1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2012 Red Hat, Inc.
4 *
5 * Author: Mikulas Patocka <mpatocka@redhat.com>
6 *
7 * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
8 *
9 * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
10 * default prefetch value. Data are read in "prefetch_cluster" chunks from the
11 * hash device. Setting this greatly improves performance when data and hash
12 * are on the same disk on different partitions on devices with poor random
13 * access behavior.
14 */
15
16 #include "dm-verity.h"
17 #include "dm-verity-fec.h"
18 #include "dm-verity-verify-sig.h"
19 #include <linux/module.h>
20 #include <linux/reboot.h>
21 #include <linux/scatterlist.h>
22
23 #define DM_MSG_PREFIX "verity"
24
25 #define DM_VERITY_ENV_LENGTH 42
26 #define DM_VERITY_ENV_VAR_NAME "DM_VERITY_ERR_BLOCK_NR"
27
28 #define DM_VERITY_DEFAULT_PREFETCH_SIZE 262144
29
30 #define DM_VERITY_MAX_CORRUPTED_ERRS 100
31
32 #define DM_VERITY_OPT_LOGGING "ignore_corruption"
33 #define DM_VERITY_OPT_RESTART "restart_on_corruption"
34 #define DM_VERITY_OPT_PANIC "panic_on_corruption"
35 #define DM_VERITY_OPT_IGN_ZEROES "ignore_zero_blocks"
36 #define DM_VERITY_OPT_AT_MOST_ONCE "check_at_most_once"
37
38 #define DM_VERITY_OPTS_MAX (3 + DM_VERITY_OPTS_FEC + \
39 DM_VERITY_ROOT_HASH_VERIFICATION_OPTS)
40
41 static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
42
43 module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
44
45 struct dm_verity_prefetch_work {
46 struct work_struct work;
47 struct dm_verity *v;
48 sector_t block;
49 unsigned n_blocks;
50 };
51
52 /*
53 * Auxiliary structure appended to each dm-bufio buffer. If the value
54 * hash_verified is nonzero, hash of the block has been verified.
55 *
56 * The variable hash_verified is set to 0 when allocating the buffer, then
57 * it can be changed to 1 and it is never reset to 0 again.
58 *
59 * There is no lock around this value, a race condition can at worst cause
60 * that multiple processes verify the hash of the same buffer simultaneously
61 * and write 1 to hash_verified simultaneously.
62 * This condition is harmless, so we don't need locking.
63 */
64 struct buffer_aux {
65 int hash_verified;
66 };
67
68 /*
69 * Initialize struct buffer_aux for a freshly created buffer.
70 */
dm_bufio_alloc_callback(struct dm_buffer * buf)71 static void dm_bufio_alloc_callback(struct dm_buffer *buf)
72 {
73 struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
74
75 aux->hash_verified = 0;
76 }
77
78 /*
79 * Translate input sector number to the sector number on the target device.
80 */
verity_map_sector(struct dm_verity * v,sector_t bi_sector)81 static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
82 {
83 return v->data_start + dm_target_offset(v->ti, bi_sector);
84 }
85
86 /*
87 * Return hash position of a specified block at a specified tree level
88 * (0 is the lowest level).
89 * The lowest "hash_per_block_bits"-bits of the result denote hash position
90 * inside a hash block. The remaining bits denote location of the hash block.
91 */
verity_position_at_level(struct dm_verity * v,sector_t block,int level)92 static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
93 int level)
94 {
95 return block >> (level * v->hash_per_block_bits);
96 }
97
verity_hash_update(struct dm_verity * v,struct ahash_request * req,const u8 * data,size_t len,struct crypto_wait * wait)98 static int verity_hash_update(struct dm_verity *v, struct ahash_request *req,
99 const u8 *data, size_t len,
100 struct crypto_wait *wait)
101 {
102 struct scatterlist sg;
103
104 if (likely(!is_vmalloc_addr(data))) {
105 sg_init_one(&sg, data, len);
106 ahash_request_set_crypt(req, &sg, NULL, len);
107 return crypto_wait_req(crypto_ahash_update(req), wait);
108 } else {
109 do {
110 int r;
111 size_t this_step = min_t(size_t, len, PAGE_SIZE - offset_in_page(data));
112 flush_kernel_vmap_range((void *)data, this_step);
113 sg_init_table(&sg, 1);
114 sg_set_page(&sg, vmalloc_to_page(data), this_step, offset_in_page(data));
115 ahash_request_set_crypt(req, &sg, NULL, this_step);
116 r = crypto_wait_req(crypto_ahash_update(req), wait);
117 if (unlikely(r))
118 return r;
119 data += this_step;
120 len -= this_step;
121 } while (len);
122 return 0;
123 }
124 }
125
126 /*
127 * Wrapper for crypto_ahash_init, which handles verity salting.
