1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * Pentium III FXSR, SSE support
6 * Gareth Hughes <gareth@valinux.com>, May 2000
7 *
8 * X86-64 port
9 * Andi Kleen.
10 *
11 * CPU hotplug support - ashok.raj@intel.com
12 */
13
14 /*
15 * This file handles the architecture-dependent parts of process handling..
16 */
17
18 #include <linux/cpu.h>
19 #include <linux/errno.h>
20 #include <linux/sched.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/fs.h>
24 #include <linux/kernel.h>
25 #include <linux/mm.h>
26 #include <linux/elfcore.h>
27 #include <linux/smp.h>
28 #include <linux/slab.h>
29 #include <linux/user.h>
30 #include <linux/interrupt.h>
31 #include <linux/delay.h>
32 #include <linux/export.h>
33 #include <linux/ptrace.h>
34 #include <linux/notifier.h>
35 #include <linux/kprobes.h>
36 #include <linux/kdebug.h>
37 #include <linux/prctl.h>
38 #include <linux/uaccess.h>
39 #include <linux/io.h>
40 #include <linux/ftrace.h>
41 #include <linux/syscalls.h>
42
43 #include <asm/processor.h>
44 #include <asm/pkru.h>
45 #include <asm/fpu/sched.h>
46 #include <asm/mmu_context.h>
47 #include <asm/prctl.h>
48 #include <asm/desc.h>
49 #include <asm/proto.h>
50 #include <asm/ia32.h>
51 #include <asm/debugreg.h>
52 #include <asm/switch_to.h>
53 #include <asm/xen/hypervisor.h>
54 #include <asm/vdso.h>
55 #include <asm/resctrl.h>
56 #include <asm/unistd.h>
57 #include <asm/fsgsbase.h>
58 #ifdef CONFIG_IA32_EMULATION
59 /* Not included via unistd.h */
60 #include <asm/unistd_32_ia32.h>
61 #endif
62
63 #include "process.h"
64
65 /* Prints also some state that isn't saved in the pt_regs */
__show_regs(struct pt_regs * regs,enum show_regs_mode mode,const char * log_lvl)66 void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
67 const char *log_lvl)
68 {
69 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
70 unsigned long d0, d1, d2, d3, d6, d7;
71 unsigned int fsindex, gsindex;
72 unsigned int ds, es;
73
74 show_iret_regs(regs, log_lvl);
75
76 if (regs->orig_ax != -1)
77 pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
78 else
79 pr_cont("\n");
80
81 printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
82 log_lvl, regs->ax, regs->bx, regs->cx);
83 printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
84 log_lvl, regs->dx, regs->si, regs->di);
85 printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
86 log_lvl, regs->bp, regs->r8, regs->r9);
87 printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
88 log_lvl, regs->r10, regs->r11, regs->r12);
89 printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
90 log_lvl, regs->r13, regs->r14, regs->r15);
91
92 if (mode == SHOW_REGS_SHORT)
93 return;
94
95 if (mode == SHOW_REGS_USER) {
96 rdmsrl(MSR_FS_BASE, fs);
97 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
98 printk("%sFS: %016lx GS: %016lx\n",
99 log_lvl, fs, shadowgs);
100 return;
101 }
102
103 asm("movl %%ds,%0" : "=r" (ds));
104 asm("movl %%es,%0" : "=r" (es));
105 asm("movl %%fs,%0" : "=r" (fsindex));
106 asm("movl %%gs,%0" : "=r" (gsindex));
107
108 rdmsrl(MSR_FS_BASE, fs);
109 rdmsrl(MSR_GS_BASE, gs);
110 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
111
112 cr0 = read_cr0();
113 cr2 = read_cr2();
114 cr3 = __read_cr3();
115 cr4 = __read_cr4();
116
117 printk("%sFS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
118 log_lvl, fs, fsindex, gs, gsindex, shadowgs);
119 printk("%sCS: %04lx DS: %04x ES: %04x CR0: %016lx\n",
120 log_lvl, regs->cs, ds, es, cr0);
121 printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
122 log_lvl, cr2, cr3, cr4);
123
124 get_debugreg(d0, 0);
125 get_debugreg(d1, 1);
126 get_debugreg(d2, 2);
127 get_debugreg(d3, 3);
128 get_debugreg(d6, 6);
129 get_debugreg(d7, 7);
130
131 /* Only print out debug registers if they are in their non-default state. */
132 if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
133 (d6 == DR6_RESERVED) && (d7 == 0x400))) {
134 printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
135 log_lvl, d0, d1, d2);
136 printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
137 log_lvl, d3, d6, d7);
138 }
139
140 if (cpu_feature_enabled(X86_FEATURE_OSPKE))
141 printk("%sPKRU: %08x\n", log_lvl, read_pkru());
142 }
143
release_thread(struct task_struct * dead_task)144 void release_thread(struct task_struct *dead_task)
145 {
146 WARN_ON(dead_task->mm);
147 }
148
149 enum which_selector {
150 FS,
151 GS
152 };
153
154 /*
155 * Out of line to be protected from kprobes and tracing. If this would be
156 * traced or probed than any access to a per CPU variable happens with
157 * the wrong GS.
