1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __LINUX_SEQLOCK_H
3 #define __LINUX_SEQLOCK_H
4
5 /*
6 * seqcount_t / seqlock_t - a reader-writer consistency mechanism with
7 * lockless readers (read-only retry loops), and no writer starvation.
8 *
9 * See Documentation/locking/seqlock.rst
10 *
11 * Copyrights:
12 * - Based on x86_64 vsyscall gettimeofday: Keith Owens, Andrea Arcangeli
13 * - Sequence counters with associated locks, (C) 2020 Linutronix GmbH
14 */
15
16 #include <linux/compiler.h>
17 #include <linux/kcsan-checks.h>
18 #include <linux/lockdep.h>
19 #include <linux/mutex.h>
20 #include <linux/ww_mutex.h>
21 #include <linux/preempt.h>
22 #include <linux/spinlock.h>
23
24 #include <asm/processor.h>
25
26 /*
27 * The seqlock seqcount_t interface does not prescribe a precise sequence of
28 * read begin/retry/end. For readers, typically there is a call to
29 * read_seqcount_begin() and read_seqcount_retry(), however, there are more
30 * esoteric cases which do not follow this pattern.
31 *
32 * As a consequence, we take the following best-effort approach for raw usage
33 * via seqcount_t under KCSAN: upon beginning a seq-reader critical section,
34 * pessimistically mark the next KCSAN_SEQLOCK_REGION_MAX memory accesses as
35 * atomics; if there is a matching read_seqcount_retry() call, no following
36 * memory operations are considered atomic. Usage of the seqlock_t interface
37 * is not affected.
38 */
39 #define KCSAN_SEQLOCK_REGION_MAX 1000
40
41 /*
42 * Sequence counters (seqcount_t)
43 *
44 * This is the raw counting mechanism, without any writer protection.
45 *
46 * Write side critical sections must be serialized and non-preemptible.
47 *
48 * If readers can be invoked from hardirq or softirq contexts,
49 * interrupts or bottom halves must also be respectively disabled before
50 * entering the write section.
51 *
52 * This mechanism can't be used if the protected data contains pointers,
53 * as the writer can invalidate a pointer that a reader is following.
54 *
55 * If the write serialization mechanism is one of the common kernel
56 * locking primitives, use a sequence counter with associated lock
57 * (seqcount_LOCKNAME_t) instead.
58 *
59 * If it's desired to automatically handle the sequence counter writer
60 * serialization and non-preemptibility requirements, use a sequential
61 * lock (seqlock_t) instead.
62 *
63 * See Documentation/locking/seqlock.rst
64 */
65 typedef struct seqcount {
66 unsigned sequence;
67 #ifdef CONFIG_DEBUG_LOCK_ALLOC
68 struct lockdep_map dep_map;
69 #endif
70 } seqcount_t;
71
__seqcount_init(seqcount_t * s,const char * name,struct lock_class_key * key)72 static inline void __seqcount_init(seqcount_t *s, const char *name,
73 struct lock_class_key *key)
74 {
75 /*
76 * Make sure we are not reinitializing a held lock:
77 */
78 lockdep_init_map(&s->dep_map, name, key, 0);
79 s->sequence = 0;
80 }
81
82 #ifdef CONFIG_DEBUG_LOCK_ALLOC
83
84 # define SEQCOUNT_DEP_MAP_INIT(lockname) \
85 .dep_map = { .name = #lockname }
86
87 /**
88 * seqcount_init() - runtime initializer for seqcount_t
89 * @s: Pointer to the seqcount_t instance
90 */
91 # define seqcount_init(s) \
92 do { \
93 static struct lock_class_key __key; \
94 __seqcount_init((s), #s, &__key); \
95 } while (0)
96
seqcount_lockdep_reader_access(const seqcount_t * s)97 static inline void seqcount_lockdep_reader_access(const seqcount_t *s)
98 {
99 seqcount_t *l = (seqcount_t *)s;
100 unsigned long flags;
101
102 local_irq_save(flags);
103 seqcount_acquire_read(&l->dep_map, 0, 0, _RET_IP_);
104 seqcount_release(&l->dep_map, _RET_IP_);
105 local_irq_restore(flags);
106 }
107
108 #else
109 # define SEQCOUNT_DEP_MAP_INIT(lockname)
110 # define seqcount_init(s) __seqcount_init(s, NULL, NULL)
111 # define seqcount_lockdep_reader_access(x)
112 #endif
113
114 /**
115 * SEQCNT_ZERO() - static initializer for seqcount_t
116 * @name: Name of the seqcount_t instance
117 */
118 #define SEQCNT_ZERO(name) { .sequence = 0, SEQCOUNT_DEP_MAP_INIT(name) }
119
120 /*
121 * Sequence counters with associated locks (seqcount_LOCKNAME_t)
122 *
123 * A sequence counter which associates the lock used for writer
124 * serialization at initialization time. This enables lockdep to validate
125 * that the write side critical section is properly serialized.
126 *
127 * For associated locks which do not implicitly disable preemption,
128 * preemption protection is enforced in the write side function.
129 *
130 * Lockdep is never used in any for the raw write variants.
131 *
132 * See Documentation/locking/seqlock.rst
133 */
134
135 /*
136 * For PREEMPT_RT, seqcount_LOCKNAME_t write side critical sections cannot
137 * disable preemption. It can lead to higher latencies, and the write side
138 * sections will not be able to acquire locks which become sleeping locks
139 * (e.g. spinlock_t).
140 *
141 * To remain preemptible while avoiding a possible livelock caused by the
142 * reader preempting the writer, use a different technique: let the reader
143 * detect if a seqcount_LOCKNAME_t writer is in progress. If that is the
144 * case, acquire then release the associated LOCKNAME writer serialization
145 * lock. This will allow any possibly-preempted writer to make progress
146 * until the end of its writer serialization lock critical section.