128 */
verity_hash_init(struct dm_verity * v,struct ahash_request * req,struct crypto_wait * wait)129 static int verity_hash_init(struct dm_verity *v, struct ahash_request *req,
130 struct crypto_wait *wait)
131 {
132 int r;
133
134 ahash_request_set_tfm(req, v->tfm);
135 ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP |
136 CRYPTO_TFM_REQ_MAY_BACKLOG,
137 crypto_req_done, (void *)wait);
138 crypto_init_wait(wait);
139
140 r = crypto_wait_req(crypto_ahash_init(req), wait);
141
142 if (unlikely(r < 0)) {
143 DMERR("crypto_ahash_init failed: %d", r);
144 return r;
145 }
146
147 if (likely(v->salt_size && (v->version >= 1)))
148 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
149
150 return r;
151 }
152
verity_hash_final(struct dm_verity * v,struct ahash_request * req,u8 * digest,struct crypto_wait * wait)153 static int verity_hash_final(struct dm_verity *v, struct ahash_request *req,
154 u8 *digest, struct crypto_wait *wait)
155 {
156 int r;
157
158 if (unlikely(v->salt_size && (!v->version))) {
159 r = verity_hash_update(v, req, v->salt, v->salt_size, wait);
160
161 if (r < 0) {
162 DMERR("verity_hash_final failed updating salt: %d", r);
163 goto out;
164 }
165 }
166
167 ahash_request_set_crypt(req, NULL, digest, 0);
168 r = crypto_wait_req(crypto_ahash_final(req), wait);
169 out:
170 return r;
171 }
172
verity_hash(struct dm_verity * v,struct ahash_request * req,const u8 * data,size_t len,u8 * digest)173 int verity_hash(struct dm_verity *v, struct ahash_request *req,
174 const u8 *data, size_t len, u8 *digest)
175 {
176 int r;
177 struct crypto_wait wait;
178
179 r = verity_hash_init(v, req, &wait);
180 if (unlikely(r < 0))
181 goto out;
182
183 r = verity_hash_update(v, req, data, len, &wait);
184 if (unlikely(r < 0))
185 goto out;
186
187 r = verity_hash_final(v, req, digest, &wait);
188
189 out:
190 return r;
191 }
192
verity_hash_at_level(struct dm_verity * v,sector_t block,int level,sector_t * hash_block,unsigned * offset)193 static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
194 sector_t *hash_block, unsigned *offset)
195 {
196 sector_t position = verity_position_at_level(v, block, level);
197 unsigned idx;
198
199 *hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
200
201 if (!offset)
202 return;
203
204 idx = position & ((1 << v->hash_per_block_bits) - 1);
205 if (!v->version)
206 *offset = idx * v->digest_size;
207 else
208 *offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
209 }
210
211 /*
212 * Handle verification errors.
213 */
verity_handle_err(struct dm_verity * v,enum verity_block_type type,unsigned long long block)214 static int verity_handle_err(struct dm_verity *v, enum verity_block_type type,
215 unsigned long long block)
216 {
217 char verity_env[DM_VERITY_ENV_LENGTH];
218 char *envp[] = { verity_env, NULL };
219 const char *type_str = "";
220 struct mapped_device *md = dm_table_get_md(v->ti->table);
221
222 /* Corruption should be visible in device status in all modes */
223 v->hash_failed = 1;
224
225 if (v->corrupted_errs >= DM_VERITY_MAX_CORRUPTED_ERRS)
226 goto out;
227
228 v->corrupted_errs++;
229
230 switch (type) {
231 case DM_VERITY_BLOCK_TYPE_DATA:
232 type_str = "data";
233 break;
234 case DM_VERITY_BLOCK_TYPE_METADATA:
235 type_str = "metadata";
236 break;
237 default:
238 BUG();
239 }
240
241 DMERR_LIMIT("%s: %s block %llu is corrupted", v->data_dev->name,
242 type_str, block);
243
244 if (v->corrupted_errs == DM_VERITY_MAX_CORRUPTED_ERRS)
245 DMERR("%s: reached maximum errors", v->data_dev->name);
246
247 snprintf(verity_env, DM_VERITY_ENV_LENGTH, "%s=%d,%llu",
248 DM_VERITY_ENV_VAR_NAME, type, block);
249
250 kobject_uevent_env(&disk_to_dev(dm_disk(md))->kobj, KOBJ_CHANGE, envp);
251
252 out:
253 if (v->mode == DM_VERITY_MODE_LOGGING)
254 return 0;
255
256 if (v->mode == DM_VERITY_MODE_RESTART)
257 kernel_restart("dm-verity device corrupted");
258
259 if (v->mode == DM_VERITY_MODE_PANIC)
260 panic("dm-verity device corrupted");
261
262 return 1;
263 }
264
265 /*
266 * Verify hash of a metadata block pertaining to the specified data block
267 * ("block" argument) at a specified level ("level" argument).
268 *
269 * On successful return, verity_io_want_digest(v, io) contains the hash value
270 * for a lower tree level or for the data block (if we're at the lowest level).
271 *
272 * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
273 * If "skip_unverified" is false, unverified buffer is hashed and verified
274 * against current value of verity_io_want_digest(v, io).
275 */
verity_verify_level(struct dm_verity * v,struct dm_verity_io * io,sector_t block,int level,bool skip_unverified,u8 * want_digest)276 static int verity_verify_level(struct dm_verity *v, struct dm_verity_io *io,
277 sector_t block, int level, bool skip_unverified,
278 u8 *want_digest)
279 {
280 struct dm_buffer *buf;
281 struct buffer_aux *aux;
282 u8 *data;
283 int r;
284 sector_t hash_block;
285 unsigned offset;
286
287 verity_hash_at_level(v, block, level, &hash_block, &offset);
288
289 data = dm_bufio_read(v->bufio, hash_block, &buf);
290 if (IS_ERR(data))
291 return PTR_ERR(data);
292
293 aux = dm_bufio_get_aux_data(buf);
294
295 if (!aux->hash_verified) {
296 if (skip_unverified) {
297 r = 1;
298 goto release_ret_r;
299 }
300
301 r = verity_hash(v, verity_io_hash_req(v, io),
302 data, 1 << v->hash_dev_block_bits,
303 verity_io_real_digest(v, io));
304 if (unlikely(r < 0))
305 goto release_ret_r;
306
307 if (likely(memcmp(verity_io_real_digest(v, io), want_digest,
308 v->digest_size) == 0))
309 aux->hash_verified = 1;
310 else if (verity_fec_decode(v, io,
311 DM_VERITY_BLOCK_TYPE_METADATA,
312 hash_block, data, NULL) == 0)
313 aux->hash_verified = 1;
314 else if (verity_handle_err(v,
315 DM_VERITY_BLOCK_TYPE_METADATA,
316 hash_block)) {
317 r = -EIO;
318 goto release_ret_r;
319 }
320 }
321
322 data += offset;
323 memcpy(want_digest, data, v->digest_size);
324 r = 0;
325
326 release_ret_r:
327 dm_bufio_release(buf);
328 return r;
329 }
330
331 /*
332 * Find a hash for a given block, write it to digest and verify the integrity
333 * of the hash tree if necessary.