158 *
159 * It is not used on Xen paravirt. When paravirt support is needed, it
160 * needs to be renamed with native_ prefix.
161 */
__rdgsbase_inactive(void)162 static noinstr unsigned long __rdgsbase_inactive(void)
163 {
164 unsigned long gsbase;
165
166 lockdep_assert_irqs_disabled();
167
168 if (!static_cpu_has(X86_FEATURE_XENPV)) {
169 native_swapgs();
170 gsbase = rdgsbase();
171 native_swapgs();
172 } else {
173 instrumentation_begin();
174 rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
175 instrumentation_end();
176 }
177
178 return gsbase;
179 }
180
181 /*
182 * Out of line to be protected from kprobes and tracing. If this would be
183 * traced or probed than any access to a per CPU variable happens with
184 * the wrong GS.
185 *
186 * It is not used on Xen paravirt. When paravirt support is needed, it
187 * needs to be renamed with native_ prefix.
188 */
__wrgsbase_inactive(unsigned long gsbase)189 static noinstr void __wrgsbase_inactive(unsigned long gsbase)
190 {
191 lockdep_assert_irqs_disabled();
192
193 if (!static_cpu_has(X86_FEATURE_XENPV)) {
194 native_swapgs();
195 wrgsbase(gsbase);
196 native_swapgs();
197 } else {
198 instrumentation_begin();
199 wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
200 instrumentation_end();
201 }
202 }
203
204 /*
205 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
206 * not available. The goal is to be reasonably fast on non-FSGSBASE systems.
207 * It's forcibly inlined because it'll generate better code and this function
208 * is hot.
209 */
save_base_legacy(struct task_struct * prev_p,unsigned short selector,enum which_selector which)210 static __always_inline void save_base_legacy(struct task_struct *prev_p,
211 unsigned short selector,
212 enum which_selector which)
213 {
214 if (likely(selector == 0)) {
215 /*
216 * On Intel (without X86_BUG_NULL_SEG), the segment base could
217 * be the pre-existing saved base or it could be zero. On AMD
218 * (with X86_BUG_NULL_SEG), the segment base could be almost
219 * anything.
220 *
221 * This branch is very hot (it's hit twice on almost every
222 * context switch between 64-bit programs), and avoiding
223 * the RDMSR helps a lot, so we just assume that whatever
224 * value is already saved is correct. This matches historical
225 * Linux behavior, so it won't break existing applications.
226 *
227 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
228 * report that the base is zero, it needs to actually be zero:
229 * see the corresponding logic in load_seg_legacy.
230 */
231 } else {
232 /*
233 * If the selector is 1, 2, or 3, then the base is zero on
234 * !X86_BUG_NULL_SEG CPUs and could be anything on
235 * X86_BUG_NULL_SEG CPUs. In the latter case, Linux
236 * has never attempted to preserve the base across context
237 * switches.
238 *
239 * If selector > 3, then it refers to a real segment, and
240 * saving the base isn't necessary.