147 *
148 * This lock-unlock technique must be implemented for all of PREEMPT_RT
149 * sleeping locks. See Documentation/locking/locktypes.rst
150 */
151 #if defined(CONFIG_LOCKDEP) || defined(CONFIG_PREEMPT_RT)
152 #define __SEQ_LOCK(expr) expr
153 #else
154 #define __SEQ_LOCK(expr)
155 #endif
156
157 /*
158 * typedef seqcount_LOCKNAME_t - sequence counter with LOCKNAME associated
159 * @seqcount: The real sequence counter
160 * @lock: Pointer to the associated lock
161 *
162 * A plain sequence counter with external writer synchronization by
163 * LOCKNAME @lock. The lock is associated to the sequence counter in the
164 * static initializer or init function. This enables lockdep to validate
165 * that the write side critical section is properly serialized.
166 *
167 * LOCKNAME: raw_spinlock, spinlock, rwlock, mutex, or ww_mutex.
168 */
169
170 /*
171 * seqcount_LOCKNAME_init() - runtime initializer for seqcount_LOCKNAME_t
172 * @s: Pointer to the seqcount_LOCKNAME_t instance
173 * @lock: Pointer to the associated lock
174 */
175
176 #define seqcount_LOCKNAME_init(s, _lock, lockname) \
177 do { \
178 seqcount_##lockname##_t *____s = (s); \
179 seqcount_init(&____s->seqcount); \
180 __SEQ_LOCK(____s->lock = (_lock)); \
181 } while (0)
182
183 #define seqcount_raw_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, raw_spinlock)
184 #define seqcount_spinlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, spinlock)
185 #define seqcount_rwlock_init(s, lock) seqcount_LOCKNAME_init(s, lock, rwlock)
186 #define seqcount_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, mutex)
187 #define seqcount_ww_mutex_init(s, lock) seqcount_LOCKNAME_init(s, lock, ww_mutex)
188
189 /*
190 * SEQCOUNT_LOCKNAME() - Instantiate seqcount_LOCKNAME_t and helpers
191 * seqprop_LOCKNAME_*() - Property accessors for seqcount_LOCKNAME_t
192 *
193 * @lockname: "LOCKNAME" part of seqcount_LOCKNAME_t
194 * @locktype: LOCKNAME canonical C data type
195 * @preemptible: preemptibility of above locktype
196 * @lockmember: argument for lockdep_assert_held()
197 * @lockbase: associated lock release function (prefix only)
198 * @lock_acquire: associated lock acquisition function (full call)
199 */
200 #define SEQCOUNT_LOCKNAME(lockname, locktype, preemptible, lockmember, lockbase, lock_acquire) \
201 typedef struct seqcount_##lockname { \
202 seqcount_t seqcount; \
203 __SEQ_LOCK(locktype *lock); \
204 } seqcount_##lockname##_t; \
205 \
206 static __always_inline seqcount_t * \
207 __seqprop_##lockname##_ptr(seqcount_##lockname##_t *s) \
208 { \
209 return &s->seqcount; \
210 } \
211 \
212 static __always_inline unsigned \
213 __seqprop_##lockname##_sequence(const seqcount_##lockname##_t *s) \
214 { \
215 unsigned seq = READ_ONCE(s->seqcount.sequence); \
216 \
217 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \
218 return seq; \
219 \
220 if (preemptible && unlikely(seq & 1)) { \
221 __SEQ_LOCK(lock_acquire); \
222 __SEQ_LOCK(lockbase##_unlock(s->lock)); \
223 \
224 /* \
225 * Re-read the sequence counter since the (possibly \
226 * preempted) writer made progress. \
227 */ \
228 seq = READ_ONCE(s->seqcount.sequence); \
229 } \
230 \
231 return seq; \
232 } \
233 \
234 static __always_inline bool \
235 __seqprop_##lockname##_preemptible(const seqcount_##lockname##_t *s) \
236 { \
237 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \
238 return preemptible; \
239 \
240 /* PREEMPT_RT relies on the above LOCK+UNLOCK */ \
241 return false; \
242 } \
243 \
244 static __always_inline void \
245 __seqprop_##lockname##_assert(const seqcount_##lockname##_t *s) \
246 { \
247 __SEQ_LOCK(lockdep_assert_held(lockmember)); \
248 }
249
250 /*
251 * __seqprop() for seqcount_t
252 */
253
__seqprop_ptr(seqcount_t * s)254 static inline seqcount_t *__seqprop_ptr(seqcount_t *s)
255 {
256 return s;
257 }
258
__seqprop_sequence(const seqcount_t * s)259 static inline unsigned __seqprop_sequence(const seqcount_t *s)
260 {
261 return READ_ONCE(s->sequence);
262 }
263
__seqprop_preemptible(const seqcount_t * s)264 static inline bool __seqprop_preemptible(const seqcount_t *s)
265 {
266 return false;
267 }
268
__seqprop_assert(const seqcount_t * s)269 static inline void __seqprop_assert(const seqcount_t *s)
270 {
271 lockdep_assert_preemption_disabled();
272 }
273
274 #define __SEQ_RT IS_ENABLED(CONFIG_PREEMPT_RT)
275
276 SEQCOUNT_LOCKNAME(raw_spinlock, raw_spinlock_t, false, s->lock, raw_spin, raw_spin_lock(s->lock))
277 SEQCOUNT_LOCKNAME(spinlock, spinlock_t, __SEQ_RT, s->lock, spin, spin_lock(s->lock))
278 SEQCOUNT_LOCKNAME(rwlock, rwlock_t, __SEQ_RT, s->lock, read, read_lock(s->lock))
279 SEQCOUNT_LOCKNAME(mutex, struct mutex, true, s->lock, mutex, mutex_lock(s->lock))
280 SEQCOUNT_LOCKNAME(ww_mutex, struct ww_mutex, true, &s->lock->base, ww_mutex, ww_mutex_lock(s->lock, NULL))
281
282 /*
283 * SEQCNT_LOCKNAME_ZERO - static initializer for seqcount_LOCKNAME_t
284 * @name: Name of the seqcount_LOCKNAME_t instance
285 * @lock: Pointer to the associated LOCKNAME
286 */
287
288 #define SEQCOUNT_LOCKNAME_ZERO(seq_name, assoc_lock) { \
289 .seqcount = SEQCNT_ZERO(seq_name.seqcount), \
290 __SEQ_LOCK(.lock = (assoc_lock)) \
291 }
292
293 #define SEQCNT_RAW_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock)
294 #define SEQCNT_SPINLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock)
295 #define SEQCNT_RWLOCK_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock)
296 #define SEQCNT_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock)
297 #define SEQCNT_WW_MUTEX_ZERO(name, lock) SEQCOUNT_LOCKNAME_ZERO(name, lock)
298
299 #define __seqprop_case(s, lockname, prop) \
300 seqcount_##lockname##_t: __seqprop_##lockname##_##prop((void *)(s))
301
302 #define __seqprop(s, prop) _Generic(*(s), \
303 seqcount_t: __seqprop_##prop((void *)(s)), \
304 __seqprop_case((s), raw_spinlock, prop), \
305 __seqprop_case((s), spinlock, prop), \
306 __seqprop_case((s), rwlock, prop), \
307 __seqprop_case((s), mutex, prop), \
308 __seqprop_case((s), ww_mutex, prop))
309
310 #define seqprop_ptr(s) __seqprop(s, ptr)
311 #define seqprop_sequence(s) __seqprop(s, sequence)
312 #define seqprop_preemptible(s) __seqprop(s, preemptible)
313 #define seqprop_assert(s) __seqprop(s, assert)
314
315 /**
316 * __read_seqcount_begin() - begin a seqcount_t read section w/o barrier
317 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
318 *
319 * __read_seqcount_begin is like read_seqcount_begin, but has no smp_rmb()
320 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
321 * provided before actually loading any of the variables that are to be
322 * protected in this critical section.
