical to Host Virtual *alias*.
1435 *
1436 * Input Args:
1437 * vm - Virtual Machine
1438 * gpa - VM physical address
1439 *
1440 * Output Args: None
1441 *
1442 * Return:
1443 * Equivalent address within the host virtual *alias* area, or NULL
1444 * (without failing the test) if the guest memory is not shared (so
1445 * no alias exists).
1446 *
1447 * When vm_create() and related functions are called with a shared memory
1448 * src_type, we also create a writable, shared alias mapping of the
1449 * underlying guest memory. This allows the host to manipulate guest memory
1450 * without mapping that memory in the guest's address space. And, for
1451 * userfaultfd-based demand paging, we can do so without triggering userfaults.
1452 */
addr_gpa2alias(struct kvm_vm * vm,vm_paddr_t gpa)1453 void *addr_gpa2alias(struct kvm_vm *vm, vm_paddr_t gpa)
1454 {
1455 struct userspace_mem_region *region;
1456 uintptr_t offset;
1457
1458 region = userspace_mem_region_find(vm, gpa, gpa);
1459 if (!region)
1460 return NULL;
1461
1462 if (!region->host_alias)
1463 return NULL;
1464
1465 offset = gpa - region->region.guest_phys_addr;
1466 return (void *) ((uintptr_t) region->host_alias + offset);
1467 }
1468
1469 /*
1470 * VM Create IRQ Chip
1471 *
1472 * Input Args:
1473 * vm - Virtual Machine
1474 *
1475 * Output Args: None
1476 *
1477 * Return: None
1478 *
1479 * Creates an interrupt controller chip for the VM specified by vm.
1480 */
vm_create_irqchip(struct kvm_vm * vm)1481 void vm_create_irqchip(struct kvm_vm *vm)
1482 {
1483 int ret;
1484
1485 ret = ioctl(vm->fd, KVM_CREATE_IRQCHIP, 0);
1486 TEST_ASSERT(ret == 0, "KVM_CREATE_IRQCHIP IOCTL failed, "
1487 "rc: %i errno: %i", ret, errno);
1488
1489 vm->has_irqchip = true;
1490 }
1491
1492 /*
1493 * VM VCPU State
1494 *
1495 * Input Args:
1496 * vm - Virtual Machine
1497 * vcpuid - VCPU ID
1498 *
1499 * Output Args: None
1500 *
1501 * Return:
1502 * Pointer to structure that describes the state of the VCPU.
1503 *
1504 * Locates and returns a pointer to a structure that describes the
1505 * state of the VCPU with the given vcpuid.
1506 */
vcpu_state(struct kvm_vm * vm,uint32_t vcpuid)1507 struct kvm_run *vcpu_state(struct kvm_vm *vm, uint32_t vcpuid)
1508 {
1509 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1510 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1511
1512 return vcpu->state;
1513 }
1514
1515 /*
1516 * VM VCPU Run
1517 *
1518 * Input Args:
1519 * vm - Virtual Machine
1520 * vcpuid - VCPU ID
1521 *
1522 * Output Args: None
1523 *
1524 * Return: None
1525 *
1526 * Switch to executing the code for the VCPU given by vcpuid, within the VM
1527 * given by vm.
1528 */
vcpu_run(struct kvm_vm * vm,uint32_t vcpuid)1529 void vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1530 {
1531 int ret = _vcpu_run(vm, vcpuid);
1532 TEST_ASSERT(ret == 0, "KVM_RUN IOCTL failed, "
1533 "rc: %i errno: %i", ret, errno);
1534 }
1535
_vcpu_run(struct kvm_vm * vm,uint32_t vcpuid)1536 int _vcpu_run(struct kvm_vm *vm, uint32_t vcpuid)
1537 {
1538 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1539 int rc;
1540
1541 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1542 do {
1543 rc = ioctl(vcpu->fd, KVM_RUN, NULL);
1544 } while (rc == -1 && errno == EINTR);
1545
1546 assert_on_unhandled_exception(vm, vcpuid);
1547
1548 return rc;
1549 }
1550
vcpu_get_fd(struct kvm_vm * vm,uint32_t vcpuid)1551 int vcpu_get_fd(struct kvm_vm *vm, uint32_t vcpuid)
1552 {
1553 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1554
1555 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1556
1557 return vcpu->fd;
1558 }
1559
vcpu_run_complete_io(struct kvm_vm * vm,uint32_t vcpuid)1560 void vcpu_run_complete_io(struct kvm_vm *vm, uint32_t vcpuid)
1561 {
1562 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1563 int ret;
1564
1565 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1566
1567 vcpu->state->immediate_exit = 1;
1568 ret = ioctl(vcpu->fd, KVM_RUN, NULL);
1569 vcpu->state->immediate_exit = 0;
1570
1571 TEST_ASSERT(ret == -1 && errno == EINTR,
1572 "KVM_RUN IOCTL didn't exit immediately, rc: %i, errno: %i",
1573 ret, errno);
1574 }
1575
vcpu_set_guest_debug(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_guest_debug * debug)1576 void vcpu_set_guest_debug(struct kvm_vm *vm, uint32_t vcpuid,
1577 struct kvm_guest_debug *debug)
1578 {
1579 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1580 int ret = ioctl(vcpu->fd, KVM_SET_GUEST_DEBUG, debug);
1581
1582 TEST_ASSERT(ret == 0, "KVM_SET_GUEST_DEBUG failed: %d", ret);
1583 }
1584
1585 /*
1586 * VM VCPU Set MP State
1587 *
1588 * Input Args:
1589 * vm - Virtual Machine
1590 * vcpuid - VCPU ID
1591 * mp_state - mp_state to be set
1592 *
1593 * Output Args: None
1594 *
1595 * Return: None
1596 *
1597 * Sets the MP state of the VCPU given by vcpuid, to the state given
1598 * by mp_state.
