1  /* SPDX-License-Identifier: GPL-2.0 */
2  #ifndef _LINUX_WAIT_BIT_H
3  #define _LINUX_WAIT_BIT_H
4  
5  /*
6   * Linux wait-bit related types and methods:
7   */
8  #include <linux/wait.h>
9  
10  struct wait_bit_key {
11  	void			*flags;
12  	int			bit_nr;
13  	unsigned long		timeout;
14  };
15  
16  struct wait_bit_queue_entry {
17  	struct wait_bit_key	key;
18  	struct wait_queue_entry	wq_entry;
19  };
20  
21  #define __WAIT_BIT_KEY_INITIALIZER(word, bit)					\
22  	{ .flags = word, .bit_nr = bit, }
23  
24  typedef int wait_bit_action_f(struct wait_bit_key *key, int mode);
25  
26  void __wake_up_bit(struct wait_queue_head *wq_head, void *word, int bit);
27  int __wait_on_bit(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode);
28  int __wait_on_bit_lock(struct wait_queue_head *wq_head, struct wait_bit_queue_entry *wbq_entry, wait_bit_action_f *action, unsigned int mode);
29  void wake_up_bit(void *word, int bit);
30  int out_of_line_wait_on_bit(void *word, int, wait_bit_action_f *action, unsigned int mode);
31  int out_of_line_wait_on_bit_timeout(void *word, int, wait_bit_action_f *action, unsigned int mode, unsigned long timeout);
32  int out_of_line_wait_on_bit_lock(void *word, int, wait_bit_action_f *action, unsigned int mode);
33  struct wait_queue_head *bit_waitqueue(void *word, int bit);
34  extern void __init wait_bit_init(void);
35  
36  int wake_bit_function(struct wait_queue_entry *wq_entry, unsigned mode, int sync, void *key);
37  
38  #define DEFINE_WAIT_BIT(name, word, bit)					\
39  	struct wait_bit_queue_entry name = {					\
40  		.key = __WAIT_BIT_KEY_INITIALIZER(word, bit),			\
41  		.wq_entry = {							\
42  			.private	= current,				\
43  			.func		= wake_bit_function,			\
44  			.entry		=					\
45  				LIST_HEAD_INIT((name).wq_entry.entry),		\
46  		},								\
47  	}
48  
49  extern int bit_wait(struct wait_bit_key *key, int mode);
50  extern int bit_wait_io(struct wait_bit_key *key, int mode);
51  extern int bit_wait_timeout(struct wait_bit_key *key, int mode);
52  extern int bit_wait_io_timeout(struct wait_bit_key *key, int mode);
53  
54  /**
55   * wait_on_bit - wait for a bit to be cleared
56   * @word: the word being waited on, a kernel virtual address
57   * @bit: the bit of the word being waited on
58   * @mode: the task state to sleep in
59   *
60   * There is a standard hashed waitqueue table for generic use. This
61   * is the part of the hashtable's accessor API that waits on a bit.
62   * For instance, if one were to have waiters on a bitflag, one would
63   * call wait_on_bit() in threads waiting for the bit to clear.
64   * One uses wait_on_bit() where one is waiting for the bit to clear,
65   * but has no intention of setting it.
66   * Returned value will be zero if the bit was cleared, or non-zero
67   * if the process received a signal and the mode permitted wakeup
68   * on that signal.
69   */
70  static inline int
wait_on_bit(unsigned long * word,int bit,unsigned mode)71  wait_on_bit(unsigned long *word, int bit, unsigned mode)
72  {
73  	might_sleep();
74  	if (!test_bit(bit, word))
75  		return 0;
76  	return out_of_line_wait_on_bit(word, bit,
77  				       bit_wait,
78  				       mode);
79  }
80  
81  /**
82   * wait_on_bit_io - wait for a bit to be cleared
83   * @word: the word being waited on, a kernel virtual address
84   * @bit: the bit of the word being waited on
85   * @mode: the task state to sleep in
86   *
87   * Use the standard hashed waitqueue table to wait for a bit
88   * to be cleared.  This is similar to wait_on_bit(), but calls
89   * io_schedule() instead of schedule() for the actual waiting.
90   *
91   * Returned value will be zero if the bit was cleared, or non-zero
92   * if the process received a signal and the mode permitted wakeup
93   * on that signal.
94   */
95  static inline int
wait_on_bit_io(unsigned long * word,int bit,unsigned mode)96  wait_on_bit_io(unsigned long *word, int bit, unsigned mode)
97  {
98  	might_sleep();
99  	if (!test_bit(bit, word))
100  		return 0;
101  	return out_of_line_wait_on_bit(word, bit,
102  				       bit_wait_io,
103  				       mode);
104  }
105  
106  /**
107   * wait_on_bit_timeout - wait for a bit to be cleared or a timeout elapses
108   * @word: the word being waited on, a kernel virtual address
109   * @bit: the bit of the word being waited on
110   * @mode: the task state to sleep in
111   * @timeout: timeout, in jiffies
112   *
113   * Use the standard hashed waitqueue table to wait for a bit
114   * to be cleared. This is similar to wait_on_bit(), except also takes a
115   * timeout parameter.
