1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * USB HOST XHCI Controller stack
4  *
5  * Based on xHCI host controller driver in linux-kernel
6  * by Sarah Sharp.
7  *
8  * Copyright (C) 2008 Intel Corp.
9  * Author: Sarah Sharp
10  *
11  * Copyright (C) 2013 Samsung Electronics Co.Ltd
12  * Authors: Vivek Gautam <gautam.vivek@samsung.com>
13  *	    Vikas Sajjan <vikas.sajjan@samsung.com>
14  */
15 
16 #include <common.h>
17 #include <cpu_func.h>
18 #include <dm.h>
19 #include <log.h>
20 #include <asm/byteorder.h>
21 #include <usb.h>
22 #include <malloc.h>
23 #include <asm/cache.h>
24 #include <linux/bug.h>
25 #include <linux/errno.h>
26 
27 #include <usb/xhci.h>
28 
29 #define CACHELINE_SIZE		CONFIG_SYS_CACHELINE_SIZE
30 /**
31  * flushes the address passed till the length
32  *
33  * @param addr	pointer to memory region to be flushed
34  * @param len	the length of the cache line to be flushed
35  * @return none
36  */
xhci_flush_cache(uintptr_t addr,u32 len)37 void xhci_flush_cache(uintptr_t addr, u32 len)
38 {
39 	BUG_ON((void *)addr == NULL || len == 0);
40 
41 	flush_dcache_range(addr & ~(CACHELINE_SIZE - 1),
42 				ALIGN(addr + len, CACHELINE_SIZE));
43 }
44 
45 /**
46  * invalidates the address passed till the length
47  *
48  * @param addr	pointer to memory region to be invalidates
49  * @param len	the length of the cache line to be invalidated
50  * @return none
51  */
xhci_inval_cache(uintptr_t addr,u32 len)52 void xhci_inval_cache(uintptr_t addr, u32 len)
53 {
54 	BUG_ON((void *)addr == NULL || len == 0);
55 
56 	invalidate_dcache_range(addr & ~(CACHELINE_SIZE - 1),
57 				ALIGN(addr + len, CACHELINE_SIZE));
58 }
59 
60 
61 /**
62  * frees the "segment" pointer passed
63  *
64  * @param ptr	pointer to "segement" to be freed
65  * @return none
66  */
xhci_segment_free(struct xhci_segment * seg)67 static void xhci_segment_free(struct xhci_segment *seg)
68 {
69 	free(seg->trbs);
70 	seg->trbs = NULL;
71 
72 	free(seg);
73 }
74 
75 /**
76  * frees the "ring" pointer passed
77  *
78  * @param ptr	pointer to "ring" to be freed
79  * @return none
80  */
xhci_ring_free(struct xhci_ring * ring)81 static void xhci_ring_free(struct xhci_ring *ring)
82 {
83 	struct xhci_segment *seg;
84 	struct xhci_segment *first_seg;
85 
86 	BUG_ON(!ring);
87 
88 	first_seg = ring->first_seg;
89 	seg = first_seg->next;
90 	while (seg != first_seg) {
91 		struct xhci_segment *next = seg->next;
92 		xhci_segment_free(seg);
93 		seg = next;
94 	}
95 	xhci_segment_free(first_seg);
96 
97 	free(ring);
98 }
99 
100 /**
101  * Free the scratchpad buffer array and scratchpad buffers
102  *
103  * @ctrl	host controller data structure
104  * @return	none
105  */
xhci_scratchpad_free(struct xhci_ctrl * ctrl)106 static void xhci_scratchpad_free(struct xhci_ctrl *ctrl)
107 {
108 	if (!ctrl->scratchpad)
109 		return;
110 
111 	ctrl->dcbaa->dev_context_ptrs[0] = 0;
112 
113 	free(xhci_bus_to_virt(ctrl, le64_to_cpu(ctrl->scratchpad->sp_array[0])));