1599 */
vcpu_set_mp_state(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_mp_state * mp_state)1600 void vcpu_set_mp_state(struct kvm_vm *vm, uint32_t vcpuid,
1601 struct kvm_mp_state *mp_state)
1602 {
1603 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1604 int ret;
1605
1606 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1607
1608 ret = ioctl(vcpu->fd, KVM_SET_MP_STATE, mp_state);
1609 TEST_ASSERT(ret == 0, "KVM_SET_MP_STATE IOCTL failed, "
1610 "rc: %i errno: %i", ret, errno);
1611 }
1612
1613 /*
1614 * VM VCPU Get Reg List
1615 *
1616 * Input Args:
1617 * vm - Virtual Machine
1618 * vcpuid - VCPU ID
1619 *
1620 * Output Args:
1621 * None
1622 *
1623 * Return:
1624 * A pointer to an allocated struct kvm_reg_list
1625 *
1626 * Get the list of guest registers which are supported for
1627 * KVM_GET_ONE_REG/KVM_SET_ONE_REG calls
1628 */
vcpu_get_reg_list(struct kvm_vm * vm,uint32_t vcpuid)1629 struct kvm_reg_list *vcpu_get_reg_list(struct kvm_vm *vm, uint32_t vcpuid)
1630 {
1631 struct kvm_reg_list reg_list_n = { .n = 0 }, *reg_list;
1632 int ret;
1633
1634 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, ®_list_n);
1635 TEST_ASSERT(ret == -1 && errno == E2BIG, "KVM_GET_REG_LIST n=0");
1636 reg_list = calloc(1, sizeof(*reg_list) + reg_list_n.n * sizeof(__u64));
1637 reg_list->n = reg_list_n.n;
1638 vcpu_ioctl(vm, vcpuid, KVM_GET_REG_LIST, reg_list);
1639 return reg_list;
1640 }
1641
1642 /*
1643 * VM VCPU Regs Get
1644 *
1645 * Input Args:
1646 * vm - Virtual Machine
1647 * vcpuid - VCPU ID
1648 *
1649 * Output Args:
1650 * regs - current state of VCPU regs
1651 *
1652 * Return: None
1653 *
1654 * Obtains the current register state for the VCPU specified by vcpuid
1655 * and stores it at the location given by regs.
1656 */
vcpu_regs_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_regs * regs)1657 void vcpu_regs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1658 {
1659 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1660 int ret;
1661
1662 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1663
1664 ret = ioctl(vcpu->fd, KVM_GET_REGS, regs);
1665 TEST_ASSERT(ret == 0, "KVM_GET_REGS failed, rc: %i errno: %i",
1666 ret, errno);
1667 }
1668
1669 /*
1670 * VM VCPU Regs Set
1671 *
1672 * Input Args:
1673 * vm - Virtual Machine
1674 * vcpuid - VCPU ID
1675 * regs - Values to set VCPU regs to
1676 *
1677 * Output Args: None
1678 *
1679 * Return: None
1680 *
1681 * Sets the regs of the VCPU specified by vcpuid to the values
1682 * given by regs.