323 *
324 * Use carefully, only in critical code, and comment how the barrier is
325 * provided.
326 *
327 * Return: count to be passed to read_seqcount_retry()
328 */
329 #define __read_seqcount_begin(s) \
330 ({ \
331 unsigned __seq; \
332 \
333 while ((__seq = seqprop_sequence(s)) & 1) \
334 cpu_relax(); \
335 \
336 kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \
337 __seq; \
338 })
339
340 /**
341 * raw_read_seqcount_begin() - begin a seqcount_t read section w/o lockdep
342 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
343 *
344 * Return: count to be passed to read_seqcount_retry()
345 */
346 #define raw_read_seqcount_begin(s) \
347 ({ \
348 unsigned _seq = __read_seqcount_begin(s); \
349 \
350 smp_rmb(); \
351 _seq; \
352 })
353
354 /**
355 * read_seqcount_begin() - begin a seqcount_t read critical section
356 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
357 *
358 * Return: count to be passed to read_seqcount_retry()
359 */
360 #define read_seqcount_begin(s) \
361 ({ \
362 seqcount_lockdep_reader_access(seqprop_ptr(s)); \
363 raw_read_seqcount_begin(s); \
364 })
365
366 /**
367 * raw_read_seqcount() - read the raw seqcount_t counter value
368 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
369 *
370 * raw_read_seqcount opens a read critical section of the given
371 * seqcount_t, without any lockdep checking, and without checking or
372 * masking the sequence counter LSB. Calling code is responsible for
373 * handling that.
374 *
375 * Return: count to be passed to read_seqcount_retry()
376 */
377 #define raw_read_seqcount(s) \
378 ({ \
379 unsigned __seq = seqprop_sequence(s); \
380 \
381 smp_rmb(); \
382 kcsan_atomic_next(KCSAN_SEQLOCK_REGION_MAX); \
383 __seq; \
384 })
385
386 /**
387 * raw_seqcount_begin() - begin a seqcount_t read critical section w/o
388 * lockdep and w/o counter stabilization
389 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
390 *
391 * raw_seqcount_begin opens a read critical section of the given
392 * seqcount_t. Unlike read_seqcount_begin(), this function will not wait
393 * for the count to stabilize. If a writer is active when it begins, it
394 * will fail the read_seqcount_retry() at the end of the read critical
395 * section instead of stabilizing at the beginning of it.
396 *
397 * Use this only in special kernel hot paths where the read section is
398 * small and has a high probability of success through other external
399 * means. It will save a single branching instruction.
400 *
401 * Return: count to be passed to read_seqcount_retry()
402 */
403 #define raw_seqcount_begin(s) \
404 ({ \
405 /* \
406 * If the counter is odd, let read_seqcount_retry() fail \
407 * by decrementing the counter. \
408 */ \
409 raw_read_seqcount(s) & ~1; \
410 })
411
412 /**
413 * __read_seqcount_retry() - end a seqcount_t read section w/o barrier
414 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
415 * @start: count, from read_seqcount_begin()
416 *
417 * __read_seqcount_retry is like read_seqcount_retry, but has no smp_rmb()
418 * barrier. Callers should ensure that smp_rmb() or equivalent ordering is
419 * provided before actually loading any of the variables that are to be
420 * protected in this critical section.
421 *
422 * Use carefully, only in critical code, and comment how the barrier is
423 * provided.
424 *
425 * Return: true if a read section retry is required, else false
426 */
427 #define __read_seqcount_retry(s, start) \
428 do___read_seqcount_retry(seqprop_ptr(s), start)
429
do___read_seqcount_retry(const seqcount_t * s,unsigned start)430 static inline int do___read_seqcount_retry(const seqcount_t *s, unsigned start)
431 {
432 kcsan_atomic_next(0);
433 return unlikely(READ_ONCE(s->sequence) != start);
434 }
435
436 /**
437 * read_seqcount_retry() - end a seqcount_t read critical section
438 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
439 * @start: count, from read_seqcount_begin()
440 *
441 * read_seqcount_retry closes the read critical section of given
442 * seqcount_t. If the critical section was invalid, it must be ignored
443 * (and typically retried).