241 */
242 if (which == FS)
243 prev_p->thread.fsbase = 0;
244 else
245 prev_p->thread.gsbase = 0;
246 }
247 }
248
save_fsgs(struct task_struct * task)249 static __always_inline void save_fsgs(struct task_struct *task)
250 {
251 savesegment(fs, task->thread.fsindex);
252 savesegment(gs, task->thread.gsindex);
253 if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
254 /*
255 * If FSGSBASE is enabled, we can't make any useful guesses
256 * about the base, and user code expects us to save the current
257 * value. Fortunately, reading the base directly is efficient.
258 */
259 task->thread.fsbase = rdfsbase();
260 task->thread.gsbase = __rdgsbase_inactive();
261 } else {
262 save_base_legacy(task, task->thread.fsindex, FS);
263 save_base_legacy(task, task->thread.gsindex, GS);
264 }
265 }
266
267 /*
268 * While a process is running,current->thread.fsbase and current->thread.gsbase
269 * may not match the corresponding CPU registers (see save_base_legacy()).
270 */
current_save_fsgs(void)271 void current_save_fsgs(void)
272 {
273 unsigned long flags;
274
275 /* Interrupts need to be off for FSGSBASE */
276 local_irq_save(flags);
277 save_fsgs(current);
278 local_irq_restore(flags);
279 }
280 #if IS_ENABLED(CONFIG_KVM)
281 EXPORT_SYMBOL_GPL(current_save_fsgs);
282 #endif
283
loadseg(enum which_selector which,unsigned short sel)284 static __always_inline void loadseg(enum which_selector which,
285 unsigned short sel)
286 {
287 if (which == FS)
288 loadsegment(fs, sel);
289 else
290 load_gs_index(sel);
291 }
292
load_seg_legacy(unsigned short prev_index,unsigned long prev_base,unsigned short next_index,unsigned long next_base,enum which_selector which)293 static __always_inline void load_seg_legacy(unsigned short prev_index,
294 unsigned long prev_base,
295 unsigned short next_index,
296 unsigned long next_base,
297 enum which_selector which)
298 {
299 if (likely(next_index <= 3)) {
300 /*
301 * The next task is using 64-bit TLS, is not using this
302 * segment at all, or is having fun with arcane CPU features.
303 */
304 if (next_base == 0) {
305 /*
306 * Nasty case: on AMD CPUs, we need to forcibly zero
307 * the base.
308 */
309 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
310 loadseg(which, __USER_DS);
311 loadseg(which, next_index);
312 } else {
313 /*
314 * We could try to exhaustively detect cases
315 * under which we can skip the segment load,
316 * but there's really only one case that matters
317 * for performance: if both the previous and
318 * next states are fully zeroed, we can skip
319 * the load.
320 *
321 * (This assumes that prev_base == 0 has no
322 * false positives. This is the case on
323 * Intel-style CPUs.)
324 */
325 if (likely(prev_index | next_index | prev_base))
326 loadseg(which, next_index);
327 }
328 } else {
329 if (prev_index != next_index)
330 loadseg(which, next_index);
331 wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
332 next_base);
333 }
334 } else {
335 /*
336 * The next task is using a real segment. Loading the selector
337 * is sufficient.
338 */
339 loadseg(which, next_index);
340 }
341 }
342
343 /*
344 * Store prev's PKRU value and load next's PKRU value if they differ. PKRU
345 * is not XSTATE managed on context switch because that would require a
346 * lookup in the task's FPU xsave buffer and require to keep that updated
347 * in various places.