114 	free(ctrl->scratchpad->sp_array);
115 	free(ctrl->scratchpad);
116 	ctrl->scratchpad = NULL;
117 }
118 
119 /**
120  * frees the "xhci_container_ctx" pointer passed
121  *
122  * @param ptr	pointer to "xhci_container_ctx" to be freed
123  * @return none
124  */
xhci_free_container_ctx(struct xhci_container_ctx * ctx)125 static void xhci_free_container_ctx(struct xhci_container_ctx *ctx)
126 {
127 	free(ctx->bytes);
128 	free(ctx);
129 }
130 
131 /**
132  * frees the virtual devices for "xhci_ctrl" pointer passed
133  *
134  * @param ptr	pointer to "xhci_ctrl" whose virtual devices are to be freed
135  * @return none
136  */
xhci_free_virt_devices(struct xhci_ctrl * ctrl)137 static void xhci_free_virt_devices(struct xhci_ctrl *ctrl)
138 {
139 	int i;
140 	int slot_id;
141 	struct xhci_virt_device *virt_dev;
142 
143 	/*
144 	 * refactored here to loop through all virt_dev
145 	 * Slot ID 0 is reserved
146 	 */
147 	for (slot_id = 0; slot_id < MAX_HC_SLOTS; slot_id++) {
148 		virt_dev = ctrl->devs[slot_id];
149 		if (!virt_dev)
150 			continue;
151 
152 		ctrl->dcbaa->dev_context_ptrs[slot_id] = 0;
153 
154 		for (i = 0; i < 31; ++i)
155 			if (virt_dev->eps[i].ring)
156 				xhci_ring_free(virt_dev->eps[i].ring);
157 
158 		if (virt_dev->in_ctx)
159 			xhci_free_container_ctx(virt_dev->in_ctx);
160 		if (virt_dev->out_ctx)
161 			xhci_free_container_ctx(virt_dev->out_ctx);
162 
163 		free(virt_dev);
164 		/* make sure we are pointing to NULL */
165 		ctrl->devs[slot_id] = NULL;
166 	}
167 }
168 
169 /**
170  * frees all the memory allocated
171  *
172  * @param ptr	pointer to "xhci_ctrl" to be cleaned up
173  * @return none
174  */
xhci_cleanup(struct xhci_ctrl * ctrl)175 void xhci_cleanup(struct xhci_ctrl *ctrl)
176 {
177 	xhci_ring_free(ctrl->event_ring);
178 	xhci_ring_free(ctrl->cmd_ring);
179 	xhci_scratchpad_free(ctrl);
180 	xhci_free_virt_devices(ctrl);
181 	free(ctrl->erst.entries);
182 	free(ctrl->dcbaa);
183 	if (reset_valid(&ctrl->reset))
184 		reset_free(&ctrl->reset);
185 	memset(ctrl, '\0', sizeof(struct xhci_ctrl));
186 }
187 
188 /**
189  * Malloc the aligned memory
190  *
191  * @param size	size of memory to be allocated
192  * @return allocates the memory and returns the aligned pointer
193  */
xhci_malloc(unsigned int size)194 static void *xhci_malloc(unsigned int size)
195 {
196 	void *ptr;
197 	size_t cacheline_size = max(XHCI_ALIGNMENT, CACHELINE_SIZE);
198 
199 	ptr = memalign(cacheline_size, ALIGN(size, cacheline_size));
200 	BUG_ON(!ptr);
201 	memset(ptr, '\0', size);
202 
203 	xhci_flush_cache((uintptr_t)ptr, size);
204 
205 	return ptr;
206 }
207 
208 /**
209  * Make the prev segment point to the next segment.
210  * Change the last TRB in the prev segment to be a Link TRB which points to the
211  * address of the next segment.  The caller needs to set any Link TRB
212  * related flags, such as End TRB, Toggle Cycle, and no snoop.