444 *
445 * Return: true if a read section retry is required, else false
446 */
447 #define read_seqcount_retry(s, start) \
448 do_read_seqcount_retry(seqprop_ptr(s), start)
449
do_read_seqcount_retry(const seqcount_t * s,unsigned start)450 static inline int do_read_seqcount_retry(const seqcount_t *s, unsigned start)
451 {
452 smp_rmb();
453 return do___read_seqcount_retry(s, start);
454 }
455
456 /**
457 * raw_write_seqcount_begin() - start a seqcount_t write section w/o lockdep
458 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
459 *
460 * Context: check write_seqcount_begin()
461 */
462 #define raw_write_seqcount_begin(s) \
463 do { \
464 if (seqprop_preemptible(s)) \
465 preempt_disable(); \
466 \
467 do_raw_write_seqcount_begin(seqprop_ptr(s)); \
468 } while (0)
469
do_raw_write_seqcount_begin(seqcount_t * s)470 static inline void do_raw_write_seqcount_begin(seqcount_t *s)
471 {
472 kcsan_nestable_atomic_begin();
473 s->sequence++;
474 smp_wmb();
475 }
476
477 /**
478 * raw_write_seqcount_end() - end a seqcount_t write section w/o lockdep
479 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
480 *
481 * Context: check write_seqcount_end()
482 */
483 #define raw_write_seqcount_end(s) \
484 do { \
485 do_raw_write_seqcount_end(seqprop_ptr(s)); \
486 \
487 if (seqprop_preemptible(s)) \
488 preempt_enable(); \
489 } while (0)
490
do_raw_write_seqcount_end(seqcount_t * s)491 static inline void do_raw_write_seqcount_end(seqcount_t *s)
492 {
493 smp_wmb();
494 s->sequence++;
495 kcsan_nestable_atomic_end();
496 }
497
498 /**
499 * write_seqcount_begin_nested() - start a seqcount_t write section with
500 * custom lockdep nesting level
501 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
502 * @subclass: lockdep nesting level
503 *
504 * See Documentation/locking/lockdep-design.rst
505 * Context: check write_seqcount_begin()
506 */
507 #define write_seqcount_begin_nested(s, subclass) \
508 do { \
509 seqprop_assert(s); \
510 \
511 if (seqprop_preemptible(s)) \
512 preempt_disable(); \
513 \
514 do_write_seqcount_begin_nested(seqprop_ptr(s), subclass); \
515 } while (0)
516
do_write_seqcount_begin_nested(seqcount_t * s,int subclass)517 static inline void do_write_seqcount_begin_nested(seqcount_t *s, int subclass)
518 {
519 do_raw_write_seqcount_begin(s);
520 seqcount_acquire(&s->dep_map, subclass, 0, _RET_IP_);
521 }
522
523 /**
524 * write_seqcount_begin() - start a seqcount_t write side critical section
525 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
526 *
527 * Context: sequence counter write side sections must be serialized and
528 * non-preemptible. Preemption will be automatically disabled if and
529 * only if the seqcount write serialization lock is associated, and
530 * preemptible. If readers can be invoked from hardirq or softirq
531 * context, interrupts or bottom halves must be respectively disabled.
532 */
533 #define write_seqcount_begin(s) \
534 do { \
535 seqprop_assert(s); \
536 \
537 if (seqprop_preemptible(s)) \
538 preempt_disable(); \
539 \
540 do_write_seqcount_begin(seqprop_ptr(s)); \
541 } while (0)
542
do_write_seqcount_begin(seqcount_t * s)543 static inline void do_write_seqcount_begin(seqcount_t *s)
544 {
545 do_write_seqcount_begin_nested(s, 0);
546 }
547
548 /**
549 * write_seqcount_end() - end a seqcount_t write side critical section
550 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
551 *
552 * Context: Preemption will be automatically re-enabled if and only if
553 * the seqcount write serialization lock is associated, and preemptible.
554 */
555 #define write_seqcount_end(s) \
556 do { \
557 do_write_seqcount_end(seqprop_ptr(s)); \
558 \
559 if (seqprop_preemptible(s)) \
560 preempt_enable(); \
561 } while (0)
562
do_write_seqcount_end(seqcount_t * s)563 static inline void do_write_seqcount_end(seqcount_t *s)
564 {
565 seqcount_release(&s->dep_map, _RET_IP_);
566 do_raw_write_seqcount_end(s);
567 }
568
569 /**
570 * raw_write_seqcount_barrier() - do a seqcount_t write barrier
571 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
572 *
573 * This can be used to provide an ordering guarantee instead of the usual
574 * consistency guarantee. It is one wmb cheaper, because it can collapse
575 * the two back-to-back wmb()s.
576 *
577 * Note that writes surrounding the barrier should be declared atomic (e.g.
578 * via WRITE_ONCE): a) to ensure the writes become visible to other threads
579 * atomically, avoiding compiler optimizations; b) to document which writes are
580 * meant to propagate to the reader critical section. This is necessary because
581 * neither writes before and after the barrier are enclosed in a seq-writer
582 * critical section that would ensure readers are aware of ongoing writes::
583 *
584 * seqcount_t seq;
585 * bool X = true, Y = false;
586 *
587 * void read(void)
588 * {
589 * bool x, y;
590 *
591 * do {
592 * int s = read_seqcount_begin(&seq);
593 *
594 * x = X; y = Y;
595 *
596 * } while (read_seqcount_retry(&seq, s));
597 *
598 * BUG_ON(!x && !y);
599 * }
600 *
601 * void write(void)
602 * {
603 * WRITE_ONCE(Y, true);
604 *
605 * raw_write_seqcount_barrier(seq);
606 *
607 * WRITE_ONCE(X, false);
608 * }
609 */
610 #define raw_write_seqcount_barrier(s) \
611 do_raw_write_seqcount_barrier(seqprop_ptr(s))
612
do_raw_write_seqcount_barrier(seqcount_t * s)613 static inline void do_raw_write_seqcount_barrier(seqcount_t *s)
614 {
615 kcsan_nestable_atomic_begin();
616 s->sequence++;
617 smp_wmb();
618 s->sequence++;
619 kcsan_nestable_atomic_end();
620 }
621
622 /**
623 * write_seqcount_invalidate() - invalidate in-progress seqcount_t read
624 * side operations
625 * @s: Pointer to seqcount_t or any of the seqcount_LOCKNAME_t variants
626 *
627 * After write_seqcount_invalidate, no seqcount_t read side operations
628 * will complete successfully and see data older than this.