348 */
x86_pkru_load(struct thread_struct * prev,struct thread_struct * next)349 static __always_inline void x86_pkru_load(struct thread_struct *prev,
350 struct thread_struct *next)
351 {
352 if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
353 return;
354
355 /* Stash the prev task's value: */
356 prev->pkru = rdpkru();
357
358 /*
359 * PKRU writes are slightly expensive. Avoid them when not
360 * strictly necessary:
361 */
362 if (prev->pkru != next->pkru)
363 wrpkru(next->pkru);
364 }
365
x86_fsgsbase_load(struct thread_struct * prev,struct thread_struct * next)366 static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
367 struct thread_struct *next)
368 {
369 if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
370 /* Update the FS and GS selectors if they could have changed. */
371 if (unlikely(prev->fsindex || next->fsindex))
372 loadseg(FS, next->fsindex);
373 if (unlikely(prev->gsindex || next->gsindex))
374 loadseg(GS, next->gsindex);
375
376 /* Update the bases. */
377 wrfsbase(next->fsbase);
378 __wrgsbase_inactive(next->gsbase);
379 } else {
380 load_seg_legacy(prev->fsindex, prev->fsbase,
381 next->fsindex, next->fsbase, FS);
382 load_seg_legacy(prev->gsindex, prev->gsbase,
383 next->gsindex, next->gsbase, GS);
384 }
385 }
386
x86_fsgsbase_read_task(struct task_struct * task,unsigned short selector)387 unsigned long x86_fsgsbase_read_task(struct task_struct *task,
388 unsigned short selector)
389 {
390 unsigned short idx = selector >> 3;
391 unsigned long base;
392
393 if (likely((selector & SEGMENT_TI_MASK) == 0)) {
394 if (unlikely(idx >= GDT_ENTRIES))
395 return 0;
396
397 /*
398 * There are no user segments in the GDT with nonzero bases
399 * other than the TLS segments.
400 */
401 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
402 return 0;
403
404 idx -= GDT_ENTRY_TLS_MIN;
405 base = get_desc_base(&task->thread.tls_array[idx]);
406 } else {
407 #ifdef CONFIG_MODIFY_LDT_SYSCALL
408 struct ldt_struct *ldt;
409
410 /*
411 * If performance here mattered, we could protect the LDT
412 * with RCU. This is a slow path, though, so we can just
413 * take the mutex.
414 */
415 mutex_lock(&task->mm->context.lock);
416 ldt = task->mm->context.ldt;
417 if (unlikely(!ldt || idx >= ldt->nr_entries))
418 base = 0;
419 else
420 base = get_desc_base(ldt->entries + idx);
421 mutex_unlock(&task->mm->context.lock);
422 #else
423 base = 0;
424 #endif
425 }
426
427 return base;
428 }
429
x86_gsbase_read_cpu_inactive(void)430 unsigned long x86_gsbase_read_cpu_inactive(void)
431 {
432 unsigned long gsbase;
433
434 if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
435 unsigned long flags;
436
437 local_irq_save(flags);
438 gsbase = __rdgsbase_inactive();
439 local_irq_restore(flags);
440 } else {
441 rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
442 }
443
444 return gsbase;
445 }
446
x86_gsbase_write_cpu_inactive(unsigned long gsbase)447 void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
448 {
449 if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
450 unsigned long flags;
451
452 local_irq_save(flags);
453 __wrgsbase_inactive(gsbase);
454 local_irq_restore(flags);
455 } else {
456 wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
457 }
458 }
459
x86_fsbase_read_task(struct task_struct * task)460 unsigned long x86_fsbase_read_task(struct task_struct *task)
461 {
462 unsigned long fsbase;
463
464 if (task == current)
465 fsbase = x86_fsbase_read_cpu();
466 else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
467 (task->thread.fsindex == 0))
468 fsbase = task->thread.fsbase;
469 else
470 fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
471
472 return fsbase;
473 }
474
x86_gsbase_read_task(struct task_struct * task)475 unsigned long x86_gsbase_read_task(struct task_struct *task)
476 {
477 unsigned long gsbase;
478
479 if (task == current)
480 gsbase = x86_gsbase_read_cpu_inactive();
481 else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
482 (task->thread.gsindex == 0))
483 gsbase = task->thread.gsbase;
484 else
485 gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
486