1683 */
vcpu_regs_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_regs * regs)1684 void vcpu_regs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_regs *regs)
1685 {
1686 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1687 int ret;
1688
1689 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1690
1691 ret = ioctl(vcpu->fd, KVM_SET_REGS, regs);
1692 TEST_ASSERT(ret == 0, "KVM_SET_REGS failed, rc: %i errno: %i",
1693 ret, errno);
1694 }
1695
1696 #ifdef __KVM_HAVE_VCPU_EVENTS
vcpu_events_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_vcpu_events * events)1697 void vcpu_events_get(struct kvm_vm *vm, uint32_t vcpuid,
1698 struct kvm_vcpu_events *events)
1699 {
1700 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1701 int ret;
1702
1703 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1704
1705 ret = ioctl(vcpu->fd, KVM_GET_VCPU_EVENTS, events);
1706 TEST_ASSERT(ret == 0, "KVM_GET_VCPU_EVENTS, failed, rc: %i errno: %i",
1707 ret, errno);
1708 }
1709
vcpu_events_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_vcpu_events * events)1710 void vcpu_events_set(struct kvm_vm *vm, uint32_t vcpuid,
1711 struct kvm_vcpu_events *events)
1712 {
1713 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1714 int ret;
1715
1716 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1717
1718 ret = ioctl(vcpu->fd, KVM_SET_VCPU_EVENTS, events);
1719 TEST_ASSERT(ret == 0, "KVM_SET_VCPU_EVENTS, failed, rc: %i errno: %i",
1720 ret, errno);
1721 }
1722 #endif
1723
1724 #ifdef __x86_64__
vcpu_nested_state_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_nested_state * state)1725 void vcpu_nested_state_get(struct kvm_vm *vm, uint32_t vcpuid,
1726 struct kvm_nested_state *state)
1727 {
1728 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1729 int ret;
1730
1731 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1732
1733 ret = ioctl(vcpu->fd, KVM_GET_NESTED_STATE, state);
1734 TEST_ASSERT(ret == 0,
1735 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1736 ret, errno);
1737 }
1738
vcpu_nested_state_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_nested_state * state,bool ignore_error)1739 int vcpu_nested_state_set(struct kvm_vm *vm, uint32_t vcpuid,
1740 struct kvm_nested_state *state, bool ignore_error)
1741 {
1742 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1743 int ret;
1744
1745 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1746
1747 ret = ioctl(vcpu->fd, KVM_SET_NESTED_STATE, state);
1748 if (!ignore_error) {
1749 TEST_ASSERT(ret == 0,
1750 "KVM_SET_NESTED_STATE failed, ret: %i errno: %i",
1751 ret, errno);
1752 }
1753
1754 return ret;
1755 }
1756 #endif
1757
1758 /*
1759 * VM VCPU System Regs Get
1760 *
1761 * Input Args:
1762 * vm - Virtual Machine
1763 * vcpuid - VCPU ID
1764 *
1765 * Output Args:
1766 * sregs - current state of VCPU system regs
1767 *
1768 * Return: None
1769 *
1770 * Obtains the current system register state for the VCPU specified by
1771 * vcpuid and stores it at the location given by sregs.
1772 */
vcpu_sregs_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_sregs * sregs)1773 void vcpu_sregs_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1774 {
1775 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1776 int ret;
1777
1778 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1779
1780 ret = ioctl(vcpu->fd, KVM_GET_SREGS, sregs);
1781 TEST_ASSERT(ret == 0, "KVM_GET_SREGS failed, rc: %i errno: %i",
1782 ret, errno);
1783 }
1784
1785 /*
1786 * VM VCPU System Regs Set
1787 *
1788 * Input Args:
1789 * vm - Virtual Machine
1790 * vcpuid - VCPU ID
1791 * sregs - Values to set VCPU system regs to
1792 *
1793 * Output Args: None
1794 *
1795 * Return: None
1796 *
1797 * Sets the system regs of the VCPU specified by vcpuid to the values
1798 * given by sregs.
1799 */
vcpu_sregs_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_sregs * sregs)1800 void vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1801 {
1802 int ret = _vcpu_sregs_set(vm, vcpuid, sregs);
1803 TEST_ASSERT(ret == 0, "KVM_SET_SREGS IOCTL failed, "
1804 "rc: %i errno: %i", ret, errno);
1805 }
1806
_vcpu_sregs_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_sregs * sregs)1807 int _vcpu_sregs_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_sregs *sregs)
1808 {
1809 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1810
1811 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1812
1813 return ioctl(vcpu->fd, KVM_SET_SREGS, sregs);
1814 }
1815
vcpu_fpu_get(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_fpu * fpu)1816 void vcpu_fpu_get(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1817 {
1818 int ret;
1819
1820 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_FPU, fpu);
1821 TEST_ASSERT(ret == 0, "KVM_GET_FPU failed, rc: %i errno: %i (%s)",
1822 ret, errno, strerror(errno));
1823 }
1824
vcpu_fpu_set(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_fpu * fpu)1825 void vcpu_fpu_set(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_fpu *fpu)
1826 {
1827 int ret;
1828
1829 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_FPU, fpu);
1830 TEST_ASSERT(ret == 0, "KVM_SET_FPU failed, rc: %i errno: %i (%s)",
1831 ret, errno, strerror(errno));
1832 }
1833
vcpu_get_reg(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_one_reg * reg)1834 void vcpu_get_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1835 {
1836 int ret;
1837
1838 ret = _vcpu_ioctl(vm, vcpuid, KVM_GET_ONE_REG, reg);
1839 TEST_ASSERT(ret == 0, "KVM_GET_ONE_REG failed, rc: %i errno: %i (%s)",
1840 ret, errno, strerror(errno));
1841 }
1842
vcpu_set_reg(struct kvm_vm * vm,uint32_t vcpuid,struct kvm_one_reg * reg)1843 void vcpu_set_reg(struct kvm_vm *vm, uint32_t vcpuid, struct kvm_one_reg *reg)
1844 {
1845 int ret;
1846
1847 ret = _vcpu_ioctl(vm, vcpuid, KVM_SET_ONE_REG, reg);
1848 TEST_ASSERT(ret == 0, "KVM_SET_ONE_REG failed, rc: %i errno: %i (%s)",
1849 ret, errno, strerror(errno));
1850 }
1851
1852 /*
1853 * VCPU Ioctl
1854 *
1855 * Input Args:
1856 * vm - Virtual Machine
1857 * vcpuid - VCPU ID
1858 * cmd - Ioctl number
1859 * arg - Argument to pass to the ioctl
1860 *
1861 * Return: None
1862 *
1863 * Issues an arbitrary ioctl on a VCPU fd.