334 */
verity_hash_for_block(struct dm_verity * v,struct dm_verity_io * io,sector_t block,u8 * digest,bool * is_zero)335 int verity_hash_for_block(struct dm_verity *v, struct dm_verity_io *io,
336 sector_t block, u8 *digest, bool *is_zero)
337 {
338 int r = 0, i;
339
340 if (likely(v->levels)) {
341 /*
342 * First, we try to get the requested hash for
343 * the current block. If the hash block itself is
344 * verified, zero is returned. If it isn't, this
345 * function returns 1 and we fall back to whole
346 * chain verification.
347 */
348 r = verity_verify_level(v, io, block, 0, true, digest);
349 if (likely(r <= 0))
350 goto out;
351 }
352
353 memcpy(digest, v->root_digest, v->digest_size);
354
355 for (i = v->levels - 1; i >= 0; i--) {
356 r = verity_verify_level(v, io, block, i, false, digest);
357 if (unlikely(r))
358 goto out;
359 }
360 out:
361 if (!r && v->zero_digest)
362 *is_zero = !memcmp(v->zero_digest, digest, v->digest_size);
363 else
364 *is_zero = false;
365
366 return r;
367 }
368
369 /*
370 * Calculates the digest for the given bio
371 */
verity_for_io_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter,struct crypto_wait * wait)372 static int verity_for_io_block(struct dm_verity *v, struct dm_verity_io *io,
373 struct bvec_iter *iter, struct crypto_wait *wait)
374 {
375 unsigned int todo = 1 << v->data_dev_block_bits;
376 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
377 struct scatterlist sg;
378 struct ahash_request *req = verity_io_hash_req(v, io);
379
380 do {
381 int r;
382 unsigned int len;
383 struct bio_vec bv = bio_iter_iovec(bio, *iter);
384
385 sg_init_table(&sg, 1);
386
387 len = bv.bv_len;
388
389 if (likely(len >= todo))
390 len = todo;
391 /*
392 * Operating on a single page at a time looks suboptimal
393 * until you consider the typical block size is 4,096B.
394 * Going through this loops twice should be very rare.
395 */
396 sg_set_page(&sg, bv.bv_page, len, bv.bv_offset);
397 ahash_request_set_crypt(req, &sg, NULL, len);
398 r = crypto_wait_req(crypto_ahash_update(req), wait);
399
400 if (unlikely(r < 0)) {
401 DMERR("verity_for_io_block crypto op failed: %d", r);
402 return r;
403 }
404
405 bio_advance_iter(bio, iter, len);
406 todo -= len;
407 } while (todo);
408
409 return 0;
410 }
411
412 /*
413 * Calls function process for 1 << v->data_dev_block_bits bytes in the bio_vec
414 * starting from iter.
415 */
verity_for_bv_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter,int (* process)(struct dm_verity * v,struct dm_verity_io * io,u8 * data,size_t len))416 int verity_for_bv_block(struct dm_verity *v, struct dm_verity_io *io,
417 struct bvec_iter *iter,
418 int (*process)(struct dm_verity *v,
419 struct dm_verity_io *io, u8 *data,
420 size_t len))
421 {
422 unsigned todo = 1 << v->data_dev_block_bits;
423 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
424
425 do {
426 int r;
427 u8 *page;
428 unsigned len;
429 struct bio_vec bv = bio_iter_iovec(bio, *iter);
430
431 page = bvec_kmap_local(&bv);
432 len = bv.bv_len;
433
434 if (likely(len >= todo))
435 len = todo;
436
437 r = process(v, io, page, len);
438 kunmap_local(page);
439
440 if (r < 0)
441 return r;
442
443 bio_advance_iter(bio, iter, len);
444 todo -= len;
445 } while (todo);
446
447 return 0;
448 }
449
verity_bv_zero(struct dm_verity * v,struct dm_verity_io * io,u8 * data,size_t len)450 static int verity_bv_zero(struct dm_verity *v, struct dm_verity_io *io,
451 u8 *data, size_t len)
452 {
453 memset(data, 0, len);
454 return 0;
455 }
456
457 /*
458 * Moves the bio iter one data block forward.
459 */
verity_bv_skip_block(struct dm_verity * v,struct dm_verity_io * io,struct bvec_iter * iter)460 static inline void verity_bv_skip_block(struct dm_verity *v,
461 struct dm_verity_io *io,
462 struct bvec_iter *iter)
463 {
464 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
465
466 bio_advance_iter(bio, iter, 1 << v->data_dev_block_bits);
467 }
468
469 /*
470 * Verify one "dm_verity_io" structure.
471 */
verity_verify_io(struct dm_verity_io * io)472 static int verity_verify_io(struct dm_verity_io *io)
473 {
474 bool is_zero;
475 struct dm_verity *v = io->v;
476 struct bvec_iter start;
477 unsigned b;
478 struct crypto_wait wait;
479 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
480
481 for (b = 0; b < io->n_blocks; b++) {
482 int r;
483 sector_t cur_block = io->block + b;
484 struct ahash_request *req = verity_io_hash_req(v, io);
485
486 if (v->validated_blocks &&
487 likely(test_bit(cur_block, v->validated_blocks))) {
488 verity_bv_skip_block(v, io, &io->iter);
489 continue;
490 }
491
492 r = verity_hash_for_block(v, io, cur_block,
493 verity_io_want_digest(v, io),
494 &is_zero);
495 if (unlikely(r < 0))
496 return r;
497
498 if (is_zero) {
499 /*
500 * If we expect a zero block, don't validate, just
501 * return zeros.