213  *
214  * @param prev	pointer to the previous segment
215  * @param next	pointer to the next segment
216  * @param link_trbs	flag to indicate whether to link the trbs or NOT
217  * @return none
218  */
xhci_link_segments(struct xhci_ctrl * ctrl,struct xhci_segment * prev,struct xhci_segment * next,bool link_trbs)219 static void xhci_link_segments(struct xhci_ctrl *ctrl, struct xhci_segment *prev,
220 			       struct xhci_segment *next, bool link_trbs)
221 {
222 	u32 val;
223 	u64 val_64 = 0;
224 
225 	if (!prev || !next)
226 		return;
227 	prev->next = next;
228 	if (link_trbs) {
229 		val_64 = xhci_virt_to_bus(ctrl, next->trbs);
230 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
231 			cpu_to_le64(val_64);
232 
233 		/*
234 		 * Set the last TRB in the segment to
235 		 * have a TRB type ID of Link TRB
236 		 */
237 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
238 		val &= ~TRB_TYPE_BITMASK;
239 		val |= TRB_TYPE(TRB_LINK);
240 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
241 	}
242 }
243 
244 /**
245  * Initialises the Ring's enqueue,dequeue,enq_seg pointers
246  *
247  * @param ring	pointer to the RING to be intialised
248  * @return none
249  */
xhci_initialize_ring_info(struct xhci_ring * ring)250 static void xhci_initialize_ring_info(struct xhci_ring *ring)
251 {
252 	/*
253 	 * The ring is empty, so the enqueue pointer == dequeue pointer
254 	 */
255 	ring->enqueue = ring->first_seg->trbs;
256 	ring->enq_seg = ring->first_seg;
257 	ring->dequeue = ring->enqueue;
258 	ring->deq_seg = ring->first_seg;
259 
260 	/*
261 	 * The ring is initialized to 0. The producer must write 1 to the
262 	 * cycle bit to handover ownership of the TRB, so PCS = 1.
263 	 * The consumer must compare CCS to the cycle bit to
264 	 * check ownership, so CCS = 1.
265 	 */
266 	ring->cycle_state = 1;
267 }
268 
269 /**
270  * Allocates a generic ring segment from the ring pool, sets the dma address,
271  * initializes the segment to zero, and sets the private next pointer to NULL.
272  * Section 4.11.1.1:
273  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
274  *
275  * @param	none
276  * @return pointer to the newly allocated SEGMENT
277  */
xhci_segment_alloc(void)278 static struct xhci_segment *xhci_segment_alloc(void)
279 {
280 	struct xhci_segment *seg;
281 
282 	seg = malloc(sizeof(struct xhci_segment));
283 	BUG_ON(!seg);
284 
285 	seg->trbs = xhci_malloc(SEGMENT_SIZE);
286 
287 	seg->next = NULL;
288 
289 	return seg;
290 }
291 
292 /**
293  * Create a new ring with zero or more segments.
294  * TODO: current code only uses one-time-allocated single-segment rings
295  * of 1KB anyway, so we might as well get rid of all the segment and
296  * linking code (and maybe increase the size a bit, e.g. 4KB).
297  *
298  *
299  * Link each segment together into a ring.
300  * Set the end flag and the cycle toggle bit on the last segment.
301  * See section 4.9.2 and figures 15 and 16 of XHCI spec rev1.0.
302  *
303  * @param num_segs	number of segments in the ring
304  * @param link_trbs	flag to indicate whether to link the trbs or NOT
305  * @return pointer to the newly created RING
306  */
xhci_ring_alloc(struct xhci_ctrl * ctrl,unsigned int num_segs,bool link_trbs)307 struct xhci_ring *xhci_ring_alloc(struct xhci_ctrl *ctrl, unsigned int num_segs,
308 				  bool link_trbs)
309 {
310 	struct xhci_ring *ring;
311 	struct xhci_segment *prev;
312 
313 	ring = malloc(sizeof(struct xhci_ring));
314 	BUG_ON(!ring);
315 
316 	if (num_segs == 0)
317 		return ring;
318 
319 	ring->first_seg = xhci_segment_alloc();
320 	BUG_ON(!ring->first_seg);
321 
322 	num_segs--;
323 
324 	prev = ring->first_seg;
325 	while (num_segs > 0) {
326 		struct xhci_segment *next;
327 