629 */
630 #define write_seqcount_invalidate(s) \
631 do_write_seqcount_invalidate(seqprop_ptr(s))
632
do_write_seqcount_invalidate(seqcount_t * s)633 static inline void do_write_seqcount_invalidate(seqcount_t *s)
634 {
635 smp_wmb();
636 kcsan_nestable_atomic_begin();
637 s->sequence+=2;
638 kcsan_nestable_atomic_end();
639 }
640
641 /*
642 * Latch sequence counters (seqcount_latch_t)
643 *
644 * A sequence counter variant where the counter even/odd value is used to
645 * switch between two copies of protected data. This allows the read path,
646 * typically NMIs, to safely interrupt the write side critical section.
647 *
648 * As the write sections are fully preemptible, no special handling for
649 * PREEMPT_RT is needed.
650 */
651 typedef struct {
652 seqcount_t seqcount;
653 } seqcount_latch_t;
654
655 /**
656 * SEQCNT_LATCH_ZERO() - static initializer for seqcount_latch_t
657 * @seq_name: Name of the seqcount_latch_t instance
658 */
659 #define SEQCNT_LATCH_ZERO(seq_name) { \
660 .seqcount = SEQCNT_ZERO(seq_name.seqcount), \
661 }
662
663 /**
664 * seqcount_latch_init() - runtime initializer for seqcount_latch_t
665 * @s: Pointer to the seqcount_latch_t instance
666 */
667 #define seqcount_latch_init(s) seqcount_init(&(s)->seqcount)
668
669 /**
670 * raw_read_seqcount_latch() - pick even/odd latch data copy
671 * @s: Pointer to seqcount_latch_t
672 *
673 * See raw_write_seqcount_latch() for details and a full reader/writer
674 * usage example.
675 *
676 * Return: sequence counter raw value. Use the lowest bit as an index for
677 * picking which data copy to read. The full counter must then be checked
678 * with read_seqcount_latch_retry().
679 */
raw_read_seqcount_latch(const seqcount_latch_t * s)680 static inline unsigned raw_read_seqcount_latch(const seqcount_latch_t *s)
681 {
682 /*
683 * Pairs with the first smp_wmb() in raw_write_seqcount_latch().
684 * Due to the dependent load, a full smp_rmb() is not needed.
685 */
686 return READ_ONCE(s->seqcount.sequence);
687 }
688
689 /**
690 * read_seqcount_latch_retry() - end a seqcount_latch_t read section
691 * @s: Pointer to seqcount_latch_t
692 * @start: count, from raw_read_seqcount_latch()
693 *
694 * Return: true if a read section retry is required, else false
695 */
696 static inline int
read_seqcount_latch_retry(const seqcount_latch_t * s,unsigned start)697 read_seqcount_latch_retry(const seqcount_latch_t *s, unsigned start)
698 {
699 return read_seqcount_retry(&s->seqcount, start);
700 }
701
702 /**
703 * raw_write_seqcount_latch() - redirect latch readers to even/odd copy
704 * @s: Pointer to seqcount_latch_t
705 *
706 * The latch technique is a multiversion concurrency control method that allows
707 * queries during non-atomic modifications. If you can guarantee queries never
708 * interrupt the modification -- e.g. the concurrency is strictly between CPUs
709 * -- you most likely do not need this.
710 *
711 * Where the traditional RCU/lockless data structures rely on atomic
712 * modifications to ensure queries observe either the old or the new state the
713 * latch allows the same for non-atomic updates. The trade-off is doubling the
714 * cost of storage; we have to maintain two copies of the entire data
715 * structure.
716 *
717 * Very simply put: we first modify one copy and then the other. This ensures
718 * there is always one copy in a stable state, ready to give us an answer.
719 *
720 * The basic form is a data structure like::
721 *
722 * struct latch_struct {
723 * seqcount_latch_t seq;
724 * struct data_struct data[2];
725 * };
726 *
727 * Where a modification, which is assumed to be externally serialized, does the
728 * following::
729 *
730 * void latch_modify(struct latch_struct *latch, ...)
731 * {
732 * smp_wmb(); // Ensure that the last data[1] update is visible
733 * latch->seq.sequence++;
734 * smp_wmb(); // Ensure that the seqcount update is visible
735 *
736 * modify(latch->data[0], ...);
737 *
738 * smp_wmb(); // Ensure that the data[0] update is visible
739 * latch->seq.sequence++;
740 * smp_wmb(); // Ensure that the seqcount update is visible
741 *
742 * modify(latch->data[1], ...);
743 * }
744 *
745 * The query will have a form like::
746 *
747 * struct entry *latch_query(struct latch_struct *latch, ...)
748 * {
749 * struct entry *entry;
750 * unsigned seq, idx;
751 *
752 * do {
753 * seq = raw_read_seqcount_latch(&latch->seq);
754 *
755 * idx = seq & 0x01;
756 * entry = data_query(latch->data[idx], ...);
757 *
758 * // This includes needed smp_rmb()
759 * } while (read_seqcount_latch_retry(&latch->seq, seq));
760 *
761 * return entry;
762 * }
763 *
764 * So during the modification, queries are first redirected to data[1]. Then we
765 * modify data[0]. When that is complete, we redirect queries back to data[0]
766 * and we can modify data[1].
767 *
768 * NOTE:
769 *
770 * The non-requirement for atomic modifications does _NOT_ include
771 * the publishing of new entries in the case where data is a dynamic
772 * data structure.
773 *
774 * An iteration might start in data[0] and get suspended long enough
775 * to miss an entire modification sequence, once it resumes it might
776 * observe the new entry.
777 *
778 * NOTE2:
779 *
780 * When data is a dynamic data structure; one should use regular RCU
781 * patterns to manage the lifetimes of the objects within.
782 */
raw_write_seqcount_latch(seqcount_latch_t * s)783 static inline void raw_write_seqcount_latch(seqcount_latch_t *s)
784 {
785 smp_wmb(); /* prior stores before incrementing "sequence" */
786 s->seqcount.sequence++;
787 smp_wmb(); /* increment "sequence" before following stores */
788 }
789
790 /*
791 * Sequential locks (seqlock_t)
792 *
793 * Sequence counters with an embedded spinlock for writer serialization
794 * and non-preemptibility.