502 */
503 r = verity_for_bv_block(v, io, &io->iter,
504 verity_bv_zero);
505 if (unlikely(r < 0))
506 return r;
507
508 continue;
509 }
510
511 r = verity_hash_init(v, req, &wait);
512 if (unlikely(r < 0))
513 return r;
514
515 start = io->iter;
516 r = verity_for_io_block(v, io, &io->iter, &wait);
517 if (unlikely(r < 0))
518 return r;
519
520 r = verity_hash_final(v, req, verity_io_real_digest(v, io),
521 &wait);
522 if (unlikely(r < 0))
523 return r;
524
525 if (likely(memcmp(verity_io_real_digest(v, io),
526 verity_io_want_digest(v, io), v->digest_size) == 0)) {
527 if (v->validated_blocks)
528 set_bit(cur_block, v->validated_blocks);
529 continue;
530 }
531 else if (verity_fec_decode(v, io, DM_VERITY_BLOCK_TYPE_DATA,
532 cur_block, NULL, &start) == 0)
533 continue;
534 else {
535 if (bio->bi_status) {
536 /*
537 * Error correction failed; Just return error
538 */
539 return -EIO;
540 }
541 if (verity_handle_err(v, DM_VERITY_BLOCK_TYPE_DATA,
542 cur_block))
543 return -EIO;
544 }
545 }
546
547 return 0;
548 }
549
550 /*
551 * Skip verity work in response to I/O error when system is shutting down.
552 */
verity_is_system_shutting_down(void)553 static inline bool verity_is_system_shutting_down(void)
554 {
555 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
556 || system_state == SYSTEM_RESTART;
557 }
558
559 /*
560 * End one "io" structure with a given error.
561 */
verity_finish_io(struct dm_verity_io * io,blk_status_t status)562 static void verity_finish_io(struct dm_verity_io *io, blk_status_t status)
563 {
564 struct dm_verity *v = io->v;
565 struct bio *bio = dm_bio_from_per_bio_data(io, v->ti->per_io_data_size);
566
567 bio->bi_end_io = io->orig_bi_end_io;
568 bio->bi_status = status;
569
570 verity_fec_finish_io(io);
571
572 bio_endio(bio);
573 }
574
verity_work(struct work_struct * w)575 static void verity_work(struct work_struct *w)
576 {
577 struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
578
579 verity_finish_io(io, errno_to_blk_status(verity_verify_io(io)));
580 }
581
verity_end_io(struct bio * bio)582 static void verity_end_io(struct bio *bio)
583 {
584 struct dm_verity_io *io = bio->bi_private;
585
586 if (bio->bi_status &&
587 (!verity_fec_is_enabled(io->v) || verity_is_system_shutting_down())) {
588 verity_finish_io(io, bio->bi_status);
589 return;
590 }
591
592 INIT_WORK(&io->work, verity_work);
593 queue_work(io->v->verify_wq, &io->work);
594 }
595
596 /*
597 * Prefetch buffers for the specified io.
598 * The root buffer is not prefetched, it is assumed that it will be cached
599 * all the time.
600 */
verity_prefetch_io(struct work_struct * work)601 static void verity_prefetch_io(struct work_struct *work)
602 {
603 struct dm_verity_prefetch_work *pw =
604 container_of(work, struct dm_verity_prefetch_work, work);
605 struct dm_verity *v = pw->v;
606 int i;
607
608 for (i = v->levels - 2; i >= 0; i--) {
609 sector_t hash_block_start;
610 sector_t hash_block_end;
611 verity_hash_at_level(v, pw->block, i, &hash_block_start, NULL);
612 verity_hash_at_level(v, pw->block + pw->n_blocks - 1, i, &hash_block_end, NULL);
613 if (!i) {
614 unsigned cluster = READ_ONCE(dm_verity_prefetch_cluster);
615
616 cluster >>= v->data_dev_block_bits;
617 if (unlikely(!cluster))
618 goto no_prefetch_cluster;
619
620 if (unlikely(cluster & (cluster - 1)))
621 cluster = 1 << __fls(cluster);
622
623 hash_block_start &= ~(sector_t)(cluster - 1);
624 hash_block_end |= cluster - 1;
625 if (unlikely(hash_block_end >= v->hash_blocks))
626 hash_block_end = v->hash_blocks - 1;
627 }
628 no_prefetch_cluster:
629 dm_bufio_prefetch(v->bufio, hash_block_start,
630 hash_block_end - hash_block_start + 1);
631 }
632
633 kfree(pw);
634 }
635
verity_submit_prefetch(struct dm_verity * v,struct dm_verity_io * io)636 static void verity_submit_prefetch(struct dm_verity *v, struct dm_verity_io *io)
637 {
638 sector_t block = io->block;
639 unsigned int n_blocks = io->n_blocks;
640 struct dm_verity_prefetch_work *pw;
641
642 if (v->validated_blocks) {
643 while (n_blocks && test_bit(block, v->validated_blocks)) {
644 block++;
645 n_blocks--;
646 }
647 while (n_blocks && test_bit(block + n_blocks - 1,
648 v->validated_blocks))
649 n_blocks--;
650 if (!n_blocks)
651 return;
652 }
653
654 pw = kmalloc(sizeof(struct dm_verity_prefetch_work),
655 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
656
657 if (!pw)
658 return;
659
660 INIT_WORK(&pw->work, verity_prefetch_io);
661 pw->v = v;
662 pw->block = block;
663 pw->n_blocks = n_blocks;
664 queue_work(v->verify_wq, &pw->work);
665 }
666
667 /*
668 * Bio map function. It allocates dm_verity_io structure and bio vector and
669 * fills them. Then it issues prefetches and the I/O.