1864 */
vcpu_ioctl(struct kvm_vm * vm,uint32_t vcpuid,unsigned long cmd,void * arg)1865 void vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1866 unsigned long cmd, void *arg)
1867 {
1868 int ret;
1869
1870 ret = _vcpu_ioctl(vm, vcpuid, cmd, arg);
1871 TEST_ASSERT(ret == 0, "vcpu ioctl %lu failed, rc: %i errno: %i (%s)",
1872 cmd, ret, errno, strerror(errno));
1873 }
1874
_vcpu_ioctl(struct kvm_vm * vm,uint32_t vcpuid,unsigned long cmd,void * arg)1875 int _vcpu_ioctl(struct kvm_vm *vm, uint32_t vcpuid,
1876 unsigned long cmd, void *arg)
1877 {
1878 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
1879 int ret;
1880
1881 TEST_ASSERT(vcpu != NULL, "vcpu not found, vcpuid: %u", vcpuid);
1882
1883 ret = ioctl(vcpu->fd, cmd, arg);
1884
1885 return ret;
1886 }
1887
vcpu_map_dirty_ring(struct kvm_vm * vm,uint32_t vcpuid)1888 void *vcpu_map_dirty_ring(struct kvm_vm *vm, uint32_t vcpuid)
1889 {
1890 struct vcpu *vcpu;
1891 uint32_t size = vm->dirty_ring_size;
1892
1893 TEST_ASSERT(size > 0, "Should enable dirty ring first");
1894
1895 vcpu = vcpu_find(vm, vcpuid);
1896
1897 TEST_ASSERT(vcpu, "Cannot find vcpu %u", vcpuid);
1898
1899 if (!vcpu->dirty_gfns) {
1900 void *addr;
1901
1902 addr = mmap(NULL, size, PROT_READ,
1903 MAP_PRIVATE, vcpu->fd,
1904 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1905 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped private");
1906
1907 addr = mmap(NULL, size, PROT_READ | PROT_EXEC,
1908 MAP_PRIVATE, vcpu->fd,
1909 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1910 TEST_ASSERT(addr == MAP_FAILED, "Dirty ring mapped exec");
1911
1912 addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
1913 MAP_SHARED, vcpu->fd,
1914 vm->page_size * KVM_DIRTY_LOG_PAGE_OFFSET);
1915 TEST_ASSERT(addr != MAP_FAILED, "Dirty ring map failed");
1916
1917 vcpu->dirty_gfns = addr;
1918 vcpu->dirty_gfns_count = size / sizeof(struct kvm_dirty_gfn);
1919 }
1920
1921 return vcpu->dirty_gfns;
1922 }
1923
1924 /*
1925 * VM Ioctl
1926 *
1927 * Input Args:
1928 * vm - Virtual Machine
1929 * cmd - Ioctl number
1930 * arg - Argument to pass to the ioctl
1931 *
1932 * Return: None
1933 *
1934 * Issues an arbitrary ioctl on a VM fd.
1935 */
vm_ioctl(struct kvm_vm * vm,unsigned long cmd,void * arg)1936 void vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1937 {
1938 int ret;
1939
1940 ret = _vm_ioctl(vm, cmd, arg);
1941 TEST_ASSERT(ret == 0, "vm ioctl %lu failed, rc: %i errno: %i (%s)",
1942 cmd, ret, errno, strerror(errno));
1943 }
1944
_vm_ioctl(struct kvm_vm * vm,unsigned long cmd,void * arg)1945 int _vm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1946 {
1947 return ioctl(vm->fd, cmd, arg);
1948 }
1949
1950 /*
1951 * KVM system ioctl
1952 *
1953 * Input Args:
1954 * vm - Virtual Machine
1955 * cmd - Ioctl number
1956 * arg - Argument to pass to the ioctl
1957 *
1958 * Return: None
1959 *
1960 * Issues an arbitrary ioctl on a KVM fd.