795 *
796 * For more info, see:
797 * - Comments on top of seqcount_t
798 * - Documentation/locking/seqlock.rst
799 */
800 typedef struct {
801 /*
802 * Make sure that readers don't starve writers on PREEMPT_RT: use
803 * seqcount_spinlock_t instead of seqcount_t. Check __SEQ_LOCK().
804 */
805 seqcount_spinlock_t seqcount;
806 spinlock_t lock;
807 } seqlock_t;
808
809 #define __SEQLOCK_UNLOCKED(lockname) \
810 { \
811 .seqcount = SEQCNT_SPINLOCK_ZERO(lockname, &(lockname).lock), \
812 .lock = __SPIN_LOCK_UNLOCKED(lockname) \
813 }
814
815 /**
816 * seqlock_init() - dynamic initializer for seqlock_t
817 * @sl: Pointer to the seqlock_t instance
818 */
819 #define seqlock_init(sl) \
820 do { \
821 spin_lock_init(&(sl)->lock); \
822 seqcount_spinlock_init(&(sl)->seqcount, &(sl)->lock); \
823 } while (0)
824
825 /**
826 * DEFINE_SEQLOCK(sl) - Define a statically allocated seqlock_t
827 * @sl: Name of the seqlock_t instance
828 */
829 #define DEFINE_SEQLOCK(sl) \
830 seqlock_t sl = __SEQLOCK_UNLOCKED(sl)
831
832 /**
833 * read_seqbegin() - start a seqlock_t read side critical section
834 * @sl: Pointer to seqlock_t
835 *
836 * Return: count, to be passed to read_seqretry()
837 */
read_seqbegin(const seqlock_t * sl)838 static inline unsigned read_seqbegin(const seqlock_t *sl)
839 {
840 unsigned ret = read_seqcount_begin(&sl->seqcount);
841
842 kcsan_atomic_next(0); /* non-raw usage, assume closing read_seqretry() */
843 kcsan_flat_atomic_begin();
844 return ret;
845 }
846
847 /**
848 * read_seqretry() - end a seqlock_t read side section
849 * @sl: Pointer to seqlock_t
850 * @start: count, from read_seqbegin()
851 *
852 * read_seqretry closes the read side critical section of given seqlock_t.
853 * If the critical section was invalid, it must be ignored (and typically
854 * retried).
855 *
856 * Return: true if a read section retry is required, else false
857 */
read_seqretry(const seqlock_t * sl,unsigned start)858 static inline unsigned read_seqretry(const seqlock_t *sl, unsigned start)
859 {
860 /*
861 * Assume not nested: read_seqretry() may be called multiple times when
862 * completing read critical section.
863 */
864 kcsan_flat_atomic_end();
865
866 return read_seqcount_retry(&sl->seqcount, start);
867 }
868
869 /*
870 * For all seqlock_t write side functions, use the the internal
871 * do_write_seqcount_begin() instead of generic write_seqcount_begin().
872 * This way, no redundant lockdep_assert_held() checks are added.
873 */
874
875 /**
876 * write_seqlock() - start a seqlock_t write side critical section
877 * @sl: Pointer to seqlock_t
878 *
879 * write_seqlock opens a write side critical section for the given
880 * seqlock_t. It also implicitly acquires the spinlock_t embedded inside
881 * that sequential lock. All seqlock_t write side sections are thus
882 * automatically serialized and non-preemptible.
883 *
884 * Context: if the seqlock_t read section, or other write side critical
885 * sections, can be invoked from hardirq or softirq contexts, use the
886 * _irqsave or _bh variants of this function instead.
887 */
write_seqlock(seqlock_t * sl)888 static inline void write_seqlock(seqlock_t *sl)
889 {
890 spin_lock(&sl->lock);
891 do_write_seqcount_begin(&sl->seqcount.seqcount);
892 }
893
894 /**
895 * write_sequnlock() - end a seqlock_t write side critical section
896 * @sl: Pointer to seqlock_t
897 *
898 * write_sequnlock closes the (serialized and non-preemptible) write side
899 * critical section of given seqlock_t.
900 */
write_sequnlock(seqlock_t * sl)901 static inline void write_sequnlock(seqlock_t *sl)
902 {
903 do_write_seqcount_end(&sl->seqcount.seqcount);
904 spin_unlock(&sl->lock);
905 }
906
907 /**
908 * write_seqlock_bh() - start a softirqs-disabled seqlock_t write section
909 * @sl: Pointer to seqlock_t
910 *
911 * _bh variant of write_seqlock(). Use only if the read side section, or
912 * other write side sections, can be invoked from softirq contexts.
913 */
write_seqlock_bh(seqlock_t * sl)914 static inline void write_seqlock_bh(seqlock_t *sl)
915 {
916 spin_lock_bh(&sl->lock);
917 do_write_seqcount_begin(&sl->seqcount.seqcount);
918 }
919
920 /**
921 * write_sequnlock_bh() - end a softirqs-disabled seqlock_t write section
922 * @sl: Pointer to seqlock_t
923 *
924 * write_sequnlock_bh closes the serialized, non-preemptible, and
925 * softirqs-disabled, seqlock_t write side critical section opened with
926 * write_seqlock_bh().
927 */
write_sequnlock_bh(seqlock_t * sl)928 static inline void write_sequnlock_bh(seqlock_t *sl)
929 {
930 do_write_seqcount_end(&sl->seqcount.seqcount);
931 spin_unlock_bh(&sl->lock);
932 }
933
934 /**
935 * write_seqlock_irq() - start a non-interruptible seqlock_t write section
936 * @sl: Pointer to seqlock_t
937 *
938 * _irq variant of write_seqlock(). Use only if the read side section, or
939 * other write sections, can be invoked from hardirq contexts.
940 */
write_seqlock_irq(seqlock_t * sl)941 static inline void write_seqlock_irq(seqlock_t *sl)
942 {
943 spin_lock_irq(&sl->lock);
944 do_write_seqcount_begin(&sl->seqcount.seqcount);
945 }
946
947 /**
948 * write_sequnlock_irq() - end a non-interruptible seqlock_t write section
949 * @sl: Pointer to seqlock_t
950 *
951 * write_sequnlock_irq closes the serialized and non-interruptible
952 * seqlock_t write side section opened with write_seqlock_irq().