670 */
verity_map(struct dm_target * ti,struct bio * bio)671 static int verity_map(struct dm_target *ti, struct bio *bio)
672 {
673 struct dm_verity *v = ti->private;
674 struct dm_verity_io *io;
675
676 bio_set_dev(bio, v->data_dev->bdev);
677 bio->bi_iter.bi_sector = verity_map_sector(v, bio->bi_iter.bi_sector);
678
679 if (((unsigned)bio->bi_iter.bi_sector | bio_sectors(bio)) &
680 ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
681 DMERR_LIMIT("unaligned io");
682 return DM_MAPIO_KILL;
683 }
684
685 if (bio_end_sector(bio) >>
686 (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
687 DMERR_LIMIT("io out of range");
688 return DM_MAPIO_KILL;
689 }
690
691 if (bio_data_dir(bio) == WRITE)
692 return DM_MAPIO_KILL;
693
694 io = dm_per_bio_data(bio, ti->per_io_data_size);
695 io->v = v;
696 io->orig_bi_end_io = bio->bi_end_io;
697 io->block = bio->bi_iter.bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
698 io->n_blocks = bio->bi_iter.bi_size >> v->data_dev_block_bits;
699
700 bio->bi_end_io = verity_end_io;
701 bio->bi_private = io;
702 io->iter = bio->bi_iter;
703
704 verity_fec_init_io(io);
705
706 verity_submit_prefetch(v, io);
707
708 submit_bio_noacct(bio);
709
710 return DM_MAPIO_SUBMITTED;
711 }
712
713 /*
714 * Status: V (valid) or C (corruption found)
715 */
verity_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)716 static void verity_status(struct dm_target *ti, status_type_t type,
717 unsigned status_flags, char *result, unsigned maxlen)
718 {
719 struct dm_verity *v = ti->private;
720 unsigned args = 0;
721 unsigned sz = 0;
722 unsigned x;
723
724 switch (type) {
725 case STATUSTYPE_INFO:
726 DMEMIT("%c", v->hash_failed ? 'C' : 'V');
727 break;
728 case STATUSTYPE_TABLE:
729 DMEMIT("%u %s %s %u %u %llu %llu %s ",
730 v->version,
731 v->data_dev->name,
732 v->hash_dev->name,
733 1 << v->data_dev_block_bits,
734 1 << v->hash_dev_block_bits,
735 (unsigned long long)v->data_blocks,
736 (unsigned long long)v->hash_start,
737 v->alg_name
738 );
739 for (x = 0; x < v->digest_size; x++)
740 DMEMIT("%02x", v->root_digest[x]);
741 DMEMIT(" ");
742 if (!v->salt_size)
743 DMEMIT("-");
744 else
745 for (x = 0; x < v->salt_size; x++)
746 DMEMIT("%02x", v->salt[x]);
747 if (v->mode != DM_VERITY_MODE_EIO)
748 args++;
749 if (verity_fec_is_enabled(v))
750 args += DM_VERITY_OPTS_FEC;
751 if (v->zero_digest)
752 args++;
753 if (v->validated_blocks)
754 args++;
755 if (v->signature_key_desc)
756 args += DM_VERITY_ROOT_HASH_VERIFICATION_OPTS;
757 if (!args)
758 return;
759 DMEMIT(" %u", args);
760 if (v->mode != DM_VERITY_MODE_EIO) {
761 DMEMIT(" ");
762 switch (v->mode) {
763 case DM_VERITY_MODE_LOGGING:
764 DMEMIT(DM_VERITY_OPT_LOGGING);
765 break;
766 case DM_VERITY_MODE_RESTART:
767 DMEMIT(DM_VERITY_OPT_RESTART);
768 break;
769 case DM_VERITY_MODE_PANIC:
770 DMEMIT(DM_VERITY_OPT_PANIC);
771 break;
772 default:
773 BUG();
774 }
775 }
776 if (v->zero_digest)
777 DMEMIT(" " DM_VERITY_OPT_IGN_ZEROES);
778 if (v->validated_blocks)
779 DMEMIT(" " DM_VERITY_OPT_AT_MOST_ONCE);
780 sz = verity_fec_status_table(v, sz, result, maxlen);
781 if (v->signature_key_desc)
782 DMEMIT(" " DM_VERITY_ROOT_HASH_VERIFICATION_OPT_SIG_KEY
783 " %s", v->signature_key_desc);
784 break;
785
786 case STATUSTYPE_IMA:
787 DMEMIT_TARGET_NAME_VERSION(ti->type);
788 DMEMIT(",hash_failed=%c", v->hash_failed ? 'C' : 'V');
789 DMEMIT(",verity_version=%u", v->version);
790 DMEMIT(",data_device_name=%s", v->data_dev->name);
791 DMEMIT(",hash_device_name=%s", v->hash_dev->name);
792 DMEMIT(",verity_algorithm=%s", v->alg_name);
793
794 DMEMIT(",root_digest=");
795 for (x = 0; x < v->digest_size; x++)
796 DMEMIT("%02x", v->root_digest[x]);
797
798 DMEMIT(",salt=");
799 if (!v->salt_size)
800 DMEMIT("-");
801 else
802 for (x = 0; x < v->salt_size; x++)
803 DMEMIT("%02x", v->salt[x]);
804
805 DMEMIT(",ignore_zero_blocks=%c", v->zero_digest ? 'y' : 'n');
806 DMEMIT(",check_at_most_once=%c", v->validated_blocks ? 'y' : 'n');
807 if (v->signature_key_desc)
808 DMEMIT(",root_hash_sig_key_desc=%s", v->signature_key_desc);
809
810 if (v->mode != DM_VERITY_MODE_EIO) {
811 DMEMIT(",verity_mode=");
812 switch (v->mode) {
813 case DM_VERITY_MODE_LOGGING:
814 DMEMIT(DM_VERITY_OPT_LOGGING);
815 break;
816 case DM_VERITY_MODE_RESTART:
817 DMEMIT(DM_VERITY_OPT_RESTART);
818 break;
819 case DM_VERITY_MODE_PANIC:
820 DMEMIT(DM_VERITY_OPT_PANIC);
821 break;
822 default:
823 DMEMIT("invalid");
824 }
825 }
826 DMEMIT(";");
827 break;
828 }
829 }
830
verity_prepare_ioctl(struct dm_target * ti,struct block_device ** bdev)831 static int verity_prepare_ioctl(struct dm_target *ti, struct block_device **bdev)