1961 */
kvm_ioctl(struct kvm_vm * vm,unsigned long cmd,void * arg)1962 void kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1963 {
1964 int ret;
1965
1966 ret = ioctl(vm->kvm_fd, cmd, arg);
1967 TEST_ASSERT(ret == 0, "KVM ioctl %lu failed, rc: %i errno: %i (%s)",
1968 cmd, ret, errno, strerror(errno));
1969 }
1970
_kvm_ioctl(struct kvm_vm * vm,unsigned long cmd,void * arg)1971 int _kvm_ioctl(struct kvm_vm *vm, unsigned long cmd, void *arg)
1972 {
1973 return ioctl(vm->kvm_fd, cmd, arg);
1974 }
1975
1976 /*
1977 * Device Ioctl
1978 */
1979
_kvm_device_check_attr(int dev_fd,uint32_t group,uint64_t attr)1980 int _kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
1981 {
1982 struct kvm_device_attr attribute = {
1983 .group = group,
1984 .attr = attr,
1985 .flags = 0,
1986 };
1987
1988 return ioctl(dev_fd, KVM_HAS_DEVICE_ATTR, &attribute);
1989 }
1990
kvm_device_check_attr(int dev_fd,uint32_t group,uint64_t attr)1991 int kvm_device_check_attr(int dev_fd, uint32_t group, uint64_t attr)
1992 {
1993 int ret = _kvm_device_check_attr(dev_fd, group, attr);
1994
1995 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR failed, rc: %i errno: %i", ret, errno);
1996 return ret;
1997 }
1998
_kvm_create_device(struct kvm_vm * vm,uint64_t type,bool test,int * fd)1999 int _kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test, int *fd)
2000 {
2001 struct kvm_create_device create_dev;
2002 int ret;
2003
2004 create_dev.type = type;
2005 create_dev.fd = -1;
2006 create_dev.flags = test ? KVM_CREATE_DEVICE_TEST : 0;
2007 ret = ioctl(vm_get_fd(vm), KVM_CREATE_DEVICE, &create_dev);
2008 *fd = create_dev.fd;
2009 return ret;
2010 }
2011
kvm_create_device(struct kvm_vm * vm,uint64_t type,bool test)2012 int kvm_create_device(struct kvm_vm *vm, uint64_t type, bool test)
2013 {
2014 int fd, ret;
2015
2016 ret = _kvm_create_device(vm, type, test, &fd);
2017
2018 if (!test) {
2019 TEST_ASSERT(!ret,
2020 "KVM_CREATE_DEVICE IOCTL failed, rc: %i errno: %i", ret, errno);
2021 return fd;
2022 }
2023 return ret;
2024 }
2025
_kvm_device_access(int dev_fd,uint32_t group,uint64_t attr,void * val,bool write)2026 int _kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2027 void *val, bool write)
2028 {
2029 struct kvm_device_attr kvmattr = {
2030 .group = group,
2031 .attr = attr,
2032 .flags = 0,
2033 .addr = (uintptr_t)val,
2034 };
2035 int ret;
2036
2037 ret = ioctl(dev_fd, write ? KVM_SET_DEVICE_ATTR : KVM_GET_DEVICE_ATTR,
2038 &kvmattr);
2039 return ret;
2040 }
2041
kvm_device_access(int dev_fd,uint32_t group,uint64_t attr,void * val,bool write)2042 int kvm_device_access(int dev_fd, uint32_t group, uint64_t attr,
2043 void *val, bool write)
2044 {
2045 int ret = _kvm_device_access(dev_fd, group, attr, val, write);
2046
2047 TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2048 return ret;
2049 }
2050
_vcpu_has_device_attr(struct kvm_vm * vm,uint32_t vcpuid,uint32_t group,uint64_t attr)2051 int _vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2052 uint64_t attr)
2053 {
2054 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2055
2056 TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid);
2057
2058 return _kvm_device_check_attr(vcpu->fd, group, attr);
2059 }
2060
vcpu_has_device_attr(struct kvm_vm * vm,uint32_t vcpuid,uint32_t group,uint64_t attr)2061 int vcpu_has_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2062 uint64_t attr)
2063 {
2064 int ret = _vcpu_has_device_attr(vm, vcpuid, group, attr);
2065
2066 TEST_ASSERT(!ret, "KVM_HAS_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2067 return ret;
2068 }
2069
_vcpu_access_device_attr(struct kvm_vm * vm,uint32_t vcpuid,uint32_t group,uint64_t attr,void * val,bool write)2070 int _vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2071 uint64_t attr, void *val, bool write)
2072 {
2073 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2074
2075 TEST_ASSERT(vcpu, "nonexistent vcpu id: %d", vcpuid);
2076
2077 return _kvm_device_access(vcpu->fd, group, attr, val, write);
2078 }
2079
vcpu_access_device_attr(struct kvm_vm * vm,uint32_t vcpuid,uint32_t group,uint64_t attr,void * val,bool write)2080 int vcpu_access_device_attr(struct kvm_vm *vm, uint32_t vcpuid, uint32_t group,
2081 uint64_t attr, void *val, bool write)
2082 {
2083 int ret = _vcpu_access_device_attr(vm, vcpuid, group, attr, val, write);
2084
2085 TEST_ASSERT(!ret, "KVM_SET|GET_DEVICE_ATTR IOCTL failed, rc: %i errno: %i", ret, errno);
2086 return ret;
2087 }
2088
2089 /*
2090 * VM Dump
2091 *
2092 * Input Args:
2093 * vm - Virtual Machine
2094 * indent - Left margin indent amount
2095 *
2096 * Output Args:
2097 * stream - Output FILE stream
2098 *
2099 * Return: None
2100 *
2101 * Dumps the current state of the VM given by vm, to the FILE stream
2102 * given by stream.