328 		next = xhci_segment_alloc();
329 		BUG_ON(!next);
330 
331 		xhci_link_segments(ctrl, prev, next, link_trbs);
332 
333 		prev = next;
334 		num_segs--;
335 	}
336 	xhci_link_segments(ctrl, prev, ring->first_seg, link_trbs);
337 	if (link_trbs) {
338 		/* See section 4.9.2.1 and 6.4.4.1 */
339 		prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
340 					cpu_to_le32(LINK_TOGGLE);
341 	}
342 	xhci_initialize_ring_info(ring);
343 
344 	return ring;
345 }
346 
347 /**
348  * Set up the scratchpad buffer array and scratchpad buffers
349  *
350  * @ctrl	host controller data structure
351  * @return	-ENOMEM if buffer allocation fails, 0 on success
352  */
xhci_scratchpad_alloc(struct xhci_ctrl * ctrl)353 static int xhci_scratchpad_alloc(struct xhci_ctrl *ctrl)
354 {
355 	struct xhci_hccr *hccr = ctrl->hccr;
356 	struct xhci_hcor *hcor = ctrl->hcor;
357 	struct xhci_scratchpad *scratchpad;
358 	uint64_t val_64;
359 	int num_sp;
360 	uint32_t page_size;
361 	void *buf;
362 	int i;
363 
364 	num_sp = HCS_MAX_SCRATCHPAD(xhci_readl(&hccr->cr_hcsparams2));
365 	if (!num_sp)
366 		return 0;
367 
368 	scratchpad = malloc(sizeof(*scratchpad));
369 	if (!scratchpad)
370 		goto fail_sp;
371 	ctrl->scratchpad = scratchpad;
372 
373 	scratchpad->sp_array = xhci_malloc(num_sp * sizeof(u64));
374 	if (!scratchpad->sp_array)
375 		goto fail_sp2;
376 
377 	val_64 = xhci_virt_to_bus(ctrl, scratchpad->sp_array);
378 	ctrl->dcbaa->dev_context_ptrs[0] = cpu_to_le64(val_64);
379 
380 	xhci_flush_cache((uintptr_t)&ctrl->dcbaa->dev_context_ptrs[0],
381 		sizeof(ctrl->dcbaa->dev_context_ptrs[0]));
382 
383 	page_size = xhci_readl(&hcor->or_pagesize) & 0xffff;
384 	for (i = 0; i < 16; i++) {
385 		if ((0x1 & page_size) != 0)
386 			break;
387 		page_size = page_size >> 1;
388 	}
389 	BUG_ON(i == 16);
390 
391 	page_size = 1 << (i + 12);
392 	buf = memalign(page_size, num_sp * page_size);
393 	if (!buf)
394 		goto fail_sp3;
395 	memset(buf, '\0', num_sp * page_size);
396 	xhci_flush_cache((uintptr_t)buf, num_sp * page_size);
397 
398 	for (i = 0; i < num_sp; i++) {
399 		val_64 = xhci_virt_to_bus(ctrl, buf + i * page_size);
400 		scratchpad->sp_array[i] = cpu_to_le64(val_64);
401 	}
402 
403 	xhci_flush_cache((uintptr_t)scratchpad->sp_array,
404 			 sizeof(u64) * num_sp);
405 
406 	return 0;
407 
408 fail_sp3:
409 	free(scratchpad->sp_array);
410 
411 fail_sp2:
412 	free(scratchpad);
413 	ctrl->scratchpad = NULL;
414 
415 fail_sp:
416 	return -ENOMEM;
417 }
418 
419 /**
420  * Allocates the Container context
421  *
422  * @param ctrl	Host controller data structure
423  * @param type type of XHCI Container Context
424  * @return NULL if failed else pointer to the context on success
425  */
426 static struct xhci_container_ctx
xhci_alloc_container_ctx(struct xhci_ctrl * ctrl,int type)427 		*xhci_alloc_container_ctx(struct xhci_ctrl *ctrl, int type)
428 {
429 	struct xhci_container_ctx *ctx;
430 
431 	ctx = malloc(sizeof(struct xhci_container_ctx));
432 	BUG_ON(!ctx);
433 
434 	BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
435 	ctx->type = type;
436 	ctx->size = (MAX_EP_CTX_NUM + 1) *
437 			CTX_SIZE(readl(&ctrl->hccr->cr_hccparams));
438 	if (type == XHCI_CTX_TYPE_INPUT)
439 		ctx->size += CTX_SIZE(readl(&ctrl->hccr->cr_hccparams));
440 
441 	ctx->bytes = xhci_malloc(ctx->size);
442 
443 	return ctx;
444 }
445 
446 /**
447  * Allocating virtual device
448  *
449  * @param udev	pointer to USB deivce structure
450  * @return 0 on success else -1 on failure
451  */
xhci_alloc_virt_device(struct xhci_ctrl * ctrl,unsigned int slot_id)452 int xhci_alloc_virt_device(struct xhci_ctrl *ctrl, unsigned int slot_id)
453 {
454 	u64 byte_64 = 0;
455 	struct xhci_virt_device *virt_dev;
456 