832 {
833 struct dm_verity *v = ti->private;
834
835 *bdev = v->data_dev->bdev;
836
837 if (v->data_start || ti->len != bdev_nr_sectors(v->data_dev->bdev))
838 return 1;
839 return 0;
840 }
841
verity_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)842 static int verity_iterate_devices(struct dm_target *ti,
843 iterate_devices_callout_fn fn, void *data)
844 {
845 struct dm_verity *v = ti->private;
846
847 return fn(ti, v->data_dev, v->data_start, ti->len, data);
848 }
849
verity_io_hints(struct dm_target * ti,struct queue_limits * limits)850 static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
851 {
852 struct dm_verity *v = ti->private;
853
854 if (limits->logical_block_size < 1 << v->data_dev_block_bits)
855 limits->logical_block_size = 1 << v->data_dev_block_bits;
856
857 if (limits->physical_block_size < 1 << v->data_dev_block_bits)
858 limits->physical_block_size = 1 << v->data_dev_block_bits;
859
860 blk_limits_io_min(limits, limits->logical_block_size);
861 }
862
verity_dtr(struct dm_target * ti)863 static void verity_dtr(struct dm_target *ti)
864 {
865 struct dm_verity *v = ti->private;
866
867 if (v->verify_wq)
868 destroy_workqueue(v->verify_wq);
869
870 if (v->bufio)
871 dm_bufio_client_destroy(v->bufio);
872
873 kvfree(v->validated_blocks);
874 kfree(v->salt);
875 kfree(v->root_digest);
876 kfree(v->zero_digest);
877
878 if (v->tfm)
879 crypto_free_ahash(v->tfm);
880
881 kfree(v->alg_name);
882
883 if (v->hash_dev)
884 dm_put_device(ti, v->hash_dev);
885
886 if (v->data_dev)
887 dm_put_device(ti, v->data_dev);
888
889 verity_fec_dtr(v);
890
891 kfree(v->signature_key_desc);
892
893 kfree(v);
894 }
895
verity_alloc_most_once(struct dm_verity * v)896 static int verity_alloc_most_once(struct dm_verity *v)
897 {
898 struct dm_target *ti = v->ti;
899
900 /* the bitset can only handle INT_MAX blocks */
901 if (v->data_blocks > INT_MAX) {
902 ti->error = "device too large to use check_at_most_once";
903 return -E2BIG;
904 }
905
906 v->validated_blocks = kvcalloc(BITS_TO_LONGS(v->data_blocks),
907 sizeof(unsigned long),
908 GFP_KERNEL);
909 if (!v->validated_blocks) {
910 ti->error = "failed to allocate bitset for check_at_most_once";
911 return -ENOMEM;
912 }
913
914 return 0;
915 }
916
verity_alloc_zero_digest(struct dm_verity * v)917 static int verity_alloc_zero_digest(struct dm_verity *v)
918 {
919 int r = -ENOMEM;
920 struct ahash_request *req;
921 u8 *zero_data;
922
923 v->zero_digest = kmalloc(v->digest_size, GFP_KERNEL);
924
925 if (!v->zero_digest)
926 return r;
927
928 req = kmalloc(v->ahash_reqsize, GFP_KERNEL);
929
930 if (!req)
931 return r; /* verity_dtr will free zero_digest */
932
933 zero_data = kzalloc(1 << v->data_dev_block_bits, GFP_KERNEL);
934
935 if (!zero_data)
936 goto out;
937
938 r = verity_hash(v, req, zero_data, 1 << v->data_dev_block_bits,
939 v->zero_digest);
940
941 out:
942 kfree(req);
943 kfree(zero_data);
944
945 return r;
946 }
947
verity_is_verity_mode(const char * arg_name)948 static inline bool verity_is_verity_mode(const char *arg_name)
949 {
950 return (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING) ||
951 !strcasecmp(arg_name, DM_VERITY_OPT_RESTART) ||
952 !strcasecmp(arg_name, DM_VERITY_OPT_PANIC));
953 }
954
verity_parse_verity_mode(struct dm_verity * v,const char * arg_name)955 static int verity_parse_verity_mode(struct dm_verity *v, const char *arg_name)
956 {
957 if (v->mode)
958 return -EINVAL;
959
960 if (!strcasecmp(arg_name, DM_VERITY_OPT_LOGGING))
961 v->mode = DM_VERITY_MODE_LOGGING;
962 else if (!strcasecmp(arg_name, DM_VERITY_OPT_RESTART))
963 v->mode = DM_VERITY_MODE_RESTART;
964 else if (!strcasecmp(arg_name, DM_VERITY_OPT_PANIC))
965 v->mode = DM_VERITY_MODE_PANIC;
966
967 return 0;
968 }
969
verity_parse_opt_args(struct dm_arg_set * as,struct dm_verity * v,struct dm_verity_sig_opts * verify_args)970 static int verity_parse_opt_args(struct dm_arg_set *as, struct dm_verity *v,
971 struct dm_verity_sig_opts *verify_args)
972 {
973 int r;
974 unsigned argc;
975 struct dm_target *ti = v->ti;
976 const char *arg_name;
977
978 static const struct dm_arg _args[] = {
979 {0, DM_VERITY_OPTS_MAX, "Invalid number of feature args"},
980 };
981
982 r = dm_read_arg_group(_args, as, &argc, &ti->error);
983 if (r)
984 return -EINVAL;
985
986 if (!argc)
987 return 0;
988
989 do {
990 arg_name = dm_shift_arg(as);
991 argc--;
992
993 if (verity_is_verity_mode(arg_name)) {
994 r = verity_parse_verity_mode(v, arg_name);
995 if (r) {
996 ti->error = "Conflicting error handling parameters";
997 return r;
998 }