2103 */
vm_dump(FILE * stream,struct kvm_vm * vm,uint8_t indent)2104 void vm_dump(FILE *stream, struct kvm_vm *vm, uint8_t indent)
2105 {
2106 int ctr;
2107 struct userspace_mem_region *region;
2108 struct vcpu *vcpu;
2109
2110 fprintf(stream, "%*smode: 0x%x\n", indent, "", vm->mode);
2111 fprintf(stream, "%*sfd: %i\n", indent, "", vm->fd);
2112 fprintf(stream, "%*spage_size: 0x%x\n", indent, "", vm->page_size);
2113 fprintf(stream, "%*sMem Regions:\n", indent, "");
2114 hash_for_each(vm->regions.slot_hash, ctr, region, slot_node) {
2115 fprintf(stream, "%*sguest_phys: 0x%lx size: 0x%lx "
2116 "host_virt: %p\n", indent + 2, "",
2117 (uint64_t) region->region.guest_phys_addr,
2118 (uint64_t) region->region.memory_size,
2119 region->host_mem);
2120 fprintf(stream, "%*sunused_phy_pages: ", indent + 2, "");
2121 sparsebit_dump(stream, region->unused_phy_pages, 0);
2122 }
2123 fprintf(stream, "%*sMapped Virtual Pages:\n", indent, "");
2124 sparsebit_dump(stream, vm->vpages_mapped, indent + 2);
2125 fprintf(stream, "%*spgd_created: %u\n", indent, "",
2126 vm->pgd_created);
2127 if (vm->pgd_created) {
2128 fprintf(stream, "%*sVirtual Translation Tables:\n",
2129 indent + 2, "");
2130 virt_dump(stream, vm, indent + 4);
2131 }
2132 fprintf(stream, "%*sVCPUs:\n", indent, "");
2133 list_for_each_entry(vcpu, &vm->vcpus, list)
2134 vcpu_dump(stream, vm, vcpu->id, indent + 2);
2135 }
2136
2137 /* Known KVM exit reasons */
2138 static struct exit_reason {
2139 unsigned int reason;
2140 const char *name;
2141 } exit_reasons_known[] = {
2142 {KVM_EXIT_UNKNOWN, "UNKNOWN"},
2143 {KVM_EXIT_EXCEPTION, "EXCEPTION"},
2144 {KVM_EXIT_IO, "IO"},
2145 {KVM_EXIT_HYPERCALL, "HYPERCALL"},
2146 {KVM_EXIT_DEBUG, "DEBUG"},
2147 {KVM_EXIT_HLT, "HLT"},
2148 {KVM_EXIT_MMIO, "MMIO"},
2149 {KVM_EXIT_IRQ_WINDOW_OPEN, "IRQ_WINDOW_OPEN"},
2150 {KVM_EXIT_SHUTDOWN, "SHUTDOWN"},
2151 {KVM_EXIT_FAIL_ENTRY, "FAIL_ENTRY"},
2152 {KVM_EXIT_INTR, "INTR"},
2153 {KVM_EXIT_SET_TPR, "SET_TPR"},
2154 {KVM_EXIT_TPR_ACCESS, "TPR_ACCESS"},
2155 {KVM_EXIT_S390_SIEIC, "S390_SIEIC"},
2156 {KVM_EXIT_S390_RESET, "S390_RESET"},
2157 {KVM_EXIT_DCR, "DCR"},
2158 {KVM_EXIT_NMI, "NMI"},
2159 {KVM_EXIT_INTERNAL_ERROR, "INTERNAL_ERROR"},
2160 {KVM_EXIT_OSI, "OSI"},
2161 {KVM_EXIT_PAPR_HCALL, "PAPR_HCALL"},
2162 {KVM_EXIT_DIRTY_RING_FULL, "DIRTY_RING_FULL"},
2163 {KVM_EXIT_X86_RDMSR, "RDMSR"},
2164 {KVM_EXIT_X86_WRMSR, "WRMSR"},
2165 {KVM_EXIT_XEN, "XEN"},
2166 #ifdef KVM_EXIT_MEMORY_NOT_PRESENT
2167 {KVM_EXIT_MEMORY_NOT_PRESENT, "MEMORY_NOT_PRESENT"},
2168 #endif
2169 };
2170
2171 /*
2172 * Exit Reason String
2173 *
2174 * Input Args:
2175 * exit_reason - Exit reason
2176 *
2177 * Output Args: None
2178 *
2179 * Return:
2180 * Constant string pointer describing the exit reason.