487 return gsbase;
488 }
489
x86_fsbase_write_task(struct task_struct * task,unsigned long fsbase)490 void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
491 {
492 WARN_ON_ONCE(task == current);
493
494 task->thread.fsbase = fsbase;
495 }
496
x86_gsbase_write_task(struct task_struct * task,unsigned long gsbase)497 void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
498 {
499 WARN_ON_ONCE(task == current);
500
501 task->thread.gsbase = gsbase;
502 }
503
504 static void
start_thread_common(struct pt_regs * regs,unsigned long new_ip,unsigned long new_sp,unsigned int _cs,unsigned int _ss,unsigned int _ds)505 start_thread_common(struct pt_regs *regs, unsigned long new_ip,
506 unsigned long new_sp,
507 unsigned int _cs, unsigned int _ss, unsigned int _ds)
508 {
509 WARN_ON_ONCE(regs != current_pt_regs());
510
511 if (static_cpu_has(X86_BUG_NULL_SEG)) {
512 /* Loading zero below won't clear the base. */
513 loadsegment(fs, __USER_DS);
514 load_gs_index(__USER_DS);
515 }
516
517 loadsegment(fs, 0);
518 loadsegment(es, _ds);
519 loadsegment(ds, _ds);
520 load_gs_index(0);
521
522 regs->ip = new_ip;
523 regs->sp = new_sp;
524 regs->cs = _cs;
525 regs->ss = _ss;
526 regs->flags = X86_EFLAGS_IF;
527 }
528
529 void
start_thread(struct pt_regs * regs,unsigned long new_ip,unsigned long new_sp)530 start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
531 {
532 start_thread_common(regs, new_ip, new_sp,
533 __USER_CS, __USER_DS, 0);
534 }
535 EXPORT_SYMBOL_GPL(start_thread);
536
537 #ifdef CONFIG_COMPAT
compat_start_thread(struct pt_regs * regs,u32 new_ip,u32 new_sp,bool x32)538 void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32)
539 {
540 start_thread_common(regs, new_ip, new_sp,
541 x32 ? __USER_CS : __USER32_CS,
542 __USER_DS, __USER_DS);
543 }
544 #endif
545
546 /*
547 * switch_to(x,y) should switch tasks from x to y.
548 *
549 * This could still be optimized:
550 * - fold all the options into a flag word and test it with a single test.
551 * - could test fs/gs bitsliced
552 *
553 * Kprobes not supported here. Set the probe on schedule instead.
554 * Function graph tracer not supported too.
555 */
556 __visible __notrace_funcgraph struct task_struct *
__switch_to(struct task_struct * prev_p,struct task_struct * next_p)557 __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
558 {
559 struct thread_struct *prev = &prev_p->thread;
560 struct thread_struct *next = &next_p->thread;
561 struct fpu *prev_fpu = &prev->fpu;
562 int cpu = smp_processor_id();
563
564 WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
565 this_cpu_read(hardirq_stack_inuse));
566
567 if (!test_thread_flag(TIF_NEED_FPU_LOAD))
568 switch_fpu_prepare(prev_fpu, cpu);
569
570 /* We must save %fs and %gs before load_TLS() because
571 * %fs and %gs may be cleared by load_TLS().
572 *
573 * (e.g. xen_load_tls())
574 */
575 save_fsgs(prev_p);
576
577 /*
578 * Load TLS before restoring any segments so that segment loads
579 * reference the correct GDT entries.
580 */
581 load_TLS(next, cpu);
582
583 /*
584 * Leave lazy mode, flushing any hypercalls made here. This
585 * must be done after loading TLS entries in the GDT but before
586 * loading segments that might reference them.
587 */
588 arch_end_context_switch(next_p);
589
590 /* Switch DS and ES.
591 *
592 * Reading them only returns the selectors, but writing them (if
593 * nonzero) loads the full descriptor from the GDT or LDT. The
594 * LDT for next is loaded in switch_mm, and the GDT is loaded
595 * above.
596 *
597 * We therefore need to write new values to the segment
598 * registers on every context switch unless both the new and old
599 * values are zero.
600 *
601 * Note that we don't need to do anything for CS and SS, as
602 * those are saved and restored as part of pt_regs.
603 */
604 savesegment(es, prev->es);
605 if (unlikely(next->es | prev->es))
606 loadsegment(es, next->es);
607
608 savesegment(ds, prev->ds);
609 if (unlikely(next->ds | prev->ds))
610 loadsegment(ds, next->ds);
611
612 x86_fsgsbase_load(prev, next);
613
614 x86_pkru_load(prev, next);
615
616 /*
617 * Switch the PDA and FPU contexts.