999 continue;
1000
1001 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_IGN_ZEROES)) {
1002 r = verity_alloc_zero_digest(v);
1003 if (r) {
1004 ti->error = "Cannot allocate zero digest";
1005 return r;
1006 }
1007 continue;
1008
1009 } else if (!strcasecmp(arg_name, DM_VERITY_OPT_AT_MOST_ONCE)) {
1010 r = verity_alloc_most_once(v);
1011 if (r)
1012 return r;
1013 continue;
1014
1015 } else if (verity_is_fec_opt_arg(arg_name)) {
1016 r = verity_fec_parse_opt_args(as, v, &argc, arg_name);
1017 if (r)
1018 return r;
1019 continue;
1020 } else if (verity_verify_is_sig_opt_arg(arg_name)) {
1021 r = verity_verify_sig_parse_opt_args(as, v,
1022 verify_args,
1023 &argc, arg_name);
1024 if (r)
1025 return r;
1026 continue;
1027
1028 }
1029
1030 ti->error = "Unrecognized verity feature request";
1031 return -EINVAL;
1032 } while (argc && !r);
1033
1034 return r;
1035 }
1036
1037 /*
1038 * Target parameters:
1039 * <version> The current format is version 1.
1040 * Vsn 0 is compatible with original Chromium OS releases.
1041 * <data device>
1042 * <hash device>
1043 * <data block size>
1044 * <hash block size>
1045 * <the number of data blocks>
1046 * <hash start block>
1047 * <algorithm>
1048 * <digest>
1049 * <salt> Hex string or "-" if no salt.
1050 */
verity_ctr(struct dm_target * ti,unsigned argc,char ** argv)1051 static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
1052 {
1053 struct dm_verity *v;
1054 struct dm_verity_sig_opts verify_args = {0};
1055 struct dm_arg_set as;
1056 unsigned int num;
1057 unsigned long long num_ll;
1058 int r;
1059 int i;
1060 sector_t hash_position;
1061 char dummy;
1062 char *root_hash_digest_to_validate;
1063
1064 v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
1065 if (!v) {
1066 ti->error = "Cannot allocate verity structure";
1067 return -ENOMEM;
1068 }
1069 ti->private = v;
1070 v->ti = ti;
1071
1072 r = verity_fec_ctr_alloc(v);
1073 if (r)
1074 goto bad;
1075
1076 if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
1077 ti->error = "Device must be readonly";
1078 r = -EINVAL;
1079 goto bad;
1080 }
1081
1082 if (argc < 10) {
1083 ti->error = "Not enough arguments";
1084 r = -EINVAL;
1085 goto bad;
1086 }
1087
1088 if (sscanf(argv[0], "%u%c", &num, &dummy) != 1 ||
1089 num > 1) {
1090 ti->error = "Invalid version";
1091 r = -EINVAL;
1092 goto bad;
1093 }
1094 v->version = num;
1095
1096 r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
1097 if (r) {
1098 ti->error = "Data device lookup failed";
1099 goto bad;
1100 }
1101
1102 r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
1103 if (r) {
1104 ti->error = "Hash device lookup failed";
1105 goto bad;
1106 }
1107
1108 if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
1109 !num || (num & (num - 1)) ||
1110 num < bdev_logical_block_size(v->data_dev->bdev) ||
1111 num > PAGE_SIZE) {
1112 ti->error = "Invalid data device block size";
1113 r = -EINVAL;
1114 goto bad;
1115 }
1116 v->data_dev_block_bits = __ffs(num);
1117
1118 if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
1119 !num || (num & (num - 1)) ||
1120 num < bdev_logical_block_size(v->hash_dev->bdev) ||
1121 num > INT_MAX) {
1122 ti->error = "Invalid hash device block size";
1123 r = -EINVAL;
1124 goto bad;
1125 }
1126 v->hash_dev_block_bits = __ffs(num);
1127
1128 if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
1129 (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
1130 >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1131 ti->error = "Invalid data blocks";
1132 r = -EINVAL;
1133 goto bad;
1134 }
1135 v->data_blocks = num_ll;
1136
1137 if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
1138 ti->error = "Data device is too small";
1139 r = -EINVAL;
1140 goto bad;
1141 }
1142
1143 if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
1144 (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
1145 >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
1146 ti->error = "Invalid hash start";
1147 r = -EINVAL;
1148 goto bad;
1149 }
1150 v->hash_start = num_ll;
1151
1152 v->alg_name = kstrdup(argv[7], GFP_KERNEL);
1153 if (!v->alg_name) {
1154 ti->error = "Cannot allocate algorithm name";
1155 r = -ENOMEM;
1156 goto bad;
1157 }
1158
1159 v->tfm = crypto_alloc_ahash(v->alg_name, 0, 0);
1160 if (IS_ERR(v->tfm)) {
1161 ti->error = "Cannot initialize hash function";
1162 r = PTR_ERR(v->tfm);
1163 v->tfm = NULL;
1164 goto bad;
1165 }
1166
1167 /*
1168 * dm-verity performance can vary greatly depending on which hash
1169 * algorithm implementation is used. Help people debug performance
1170 * problems by logging the ->cra_driver_name.