2181 *
2182 * Locates and returns a constant string that describes the KVM exit
2183 * reason given by exit_reason. If no such string is found, a constant
2184 * string of "Unknown" is returned.
2185 */
exit_reason_str(unsigned int exit_reason)2186 const char *exit_reason_str(unsigned int exit_reason)
2187 {
2188 unsigned int n1;
2189
2190 for (n1 = 0; n1 < ARRAY_SIZE(exit_reasons_known); n1++) {
2191 if (exit_reason == exit_reasons_known[n1].reason)
2192 return exit_reasons_known[n1].name;
2193 }
2194
2195 return "Unknown";
2196 }
2197
2198 /*
2199 * Physical Contiguous Page Allocator
2200 *
2201 * Input Args:
2202 * vm - Virtual Machine
2203 * num - number of pages
2204 * paddr_min - Physical address minimum
2205 * memslot - Memory region to allocate page from
2206 *
2207 * Output Args: None
2208 *
2209 * Return:
2210 * Starting physical address
2211 *
2212 * Within the VM specified by vm, locates a range of available physical
2213 * pages at or above paddr_min. If found, the pages are marked as in use
2214 * and their base address is returned. A TEST_ASSERT failure occurs if
2215 * not enough pages are available at or above paddr_min.
2216 */
vm_phy_pages_alloc(struct kvm_vm * vm,size_t num,vm_paddr_t paddr_min,uint32_t memslot)2217 vm_paddr_t vm_phy_pages_alloc(struct kvm_vm *vm, size_t num,
2218 vm_paddr_t paddr_min, uint32_t memslot)
2219 {
2220 struct userspace_mem_region *region;
2221 sparsebit_idx_t pg, base;
2222
2223 TEST_ASSERT(num > 0, "Must allocate at least one page");
2224
2225 TEST_ASSERT((paddr_min % vm->page_size) == 0, "Min physical address "
2226 "not divisible by page size.\n"
2227 " paddr_min: 0x%lx page_size: 0x%x",
2228 paddr_min, vm->page_size);
2229
2230 region = memslot2region(vm, memslot);
2231 base = pg = paddr_min >> vm->page_shift;
2232
2233 do {
2234 for (; pg < base + num; ++pg) {
2235 if (!sparsebit_is_set(region->unused_phy_pages, pg)) {
2236 base = pg = sparsebit_next_set(region->unused_phy_pages, pg);
2237 break;
2238 }
2239 }
2240 } while (pg && pg != base + num);
2241
2242 if (pg == 0) {
2243 fprintf(stderr, "No guest physical page available, "
2244 "paddr_min: 0x%lx page_size: 0x%x memslot: %u\n",
2245 paddr_min, vm->page_size, memslot);
2246 fputs("---- vm dump ----\n", stderr);
2247 vm_dump(stderr, vm, 2);
2248 abort();
2249 }
2250
2251 for (pg = base; pg < base + num; ++pg)
2252 sparsebit_clear(region->unused_phy_pages, pg);
2253
2254 return base * vm->page_size;
2255 }
2256
vm_phy_page_alloc(struct kvm_vm * vm,vm_paddr_t paddr_min,uint32_t memslot)2257 vm_paddr_t vm_phy_page_alloc(struct kvm_vm *vm, vm_paddr_t paddr_min,
2258 uint32_t memslot)
2259 {
2260 return vm_phy_pages_alloc(vm, 1, paddr_min, memslot);
2261 }
2262
2263 /* Arbitrary minimum physical address used for virtual translation tables. */
2264 #define KVM_GUEST_PAGE_TABLE_MIN_PADDR 0x180000
2265
vm_alloc_page_table(struct kvm_vm * vm)2266 vm_paddr_t vm_alloc_page_table(struct kvm_vm *vm)
2267 {
2268 return vm_phy_page_alloc(vm, KVM_GUEST_PAGE_TABLE_MIN_PADDR, 0);
2269 }
2270
2271 /*
2272 * Address Guest Virtual to Host Virtual
2273 *
2274 * Input Args:
2275 * vm - Virtual Machine
2276 * gva - VM virtual address
2277 *
2278 * Output Args: None
2279 *
2280 * Return:
2281 * Equivalent host virtual address
2282 */
addr_gva2hva(struct kvm_vm * vm,vm_vaddr_t gva)2283 void *addr_gva2hva(struct kvm_vm *vm, vm_vaddr_t gva)
2284 {
2285 return addr_gpa2hva(vm, addr_gva2gpa(vm, gva));
2286 }
2287
2288 /*
2289 * Is Unrestricted Guest
2290 *
2291 * Input Args:
2292 * vm - Virtual Machine
2293 *
2294 * Output Args: None
2295 *
2296 * Return: True if the unrestricted guest is set to 'Y', otherwise return false.