457 	/* Slot ID 0 is reserved */
458 	if (ctrl->devs[slot_id]) {
459 		printf("Virt dev for slot[%d] already allocated\n", slot_id);
460 		return -EEXIST;
461 	}
462 
463 	ctrl->devs[slot_id] = malloc(sizeof(struct xhci_virt_device));
464 
465 	if (!ctrl->devs[slot_id]) {
466 		puts("Failed to allocate virtual device\n");
467 		return -ENOMEM;
468 	}
469 
470 	memset(ctrl->devs[slot_id], 0, sizeof(struct xhci_virt_device));
471 	virt_dev = ctrl->devs[slot_id];
472 
473 	/* Allocate the (output) device context that will be used in the HC. */
474 	virt_dev->out_ctx = xhci_alloc_container_ctx(ctrl,
475 					XHCI_CTX_TYPE_DEVICE);
476 	if (!virt_dev->out_ctx) {
477 		puts("Failed to allocate out context for virt dev\n");
478 		return -ENOMEM;
479 	}
480 
481 	/* Allocate the (input) device context for address device command */
482 	virt_dev->in_ctx = xhci_alloc_container_ctx(ctrl,
483 					XHCI_CTX_TYPE_INPUT);
484 	if (!virt_dev->in_ctx) {
485 		puts("Failed to allocate in context for virt dev\n");
486 		return -ENOMEM;
487 	}
488 
489 	/* Allocate endpoint 0 ring */
490 	virt_dev->eps[0].ring = xhci_ring_alloc(ctrl, 1, true);
491 
492 	byte_64 = xhci_virt_to_bus(ctrl, virt_dev->out_ctx->bytes);
493 
494 	/* Point to output device context in dcbaa. */
495 	ctrl->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(byte_64);
496 
497 	xhci_flush_cache((uintptr_t)&ctrl->dcbaa->dev_context_ptrs[slot_id],
498 			 sizeof(__le64));
499 	return 0;
500 }
501 
502 /**
503  * Allocates the necessary data structures
504  * for XHCI host controller
505  *
506  * @param ctrl	Host controller data structure
507  * @param hccr	pointer to HOST Controller Control Registers
508  * @param hcor	pointer to HOST Controller Operational Registers
509  * @return 0 if successful else -1 on failure
510  */
xhci_mem_init(struct xhci_ctrl * ctrl,struct xhci_hccr * hccr,struct xhci_hcor * hcor)511 int xhci_mem_init(struct xhci_ctrl *ctrl, struct xhci_hccr *hccr,
512 					struct xhci_hcor *hcor)
513 {
514 	uint64_t val_64;
515 	uint64_t trb_64;
516 	uint32_t val;
517 	uint64_t deq;
518 	int i;
519 	struct xhci_segment *seg;
520 
521 	/* DCBAA initialization */
522 	ctrl->dcbaa = xhci_malloc(sizeof(struct xhci_device_context_array));
523 	if (ctrl->dcbaa == NULL) {
524 		puts("unable to allocate DCBA\n");
525 		return -ENOMEM;
526 	}
527 
528 	val_64 = xhci_virt_to_bus(ctrl, ctrl->dcbaa);
529 	/* Set the pointer in DCBAA register */
530 	xhci_writeq(&hcor->or_dcbaap, val_64);
531 
532 	/* Command ring control pointer register initialization */
533 	ctrl->cmd_ring = xhci_ring_alloc(ctrl, 1, true);
534 
535 	/* Set the address in the Command Ring Control register */
536 	trb_64 = xhci_virt_to_bus(ctrl, ctrl->cmd_ring->first_seg->trbs);
537 	val_64 = xhci_readq(&hcor->or_crcr);
538 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
539 		(trb_64 & (u64) ~CMD_RING_RSVD_BITS) |
540 		ctrl->cmd_ring->cycle_state;
541 	xhci_writeq(&hcor->or_crcr, val_64);
542 
543 	/* write the address of db register */
544 	val = xhci_readl(&hccr->cr_dboff);
545 	val &= DBOFF_MASK;
546 	ctrl->dba = (struct xhci_doorbell_array *)((char *)hccr + val);
547 
548 	/* write the address of runtime register */
549 	val = xhci_readl(&hccr->cr_rtsoff);
550 	val &= RTSOFF_MASK;
551 	ctrl->run_regs = (struct xhci_run_regs *)((char *)hccr + val);
552 
553 	/* writting the address of ir_set structure */
554 	ctrl->ir_set = &ctrl->run_regs->ir_set[0];
555 
556 	/* Event ring does not maintain link TRB */
557 	ctrl->event_ring = xhci_ring_alloc(ctrl, ERST_NUM_SEGS, false);
558 	ctrl->erst.entries = xhci_malloc(sizeof(struct xhci_erst_entry) *
559 					 ERST_NUM_SEGS);
560 
561 	ctrl->erst.num_entries = ERST_NUM_SEGS;
562 
563 	for (val = 0, seg = ctrl->event_ring->first_seg;