116   *
117   * Returned value will be zero if the bit was cleared before the
118   * @timeout elapsed, or non-zero if the @timeout elapsed or process
119   * received a signal and the mode permitted wakeup on that signal.
120   */
121  static inline int
wait_on_bit_timeout(unsigned long * word,int bit,unsigned mode,unsigned long timeout)122  wait_on_bit_timeout(unsigned long *word, int bit, unsigned mode,
123  		    unsigned long timeout)
124  {
125  	might_sleep();
126  	if (!test_bit(bit, word))
127  		return 0;
128  	return out_of_line_wait_on_bit_timeout(word, bit,
129  					       bit_wait_timeout,
130  					       mode, timeout);
131  }
132  
133  /**
134   * wait_on_bit_action - wait for a bit to be cleared
135   * @word: the word being waited on, a kernel virtual address
136   * @bit: the bit of the word being waited on
137   * @action: the function used to sleep, which may take special actions
138   * @mode: the task state to sleep in
139   *
140   * Use the standard hashed waitqueue table to wait for a bit
141   * to be cleared, and allow the waiting action to be specified.
142   * This is like wait_on_bit() but allows fine control of how the waiting
143   * is done.
144   *
145   * Returned value will be zero if the bit was cleared, or non-zero
146   * if the process received a signal and the mode permitted wakeup
147   * on that signal.
148   */
149  static inline int
wait_on_bit_action(unsigned long * word,int bit,wait_bit_action_f * action,unsigned mode)150  wait_on_bit_action(unsigned long *word, int bit, wait_bit_action_f *action,
151  		   unsigned mode)
152  {
153  	might_sleep();
154  	if (!test_bit(bit, word))
155  		return 0;
156  	return out_of_line_wait_on_bit(word, bit, action, mode);
157  }
158  
159  /**
160   * wait_on_bit_lock - wait for a bit to be cleared, when wanting to set it
161   * @word: the word being waited on, a kernel virtual address
162   * @bit: the bit of the word being waited on
163   * @mode: the task state to sleep in
164   *
165   * There is a standard hashed waitqueue table for generic use. This
166   * is the part of the hashtable's accessor API that waits on a bit
167   * when one intends to set it, for instance, trying to lock bitflags.
168   * For instance, if one were to have waiters trying to set bitflag
169   * and waiting for it to clear before setting it, one would call
170   * wait_on_bit() in threads waiting to be able to set the bit.
171   * One uses wait_on_bit_lock() where one is waiting for the bit to
172   * clear with the intention of setting it, and when done, clearing it.
173   *
174   * Returns zero if the bit was (eventually) found to be clear and was
175   * set.  Returns non-zero if a signal was delivered to the process and
176   * the @mode allows that signal to wake the process.
177   */
178  static inline int
wait_on_bit_lock(unsigned long * word,int bit,unsigned mode)179  wait_on_bit_lock(unsigned long *word, int bit, unsigned mode)
180  {
181  	might_sleep();
182  	if (!test_and_set_bit(bit, word))
183  		return 0;
184  	return out_of_line_wait_on_bit_lock(word, bit, bit_wait, mode);
185  }
186  
187  /**
188   * wait_on_bit_lock_io - wait for a bit to be cleared, when wanting to set it
189   * @word: the word being waited on, a kernel virtual address
190   * @bit: the bit of the word being waited on
191   * @mode: the task state to sleep in
192   *
193   * Use the standard hashed waitqueue table to wait for a bit
194   * to be cleared and then to atomically set it.  This is similar
195   * to wait_on_bit(), but calls io_schedule() instead of schedule()
196   * for the actual waiting.
197   *
198   * Returns zero if the bit was (eventually) found to be clear and was
199   * set.  Returns non-zero if a signal was delivered to the process and
200   * the @mode allows that signal to wake the process.
201   */
202  static inline int
wait_on_bit_lock_io(unsigned long * word,int bit,unsigned mode)203  wait_on_bit_lock_io(unsigned long *word, int bit, unsigned mode)
204  {
205  	might_sleep();
206  	if (!test_and_set_bit(bit, word))
207  		return 0;
208  	return out_of_line_wait_on_bit_lock(word, bit, bit_wait_io, mode);
209  }
210  
211  /**
212   * wait_on_bit_lock_action - wait for a bit to be cleared, when wanting to set it
213   * @word: the word being waited on, a kernel virtual address
214   * @bit: the bit of the word being waited on
215   * @action: the function used to sleep, which may take special actions
216   * @mode: the task state to sleep in
217   *
218   * Use the standard hashed waitqueue table to wait for a bit
219   * to be cleared and then to set it, and allow the waiting action
220   * to be specified.