2297 *
2298 * Check if the unrestricted guest flag is enabled.
2299 */
vm_is_unrestricted_guest(struct kvm_vm * vm)2300 bool vm_is_unrestricted_guest(struct kvm_vm *vm)
2301 {
2302 char val = 'N';
2303 size_t count;
2304 FILE *f;
2305
2306 if (vm == NULL) {
2307 /* Ensure that the KVM vendor-specific module is loaded. */
2308 close(open_kvm_dev_path_or_exit());
2309 }
2310
2311 f = fopen("/sys/module/kvm_intel/parameters/unrestricted_guest", "r");
2312 if (f) {
2313 count = fread(&val, sizeof(char), 1, f);
2314 TEST_ASSERT(count == 1, "Unable to read from param file.");
2315 fclose(f);
2316 }
2317
2318 return val == 'Y';
2319 }
2320
vm_get_page_size(struct kvm_vm * vm)2321 unsigned int vm_get_page_size(struct kvm_vm *vm)
2322 {
2323 return vm->page_size;
2324 }
2325
vm_get_page_shift(struct kvm_vm * vm)2326 unsigned int vm_get_page_shift(struct kvm_vm *vm)
2327 {
2328 return vm->page_shift;
2329 }
2330
vm_compute_max_gfn(struct kvm_vm * vm)2331 unsigned long __attribute__((weak)) vm_compute_max_gfn(struct kvm_vm *vm)
2332 {
2333 return ((1ULL << vm->pa_bits) >> vm->page_shift) - 1;
2334 }
2335
vm_get_max_gfn(struct kvm_vm * vm)2336 uint64_t vm_get_max_gfn(struct kvm_vm *vm)
2337 {
2338 return vm->max_gfn;
2339 }
2340
vm_get_fd(struct kvm_vm * vm)2341 int vm_get_fd(struct kvm_vm *vm)
2342 {
2343 return vm->fd;
2344 }
2345
vm_calc_num_pages(unsigned int num_pages,unsigned int page_shift,unsigned int new_page_shift,bool ceil)2346 static unsigned int vm_calc_num_pages(unsigned int num_pages,
2347 unsigned int page_shift,
2348 unsigned int new_page_shift,
2349 bool ceil)
2350 {
2351 unsigned int n = 1 << (new_page_shift - page_shift);
2352
2353 if (page_shift >= new_page_shift)
2354 return num_pages * (1 << (page_shift - new_page_shift));
2355
2356 return num_pages / n + !!(ceil && num_pages % n);
2357 }
2358
getpageshift(void)2359 static inline int getpageshift(void)
2360 {
2361 return __builtin_ffs(getpagesize()) - 1;
2362 }
2363
2364 unsigned int
vm_num_host_pages(enum vm_guest_mode mode,unsigned int num_guest_pages)2365 vm_num_host_pages(enum vm_guest_mode mode, unsigned int num_guest_pages)
2366 {
2367 return vm_calc_num_pages(num_guest_pages,
2368 vm_guest_mode_params[mode].page_shift,
2369 getpageshift(), true);
2370 }
2371
2372 unsigned int
vm_num_guest_pages(enum vm_guest_mode mode,unsigned int num_host_pages)2373 vm_num_guest_pages(enum vm_guest_mode mode, unsigned int num_host_pages)
2374 {
2375 return vm_calc_num_pages(num_host_pages, getpageshift(),
2376 vm_guest_mode_params[mode].page_shift, false);
2377 }
2378
vm_calc_num_guest_pages(enum vm_guest_mode mode,size_t size)2379 unsigned int vm_calc_num_guest_pages(enum vm_guest_mode mode, size_t size)
2380 {
2381 unsigned int n;
2382 n = DIV_ROUND_UP(size, vm_guest_mode_params[mode].page_size);
2383 return vm_adjust_num_guest_pages(mode, n);
2384 }
2385
vm_get_stats_fd(struct kvm_vm * vm)2386 int vm_get_stats_fd(struct kvm_vm *vm)
2387 {
2388 return ioctl(vm->fd, KVM_GET_STATS_FD, NULL);
2389 }
2390
vcpu_get_stats_fd(struct kvm_vm * vm,uint32_t vcpuid)2391 int vcpu_get_stats_fd(struct kvm_vm *vm, uint32_t vcpuid)
2392 {
2393 struct vcpu *vcpu = vcpu_find(vm, vcpuid);
2394
2395 return ioctl(vcpu->fd, KVM_GET_STATS_FD, NULL);
2396 }
2397