564 			val < ERST_NUM_SEGS;
565 			val++) {
566 		struct xhci_erst_entry *entry = &ctrl->erst.entries[val];
567 		trb_64 = xhci_virt_to_bus(ctrl, seg->trbs);
568 		entry->seg_addr = cpu_to_le64(trb_64);
569 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
570 		entry->rsvd = 0;
571 		seg = seg->next;
572 	}
573 	xhci_flush_cache((uintptr_t)ctrl->erst.entries,
574 			 ERST_NUM_SEGS * sizeof(struct xhci_erst_entry));
575 
576 	deq = xhci_virt_to_bus(ctrl, ctrl->event_ring->dequeue);
577 
578 	/* Update HC event ring dequeue pointer */
579 	xhci_writeq(&ctrl->ir_set->erst_dequeue,
580 				(u64)deq & (u64)~ERST_PTR_MASK);
581 
582 	/* set ERST count with the number of entries in the segment table */
583 	val = xhci_readl(&ctrl->ir_set->erst_size);
584 	val &= ERST_SIZE_MASK;
585 	val |= ERST_NUM_SEGS;
586 	xhci_writel(&ctrl->ir_set->erst_size, val);
587 
588 	/* this is the event ring segment table pointer */
589 	val_64 = xhci_readq(&ctrl->ir_set->erst_base);
590 	val_64 &= ERST_PTR_MASK;
591 	val_64 |= xhci_virt_to_bus(ctrl, ctrl->erst.entries) & ~ERST_PTR_MASK;
592 
593 	xhci_writeq(&ctrl->ir_set->erst_base, val_64);
594 
595 	/* set up the scratchpad buffer array and scratchpad buffers */
596 	xhci_scratchpad_alloc(ctrl);
597 
598 	/* initializing the virtual devices to NULL */
599 	for (i = 0; i < MAX_HC_SLOTS; ++i)
600 		ctrl->devs[i] = NULL;
601 
602 	/*
603 	 * Just Zero'ing this register completely,
604 	 * or some spurious Device Notification Events
605 	 * might screw things here.
606 	 */
607 	xhci_writel(&hcor->or_dnctrl, 0x0);
608 
609 	return 0;
610 }
611 
612 /**
613  * Give the input control context for the passed container context
614  *
615  * @param ctx	pointer to the context
616  * @return pointer to the Input control context data
617  */
618 struct xhci_input_control_ctx
xhci_get_input_control_ctx(struct xhci_container_ctx * ctx)619 		*xhci_get_input_control_ctx(struct xhci_container_ctx *ctx)
620 {
621 	BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
622 	return (struct xhci_input_control_ctx *)ctx->bytes;
623 }
624 
625 /**
626  * Give the slot context for the passed container context
627  *
628  * @param ctrl	Host controller data structure
629  * @param ctx	pointer to the context
630  * @return pointer to the slot control context data
631  */
xhci_get_slot_ctx(struct xhci_ctrl * ctrl,struct xhci_container_ctx * ctx)632 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_ctrl *ctrl,
633 				struct xhci_container_ctx *ctx)
634 {
635 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
636 		return (struct xhci_slot_ctx *)ctx->bytes;
637 
638 	return (struct xhci_slot_ctx *)
639 		(ctx->bytes + CTX_SIZE(readl(&ctrl->hccr->cr_hccparams)));
640 }
641 
642 /**
643  * Gets the EP context from based on the ep_index
644  *
645  * @param ctrl	Host controller data structure
646  * @param ctx	context container
647  * @param ep_index	index of the endpoint
648  * @return pointer to the End point context
649  */
xhci_get_ep_ctx(struct xhci_ctrl * ctrl,struct xhci_container_ctx * ctx,unsigned int ep_index)650 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_ctrl *ctrl,
651 				    struct xhci_container_ctx *ctx,
652 				    unsigned int ep_index)
653 {
654 	/* increment ep index by offset of start of ep ctx array */
655 	ep_index++;
656 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
657 		ep_index++;
658 
659 	return (struct xhci_ep_ctx *)
660 		(ctx->bytes +
661 		(ep_index * CTX_SIZE(readl(&ctrl->hccr->cr_hccparams))));
662 }
663 
664 /**
665  * Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
666  * Useful when you want to change one particular aspect of the endpoint
667  * and then issue a configure endpoint command.