1171 */
1172 DMINFO("%s using implementation \"%s\"", v->alg_name,
1173 crypto_hash_alg_common(v->tfm)->base.cra_driver_name);
1174
1175 v->digest_size = crypto_ahash_digestsize(v->tfm);
1176 if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
1177 ti->error = "Digest size too big";
1178 r = -EINVAL;
1179 goto bad;
1180 }
1181 v->ahash_reqsize = sizeof(struct ahash_request) +
1182 crypto_ahash_reqsize(v->tfm);
1183
1184 v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
1185 if (!v->root_digest) {
1186 ti->error = "Cannot allocate root digest";
1187 r = -ENOMEM;
1188 goto bad;
1189 }
1190 if (strlen(argv[8]) != v->digest_size * 2 ||
1191 hex2bin(v->root_digest, argv[8], v->digest_size)) {
1192 ti->error = "Invalid root digest";
1193 r = -EINVAL;
1194 goto bad;
1195 }
1196 root_hash_digest_to_validate = argv[8];
1197
1198 if (strcmp(argv[9], "-")) {
1199 v->salt_size = strlen(argv[9]) / 2;
1200 v->salt = kmalloc(v->salt_size, GFP_KERNEL);
1201 if (!v->salt) {
1202 ti->error = "Cannot allocate salt";
1203 r = -ENOMEM;
1204 goto bad;
1205 }
1206 if (strlen(argv[9]) != v->salt_size * 2 ||
1207 hex2bin(v->salt, argv[9], v->salt_size)) {
1208 ti->error = "Invalid salt";
1209 r = -EINVAL;
1210 goto bad;
1211 }
1212 }
1213
1214 argv += 10;
1215 argc -= 10;
1216
1217 /* Optional parameters */
1218 if (argc) {
1219 as.argc = argc;
1220 as.argv = argv;
1221
1222 r = verity_parse_opt_args(&as, v, &verify_args);
1223 if (r < 0)
1224 goto bad;
1225 }
1226
1227 /* Root hash signature is a optional parameter*/
1228 r = verity_verify_root_hash(root_hash_digest_to_validate,
1229 strlen(root_hash_digest_to_validate),
1230 verify_args.sig,
1231 verify_args.sig_size);
1232 if (r < 0) {
1233 ti->error = "Root hash verification failed";
1234 goto bad;
1235 }
1236 v->hash_per_block_bits =
1237 __fls((1 << v->hash_dev_block_bits) / v->digest_size);
1238
1239 v->levels = 0;
1240 if (v->data_blocks)
1241 while (v->hash_per_block_bits * v->levels < 64 &&
1242 (unsigned long long)(v->data_blocks - 1) >>
1243 (v->hash_per_block_bits * v->levels))
1244 v->levels++;
1245
1246 if (v->levels > DM_VERITY_MAX_LEVELS) {
1247 ti->error = "Too many tree levels";
1248 r = -E2BIG;
1249 goto bad;
1250 }
1251
1252 hash_position = v->hash_start;
1253 for (i = v->levels - 1; i >= 0; i--) {
1254 sector_t s;
1255 v->hash_level_block[i] = hash_position;
1256 s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
1257 >> ((i + 1) * v->hash_per_block_bits);
1258 if (hash_position + s < hash_position) {
1259 ti->error = "Hash device offset overflow";
1260 r = -E2BIG;
1261 goto bad;
1262 }
1263 hash_position += s;
1264 }
1265 v->hash_blocks = hash_position;
1266
1267 v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
1268 1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
1269 dm_bufio_alloc_callback, NULL);
1270 if (IS_ERR(v->bufio)) {
1271 ti->error = "Cannot initialize dm-bufio";
1272 r = PTR_ERR(v->bufio);
1273 v->bufio = NULL;
1274 goto bad;
1275 }
1276
1277 if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
1278 ti->error = "Hash device is too small";
1279 r = -E2BIG;
1280 goto bad;
1281 }
1282
1283 /* WQ_UNBOUND greatly improves performance when running on ramdisk */
1284 v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
1285 if (!v->verify_wq) {
1286 ti->error = "Cannot allocate workqueue";
1287 r = -ENOMEM;
1288 goto bad;
1289 }
1290
1291 ti->per_io_data_size = sizeof(struct dm_verity_io) +
1292 v->ahash_reqsize + v->digest_size * 2;
1293
1294 r = verity_fec_ctr(v);
1295 if (r)
1296 goto bad;
1297
1298 ti->per_io_data_size = roundup(ti->per_io_data_size,
1299 __alignof__(struct dm_verity_io));
1300
1301 verity_verify_sig_opts_cleanup(&verify_args);
1302
1303 return 0;
1304
1305 bad:
1306
1307 verity_verify_sig_opts_cleanup(&verify_args);
1308 verity_dtr(ti);
1309
1310 return r;
1311 }
1312
1313 static struct target_type verity_target = {
1314 .name = "verity",
1315 .version = {1, 8, 0},
1316 .module = THIS_MODULE,
1317 .ctr = verity_ctr,
1318 .dtr = verity_dtr,
1319 .map = verity_map,
1320 .status = verity_status,
1321 .prepare_ioctl = verity_prepare_ioctl,
1322 .iterate_devices = verity_iterate_devices,
1323 .io_hints = verity_io_hints,
1324 };
1325
dm_verity_init(void)1326 static int __init dm_verity_init(void)
1327 {
1328 int r;
1329
1330 r = dm_register_target(&verity_target);
1331 if (r < 0)
1332 DMERR("register failed %d", r);
1333
1334 return r;
1335 }
1336
dm_verity_exit(void)1337 static void __exit dm_verity_exit(void)
1338 {
1339 dm_unregister_target(&verity_target);
1340 }
1341
1342 module_init(dm_verity_init);
1343 module_exit(dm_verity_exit);
1344
1345 MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
1346 MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
1347 MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
1348 MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
1349 MODULE_LICENSE("GPL");
1350