618 */
619 this_cpu_write(current_task, next_p);
620 this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p));
621
622 switch_fpu_finish();
623
624 /* Reload sp0. */
625 update_task_stack(next_p);
626
627 switch_to_extra(prev_p, next_p);
628
629 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
630 /*
631 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
632 * does not update the cached descriptor. As a result, if we
633 * do SYSRET while SS is NULL, we'll end up in user mode with
634 * SS apparently equal to __USER_DS but actually unusable.
635 *
636 * The straightforward workaround would be to fix it up just
637 * before SYSRET, but that would slow down the system call
638 * fast paths. Instead, we ensure that SS is never NULL in
639 * system call context. We do this by replacing NULL SS
640 * selectors at every context switch. SYSCALL sets up a valid
641 * SS, so the only way to get NULL is to re-enter the kernel
642 * from CPL 3 through an interrupt. Since that can't happen
643 * in the same task as a running syscall, we are guaranteed to
644 * context switch between every interrupt vector entry and a
645 * subsequent SYSRET.
646 *
647 * We read SS first because SS reads are much faster than
648 * writes. Out of caution, we force SS to __KERNEL_DS even if
649 * it previously had a different non-NULL value.
650 */
651 unsigned short ss_sel;
652 savesegment(ss, ss_sel);
653 if (ss_sel != __KERNEL_DS)
654 loadsegment(ss, __KERNEL_DS);
655 }
656
657 /* Load the Intel cache allocation PQR MSR. */
658 resctrl_sched_in();
659
660 return prev_p;
661 }
662
set_personality_64bit(void)663 void set_personality_64bit(void)
664 {
665 /* inherit personality from parent */
666
667 /* Make sure to be in 64bit mode */
668 clear_thread_flag(TIF_ADDR32);
669 /* Pretend that this comes from a 64bit execve */
670 task_pt_regs(current)->orig_ax = __NR_execve;
671 current_thread_info()->status &= ~TS_COMPAT;
672 if (current->mm)
673 current->mm->context.flags = MM_CONTEXT_HAS_VSYSCALL;
674
675 /* TBD: overwrites user setup. Should have two bits.
676 But 64bit processes have always behaved this way,
677 so it's not too bad. The main problem is just that
678 32bit children are affected again. */
679 current->personality &= ~READ_IMPLIES_EXEC;
680 }
681
__set_personality_x32(void)682 static void __set_personality_x32(void)
683 {
684 #ifdef CONFIG_X86_X32
685 if (current->mm)
686 current->mm->context.flags = 0;
687
688 current->personality &= ~READ_IMPLIES_EXEC;
689 /*
690 * in_32bit_syscall() uses the presence of the x32 syscall bit
691 * flag to determine compat status. The x86 mmap() code relies on
692 * the syscall bitness so set x32 syscall bit right here to make
693 * in_32bit_syscall() work during exec().
694 *
695 * Pretend to come from a x32 execve.
696 */
697 task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
698 current_thread_info()->status &= ~TS_COMPAT;
699 #endif
700 }
701
__set_personality_ia32(void)702 static void __set_personality_ia32(void)
703 {
704 #ifdef CONFIG_IA32_EMULATION
705 if (current->mm) {
706 /*
707 * uprobes applied to this MM need to know this and
708 * cannot use user_64bit_mode() at that time.