668  *
669  * @param ctrl	Host controller data structure
670  * @param in_ctx contains the input context
671  * @param out_ctx contains the input context
672  * @param ep_index index of the end point
673  * @return none
674  */
xhci_endpoint_copy(struct xhci_ctrl * ctrl,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,unsigned int ep_index)675 void xhci_endpoint_copy(struct xhci_ctrl *ctrl,
676 			struct xhci_container_ctx *in_ctx,
677 			struct xhci_container_ctx *out_ctx,
678 			unsigned int ep_index)
679 {
680 	struct xhci_ep_ctx *out_ep_ctx;
681 	struct xhci_ep_ctx *in_ep_ctx;
682 
683 	out_ep_ctx = xhci_get_ep_ctx(ctrl, out_ctx, ep_index);
684 	in_ep_ctx = xhci_get_ep_ctx(ctrl, in_ctx, ep_index);
685 
686 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
687 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
688 	in_ep_ctx->deq = out_ep_ctx->deq;
689 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
690 }
691 
692 /**
693  * Copy output xhci_slot_ctx to the input xhci_slot_ctx.
694  * Useful when you want to change one particular aspect of the endpoint
695  * and then issue a configure endpoint command.
696  * Only the context entries field matters, but
697  * we'll copy the whole thing anyway.
698  *
699  * @param ctrl	Host controller data structure
700  * @param in_ctx contains the inpout context
701  * @param out_ctx contains the inpout context
702  * @return none
703  */
xhci_slot_copy(struct xhci_ctrl * ctrl,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx)704 void xhci_slot_copy(struct xhci_ctrl *ctrl, struct xhci_container_ctx *in_ctx,
705 					struct xhci_container_ctx *out_ctx)
706 {
707 	struct xhci_slot_ctx *in_slot_ctx;
708 	struct xhci_slot_ctx *out_slot_ctx;
709 
710 	in_slot_ctx = xhci_get_slot_ctx(ctrl, in_ctx);
711 	out_slot_ctx = xhci_get_slot_ctx(ctrl, out_ctx);
712 
713 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
714 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
715 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
716 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
717 }
718 
719 /**
720  * Setup an xHCI virtual device for a Set Address command
721  *
722  * @param udev pointer to the Device Data Structure
723  * @return returns negative value on failure else 0 on success
724  */
xhci_setup_addressable_virt_dev(struct xhci_ctrl * ctrl,struct usb_device * udev,int hop_portnr)725 void xhci_setup_addressable_virt_dev(struct xhci_ctrl *ctrl,
726 				     struct usb_device *udev, int hop_portnr)
727 {
728 	struct xhci_virt_device *virt_dev;
729 	struct xhci_ep_ctx *ep0_ctx;
730 	struct xhci_slot_ctx *slot_ctx;
731 	u32 port_num = 0;
732 	u64 trb_64 = 0;
733 	int slot_id = udev->slot_id;
734 	int speed = udev->speed;
735 	int route = 0;
736 #if CONFIG_IS_ENABLED(DM_USB)
737 	struct usb_device *dev = udev;
738 	struct usb_hub_device *hub;
739 #endif
740 
741 	virt_dev = ctrl->devs[slot_id];
742 
743 	BUG_ON(!virt_dev);
744 
745 	/* Extract the EP0 and Slot Ctrl */
746 	ep0_ctx = xhci_get_ep_ctx(ctrl, virt_dev->in_ctx, 0);
747 	slot_ctx = xhci_get_slot_ctx(ctrl, virt_dev->in_ctx);
748 
749 	/* Only the control endpoint is valid - one endpoint context */
750 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
751 
752 #if CONFIG_IS_ENABLED(DM_USB)
753 	/* Calculate the route string for this device */
754 	port_num = dev->portnr;
755 	while (!usb_hub_is_root_hub(dev->dev)) {
756 		hub = dev_get_uclass_priv(dev->dev);
757 		/*
758 		 * Each hub in the topology is expected to have no more than
759 		 * 15 ports in order for the route string of a device to be
760 		 * unique. SuperSpeed hubs are restricted to only having 15
761 		 * ports, but FS/LS/HS hubs are not. The xHCI specification
762 		 * says that if the port number the device is greater than 15,
763 		 * that portion of the route string shall be set to 15.