953 */
write_sequnlock_irq(seqlock_t * sl)954 static inline void write_sequnlock_irq(seqlock_t *sl)
955 {
956 do_write_seqcount_end(&sl->seqcount.seqcount);
957 spin_unlock_irq(&sl->lock);
958 }
959
__write_seqlock_irqsave(seqlock_t * sl)960 static inline unsigned long __write_seqlock_irqsave(seqlock_t *sl)
961 {
962 unsigned long flags;
963
964 spin_lock_irqsave(&sl->lock, flags);
965 do_write_seqcount_begin(&sl->seqcount.seqcount);
966 return flags;
967 }
968
969 /**
970 * write_seqlock_irqsave() - start a non-interruptible seqlock_t write
971 * section
972 * @lock: Pointer to seqlock_t
973 * @flags: Stack-allocated storage for saving caller's local interrupt
974 * state, to be passed to write_sequnlock_irqrestore().
975 *
976 * _irqsave variant of write_seqlock(). Use it only if the read side
977 * section, or other write sections, can be invoked from hardirq context.
978 */
979 #define write_seqlock_irqsave(lock, flags) \
980 do { flags = __write_seqlock_irqsave(lock); } while (0)
981
982 /**
983 * write_sequnlock_irqrestore() - end non-interruptible seqlock_t write
984 * section
985 * @sl: Pointer to seqlock_t
986 * @flags: Caller's saved interrupt state, from write_seqlock_irqsave()
987 *
988 * write_sequnlock_irqrestore closes the serialized and non-interruptible
989 * seqlock_t write section previously opened with write_seqlock_irqsave().
990 */
991 static inline void
write_sequnlock_irqrestore(seqlock_t * sl,unsigned long flags)992 write_sequnlock_irqrestore(seqlock_t *sl, unsigned long flags)
993 {
994 do_write_seqcount_end(&sl->seqcount.seqcount);
995 spin_unlock_irqrestore(&sl->lock, flags);
996 }
997
998 /**
999 * read_seqlock_excl() - begin a seqlock_t locking reader section
1000 * @sl: Pointer to seqlock_t
1001 *
1002 * read_seqlock_excl opens a seqlock_t locking reader critical section. A
1003 * locking reader exclusively locks out *both* other writers *and* other
1004 * locking readers, but it does not update the embedded sequence number.
1005 *
1006 * Locking readers act like a normal spin_lock()/spin_unlock().
1007 *
1008 * Context: if the seqlock_t write section, *or other read sections*, can
1009 * be invoked from hardirq or softirq contexts, use the _irqsave or _bh
1010 * variant of this function instead.
1011 *
1012 * The opened read section must be closed with read_sequnlock_excl().
1013 */
read_seqlock_excl(seqlock_t * sl)1014 static inline void read_seqlock_excl(seqlock_t *sl)
1015 {
1016 spin_lock(&sl->lock);
1017 }
1018
1019 /**
1020 * read_sequnlock_excl() - end a seqlock_t locking reader critical section
1021 * @sl: Pointer to seqlock_t
1022 */
read_sequnlock_excl(seqlock_t * sl)1023 static inline void read_sequnlock_excl(seqlock_t *sl)
1024 {
1025 spin_unlock(&sl->lock);
1026 }
1027
1028 /**
1029 * read_seqlock_excl_bh() - start a seqlock_t locking reader section with
1030 * softirqs disabled
1031 * @sl: Pointer to seqlock_t
1032 *
1033 * _bh variant of read_seqlock_excl(). Use this variant only if the
1034 * seqlock_t write side section, *or other read sections*, can be invoked
1035 * from softirq contexts.
1036 */
read_seqlock_excl_bh(seqlock_t * sl)1037 static inline void read_seqlock_excl_bh(seqlock_t *sl)
1038 {
1039 spin_lock_bh(&sl->lock);
1040 }
1041
1042 /**
1043 * read_sequnlock_excl_bh() - stop a seqlock_t softirq-disabled locking
1044 * reader section
1045 * @sl: Pointer to seqlock_t
1046 */
read_sequnlock_excl_bh(seqlock_t * sl)1047 static inline void read_sequnlock_excl_bh(seqlock_t *sl)
1048 {
1049 spin_unlock_bh(&sl->lock);
1050 }
1051
1052 /**
1053 * read_seqlock_excl_irq() - start a non-interruptible seqlock_t locking
1054 * reader section
1055 * @sl: Pointer to seqlock_t
1056 *
1057 * _irq variant of read_seqlock_excl(). Use this only if the seqlock_t
1058 * write side section, *or other read sections*, can be invoked from a
1059 * hardirq context.
1060 */
read_seqlock_excl_irq(seqlock_t * sl)1061 static inline void read_seqlock_excl_irq(seqlock_t *sl)
1062 {
1063 spin_lock_irq(&sl->lock);
1064 }
1065
1066 /**
1067 * read_sequnlock_excl_irq() - end an interrupts-disabled seqlock_t
1068 * locking reader section
1069 * @sl: Pointer to seqlock_t
1070 */
read_sequnlock_excl_irq(seqlock_t * sl)1071 static inline void read_sequnlock_excl_irq(seqlock_t *sl)
1072 {
1073 spin_unlock_irq(&sl->lock);
1074 }
1075
__read_seqlock_excl_irqsave(seqlock_t * sl)1076 static inline unsigned long __read_seqlock_excl_irqsave(seqlock_t *sl)
1077 {
1078 unsigned long flags;
1079
1080 spin_lock_irqsave(&sl->lock, flags);
1081 return flags;
1082 }
1083
1084 /**
1085 * read_seqlock_excl_irqsave() - start a non-interruptible seqlock_t
1086 * locking reader section
1087 * @lock: Pointer to seqlock_t
1088 * @flags: Stack-allocated storage for saving caller's local interrupt
1089 * state, to be passed to read_sequnlock_excl_irqrestore().
1090 *
1091 * _irqsave variant of read_seqlock_excl(). Use this only if the seqlock_t
1092 * write side section, *or other read sections*, can be invoked from a
1093 * hardirq context.