709 */
710 current->mm->context.flags = MM_CONTEXT_UPROBE_IA32;
711 }
712
713 current->personality |= force_personality32;
714 /* Prepare the first "return" to user space */
715 task_pt_regs(current)->orig_ax = __NR_ia32_execve;
716 current_thread_info()->status |= TS_COMPAT;
717 #endif
718 }
719
set_personality_ia32(bool x32)720 void set_personality_ia32(bool x32)
721 {
722 /* Make sure to be in 32bit mode */
723 set_thread_flag(TIF_ADDR32);
724
725 if (x32)
726 __set_personality_x32();
727 else
728 __set_personality_ia32();
729 }
730 EXPORT_SYMBOL_GPL(set_personality_ia32);
731
732 #ifdef CONFIG_CHECKPOINT_RESTORE
prctl_map_vdso(const struct vdso_image * image,unsigned long addr)733 static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
734 {
735 int ret;
736
737 ret = map_vdso_once(image, addr);
738 if (ret)
739 return ret;
740
741 return (long)image->size;
742 }
743 #endif
744
do_arch_prctl_64(struct task_struct * task,int option,unsigned long arg2)745 long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
746 {
747 int ret = 0;
748
749 switch (option) {
750 case ARCH_SET_GS: {
751 if (unlikely(arg2 >= TASK_SIZE_MAX))
752 return -EPERM;
753
754 preempt_disable();
755 /*
756 * ARCH_SET_GS has always overwritten the index
757 * and the base. Zero is the most sensible value
758 * to put in the index, and is the only value that
759 * makes any sense if FSGSBASE is unavailable.
760 */
761 if (task == current) {
762 loadseg(GS, 0);
763 x86_gsbase_write_cpu_inactive(arg2);
764
765 /*
766 * On non-FSGSBASE systems, save_base_legacy() expects
767 * that we also fill in thread.gsbase.
768 */
769 task->thread.gsbase = arg2;
770
771 } else {
772 task->thread.gsindex = 0;
773 x86_gsbase_write_task(task, arg2);
774 }
775 preempt_enable();
776 break;
777 }
778 case ARCH_SET_FS: {
779 /*
780 * Not strictly needed for %fs, but do it for symmetry
781 * with %gs
782 */
783 if (unlikely(arg2 >= TASK_SIZE_MAX))
784 return -EPERM;
785
786 preempt_disable();
787 /*
788 * Set the selector to 0 for the same reason
789 * as %gs above.
790 */
791 if (task == current) {
792 loadseg(FS, 0);
793 x86_fsbase_write_cpu(arg2);
794
795 /*
796 * On non-FSGSBASE systems, save_base_legacy() expects
797 * that we also fill in thread.fsbase.
798 */
799 task->thread.fsbase = arg2;
800 } else {
801 task->thread.fsindex = 0;
802 x86_fsbase_write_task(task, arg2);
803 }
804 preempt_enable();
805 break;
806 }
807 case ARCH_GET_FS: {
808 unsigned long base = x86_fsbase_read_task(task);
809
810 ret = put_user(base, (unsigned long __user *)arg2);
811 break;
812 }
813 case ARCH_GET_GS: {
814 unsigned long base = x86_gsbase_read_task(task);
815
816 ret = put_user(base, (unsigned long __user *)arg2);
817 break;
818 }
819
820 #ifdef CONFIG_CHECKPOINT_RESTORE
821 # ifdef CONFIG_X86_X32_ABI
822 case ARCH_MAP_VDSO_X32:
823 return prctl_map_vdso(&vdso_image_x32, arg2);
824 # endif
825 # if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
826 case ARCH_MAP_VDSO_32:
827 return prctl_map_vdso(&vdso_image_32, arg2);
828 # endif
829 case ARCH_MAP_VDSO_64:
830 return prctl_map_vdso(&vdso_image_64, arg2);
831 #endif
832
833 default:
834 ret = -EINVAL;
835 break;
836 }
837
838 return ret;
839 }
840
SYSCALL_DEFINE2(arch_prctl,int,option,unsigned long,arg2)841 SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
842 {
843 long ret;
844
845 ret = do_arch_prctl_64(current, option, arg2);
846 if (ret == -EINVAL)
847 ret = do_arch_prctl_common(current, option, arg2);
848
849 return ret;
850 }
851
852 #ifdef CONFIG_IA32_EMULATION
COMPAT_SYSCALL_DEFINE2(arch_prctl,int,option,unsigned long,arg2)853 COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
854 {
855 return do_arch_prctl_common(current, option, arg2);
856 }
857 #endif
858
KSTK_ESP(struct task_struct * task)859 unsigned long KSTK_ESP(struct task_struct *task)
860 {
861 return task_pt_regs(task)->sp;
862 }
863