221   * This is like wait_on_bit() but allows fine control of how the waiting
222   * is done.
223   *
224   * Returns zero if the bit was (eventually) found to be clear and was
225   * set.  Returns non-zero if a signal was delivered to the process and
226   * the @mode allows that signal to wake the process.
227   */
228  static inline int
wait_on_bit_lock_action(unsigned long * word,int bit,wait_bit_action_f * action,unsigned mode)229  wait_on_bit_lock_action(unsigned long *word, int bit, wait_bit_action_f *action,
230  			unsigned mode)
231  {
232  	might_sleep();
233  	if (!test_and_set_bit(bit, word))
234  		return 0;
235  	return out_of_line_wait_on_bit_lock(word, bit, action, mode);
236  }
237  
238  extern void init_wait_var_entry(struct wait_bit_queue_entry *wbq_entry, void *var, int flags);
239  extern void wake_up_var(void *var);
240  extern wait_queue_head_t *__var_waitqueue(void *p);
241  
242  #define ___wait_var_event(var, condition, state, exclusive, ret, cmd)	\
243  ({									\
244  	__label__ __out;						\
245  	struct wait_queue_head *__wq_head = __var_waitqueue(var);	\
246  	struct wait_bit_queue_entry __wbq_entry;			\
247  	long __ret = ret; /* explicit shadow */				\
248  									\
249  	init_wait_var_entry(&__wbq_entry, var,				\
250  			    exclusive ? WQ_FLAG_EXCLUSIVE : 0);		\
251  	for (;;) {							\
252  		long __int = prepare_to_wait_event(__wq_head,		\
253  						   &__wbq_entry.wq_entry, \
254  						   state);		\
255  		if (condition)						\
256  			break;						\
257  									\
258  		if (___wait_is_interruptible(state) && __int) {		\
259  			__ret = __int;					\
260  			goto __out;					\
261  		}							\
262  									\
263  		cmd;							\
264  	}								\
265  	finish_wait(__wq_head, &__wbq_entry.wq_entry);			\
266  __out:	__ret;								\
267  })
268  
269  #define __wait_var_event(var, condition)				\
270  	___wait_var_event(var, condition, TASK_UNINTERRUPTIBLE, 0, 0,	\
271  			  schedule())
272  
273  #define wait_var_event(var, condition)					\
274  do {									\
275  	might_sleep();							\
276  	if (condition)							\
277  		break;							\
278  	__wait_var_event(var, condition);				\
279  } while (0)
280  
281  #define __wait_var_event_killable(var, condition)			\
282  	___wait_var_event(var, condition, TASK_KILLABLE, 0, 0,		\
283  			  schedule())
284  
285  #define wait_var_event_killable(var, condition)				\
286  ({									\
287  	int __ret = 0;							\
288  	might_sleep();							\
289  	if (!(condition))						\
290  		__ret = __wait_var_event_killable(var, condition);	\
291  	__ret;								\
292  })
293  
294  #define __wait_var_event_timeout(var, condition, timeout)		\
295  	___wait_var_event(var, ___wait_cond_timeout(condition),		\
296  			  TASK_UNINTERRUPTIBLE, 0, timeout,		\
297  			  __ret = schedule_timeout(__ret))
298  
299  #define wait_var_event_timeout(var, condition, timeout)			\
300  ({									\
301  	long __ret = timeout;						\
302  	might_sleep();							\
303  	if (!___wait_cond_timeout(condition))				\
304  		__ret = __wait_var_event_timeout(var, condition, timeout); \
305  	__ret;								\
306  })
307  
308  #define __wait_var_event_interruptible(var, condition)			\
309  	___wait_var_event(var, condition, TASK_INTERRUPTIBLE, 0, 0,	\
310  			  schedule())
311  
312  #define wait_var_event_interruptible(var, condition)			\
313  ({									\
314  	int __ret = 0;							\
315  	might_sleep();							\
316  	if (!(condition))						\
317  		__ret = __wait_var_event_interruptible(var, condition);	\
318  	__ret;								\
319  })
320  
321  /**
322   * clear_and_wake_up_bit - clear a bit and wake up anyone waiting on that bit
323   *
324   * @bit: the bit of the word being waited on
325   * @word: the word being waited on, a kernel virtual address
326   *
327   * You can use this helper if bitflags are manipulated atomically rather than
328   * non-atomically under a lock.
329   */
clear_and_wake_up_bit(int bit,void * word)330  static inline void clear_and_wake_up_bit(int bit, void *word)
331  {
332  	clear_bit_unlock(bit, word);
333  	/* See wake_up_bit() for which memory barrier you need to use. */
334  	smp_mb__after_atomic();
335  	wake_up_bit(word, bit);
336  }
337  
338  #endif /* _LINUX_WAIT_BIT_H */
339