1094 */
1095 #define read_seqlock_excl_irqsave(lock, flags) \
1096 do { flags = __read_seqlock_excl_irqsave(lock); } while (0)
1097
1098 /**
1099 * read_sequnlock_excl_irqrestore() - end non-interruptible seqlock_t
1100 * locking reader section
1101 * @sl: Pointer to seqlock_t
1102 * @flags: Caller saved interrupt state, from read_seqlock_excl_irqsave()
1103 */
1104 static inline void
read_sequnlock_excl_irqrestore(seqlock_t * sl,unsigned long flags)1105 read_sequnlock_excl_irqrestore(seqlock_t *sl, unsigned long flags)
1106 {
1107 spin_unlock_irqrestore(&sl->lock, flags);
1108 }
1109
1110 /**
1111 * read_seqbegin_or_lock() - begin a seqlock_t lockless or locking reader
1112 * @lock: Pointer to seqlock_t
1113 * @seq : Marker and return parameter. If the passed value is even, the
1114 * reader will become a *lockless* seqlock_t reader as in read_seqbegin().
1115 * If the passed value is odd, the reader will become a *locking* reader
1116 * as in read_seqlock_excl(). In the first call to this function, the
1117 * caller *must* initialize and pass an even value to @seq; this way, a
1118 * lockless read can be optimistically tried first.
1119 *
1120 * read_seqbegin_or_lock is an API designed to optimistically try a normal
1121 * lockless seqlock_t read section first. If an odd counter is found, the
1122 * lockless read trial has failed, and the next read iteration transforms
1123 * itself into a full seqlock_t locking reader.
1124 *
1125 * This is typically used to avoid seqlock_t lockless readers starvation
1126 * (too much retry loops) in the case of a sharp spike in write side
1127 * activity.
1128 *
1129 * Context: if the seqlock_t write section, *or other read sections*, can
1130 * be invoked from hardirq or softirq contexts, use the _irqsave or _bh
1131 * variant of this function instead.
1132 *
1133 * Check Documentation/locking/seqlock.rst for template example code.
1134 *
1135 * Return: the encountered sequence counter value, through the @seq
1136 * parameter, which is overloaded as a return parameter. This returned
1137 * value must be checked with need_seqretry(). If the read section need to
1138 * be retried, this returned value must also be passed as the @seq
1139 * parameter of the next read_seqbegin_or_lock() iteration.
1140 */
read_seqbegin_or_lock(seqlock_t * lock,int * seq)1141 static inline void read_seqbegin_or_lock(seqlock_t *lock, int *seq)
1142 {
1143 if (!(*seq & 1)) /* Even */
1144 *seq = read_seqbegin(lock);
1145 else /* Odd */
1146 read_seqlock_excl(lock);
1147 }
1148
1149 /**
1150 * need_seqretry() - validate seqlock_t "locking or lockless" read section
1151 * @lock: Pointer to seqlock_t
1152 * @seq: sequence count, from read_seqbegin_or_lock()
1153 *
1154 * Return: true if a read section retry is required, false otherwise
1155 */
need_seqretry(seqlock_t * lock,int seq)1156 static inline int need_seqretry(seqlock_t *lock, int seq)
1157 {
1158 return !(seq & 1) && read_seqretry(lock, seq);
1159 }
1160
1161 /**
1162 * done_seqretry() - end seqlock_t "locking or lockless" reader section
1163 * @lock: Pointer to seqlock_t
1164 * @seq: count, from read_seqbegin_or_lock()
1165 *
1166 * done_seqretry finishes the seqlock_t read side critical section started
1167 * with read_seqbegin_or_lock() and validated by need_seqretry().
1168 */
done_seqretry(seqlock_t * lock,int seq)1169 static inline void done_seqretry(seqlock_t *lock, int seq)
1170 {
1171 if (seq & 1)
1172 read_sequnlock_excl(lock);
1173 }
1174
1175 /**
1176 * read_seqbegin_or_lock_irqsave() - begin a seqlock_t lockless reader, or
1177 * a non-interruptible locking reader
1178 * @lock: Pointer to seqlock_t
1179 * @seq: Marker and return parameter. Check read_seqbegin_or_lock().
1180 *
1181 * This is the _irqsave variant of read_seqbegin_or_lock(). Use it only if
1182 * the seqlock_t write section, *or other read sections*, can be invoked
1183 * from hardirq context.
1184 *
1185 * Note: Interrupts will be disabled only for "locking reader" mode.
1186 *
1187 * Return:
1188 *
1189 * 1. The saved local interrupts state in case of a locking reader, to
1190 * be passed to done_seqretry_irqrestore().
1191 *
1192 * 2. The encountered sequence counter value, returned through @seq
1193 * overloaded as a return parameter. Check read_seqbegin_or_lock().
1194 */
1195 static inline unsigned long
read_seqbegin_or_lock_irqsave(seqlock_t * lock,int * seq)1196 read_seqbegin_or_lock_irqsave(seqlock_t *lock, int *seq)
1197 {
1198 unsigned long flags = 0;
1199
1200 if (!(*seq & 1)) /* Even */
1201 *seq = read_seqbegin(lock);
1202 else /* Odd */
1203 read_seqlock_excl_irqsave(lock, flags);
1204
1205 return flags;
1206 }
1207
1208 /**
1209 * done_seqretry_irqrestore() - end a seqlock_t lockless reader, or a
1210 * non-interruptible locking reader section
1211 * @lock: Pointer to seqlock_t
1212 * @seq: Count, from read_seqbegin_or_lock_irqsave()
1213 * @flags: Caller's saved local interrupt state in case of a locking
1214 * reader, also from read_seqbegin_or_lock_irqsave()
1215 *
1216 * This is the _irqrestore variant of done_seqretry(). The read section
1217 * must've been opened with read_seqbegin_or_lock_irqsave(), and validated
1218 * by need_seqretry().
1219 */
1220 static inline void
done_seqretry_irqrestore(seqlock_t * lock,int seq,unsigned long flags)1221 done_seqretry_irqrestore(seqlock_t *lock, int seq, unsigned long flags)
1222 {
1223 if (seq & 1)
1224 read_sequnlock_excl_irqrestore(lock, flags);
1225 }
1226 #endif /* __LINUX_SEQLOCK_H */
1227