764 		 */
765 		if (port_num > 15)
766 			port_num = 15;
767 		route |= port_num << (hub->hub_depth * 4);
768 		dev = dev_get_parent_priv(dev->dev);
769 		port_num = dev->portnr;
770 		dev = dev_get_parent_priv(dev->dev->parent);
771 	}
772 
773 	debug("route string %x\n", route);
774 #endif
775 	slot_ctx->dev_info |= cpu_to_le32(route);
776 
777 	switch (speed) {
778 	case USB_SPEED_SUPER:
779 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
780 		break;
781 	case USB_SPEED_HIGH:
782 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
783 		break;
784 	case USB_SPEED_FULL:
785 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
786 		break;
787 	case USB_SPEED_LOW:
788 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
789 		break;
790 	default:
791 		/* Speed was set earlier, this shouldn't happen. */
792 		BUG();
793 	}
794 
795 #if CONFIG_IS_ENABLED(DM_USB)
796 	/* Set up TT fields to support FS/LS devices */
797 	if (speed == USB_SPEED_LOW || speed == USB_SPEED_FULL) {
798 		struct udevice *parent = udev->dev;
799 
800 		dev = udev;
801 		do {
802 			port_num = dev->portnr;
803 			dev = dev_get_parent_priv(parent);
804 			if (usb_hub_is_root_hub(dev->dev))
805 				break;
806 			parent = dev->dev->parent;
807 		} while (dev->speed != USB_SPEED_HIGH);
808 
809 		if (!usb_hub_is_root_hub(dev->dev)) {
810 			hub = dev_get_uclass_priv(dev->dev);
811 			if (hub->tt.multi)
812 				slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
813 			slot_ctx->tt_info |= cpu_to_le32(TT_PORT(port_num));
814 			slot_ctx->tt_info |= cpu_to_le32(TT_SLOT(dev->slot_id));
815 		}
816 	}
817 #endif
818 
819 	port_num = hop_portnr;
820 	debug("port_num = %d\n", port_num);
821 
822 	slot_ctx->dev_info2 |=
823 			cpu_to_le32(((port_num & ROOT_HUB_PORT_MASK) <<
824 				ROOT_HUB_PORT_SHIFT));
825 
826 	/* Step 4 - ring already allocated */
827 	/* Step 5 */
828 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
829 	debug("SPEED = %d\n", speed);
830 
831 	switch (speed) {
832 	case USB_SPEED_SUPER:
833 		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
834 		debug("Setting Packet size = 512bytes\n");
835 		break;
836 	case USB_SPEED_HIGH:
837 	/* USB core guesses at a 64-byte max packet first for FS devices */
838 	case USB_SPEED_FULL:
839 		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
840 		debug("Setting Packet size = 64bytes\n");
841 		break;
842 	case USB_SPEED_LOW:
843 		ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
844 		debug("Setting Packet size = 8bytes\n");
845 		break;
846 	default:
847 		/* New speed? */
848 		BUG();
849 	}
850 
851 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
852 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
853 
854 	trb_64 = xhci_virt_to_bus(ctrl, virt_dev->eps[0].ring->first_seg->trbs);
855 	ep0_ctx->deq = cpu_to_le64(trb_64 | virt_dev->eps[0].ring->cycle_state);
856 
857 	/*
858 	 * xHCI spec 6.2.3:
859 	 * software shall set 'Average TRB Length' to 8 for control endpoints.
860 	 */
861 	ep0_ctx->tx_info = cpu_to_le32(EP_AVG_TRB_LENGTH(8));
862 
863 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
864 
865 	xhci_flush_cache((uintptr_t)ep0_ctx, sizeof(struct xhci_ep_ctx));
866 	xhci_flush_cache((uintptr_t)slot_ctx, sizeof(struct xhci_slot_ctx));
867 }
868