1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_HIGHMEM_H
3 #define _LINUX_HIGHMEM_H
4
5 #include <linux/fs.h>
6 #include <linux/kernel.h>
7 #include <linux/bug.h>
8 #include <linux/cacheflush.h>
9 #include <linux/mm.h>
10 #include <linux/uaccess.h>
11 #include <linux/hardirq.h>
12
13 #include "highmem-internal.h"
14
15 /**
16 * kmap - Map a page for long term usage
17 * @page: Pointer to the page to be mapped
18 *
19 * Returns: The virtual address of the mapping
20 *
21 * Can only be invoked from preemptible task context because on 32bit
22 * systems with CONFIG_HIGHMEM enabled this function might sleep.
23 *
24 * For systems with CONFIG_HIGHMEM=n and for pages in the low memory area
25 * this returns the virtual address of the direct kernel mapping.
26 *
27 * The returned virtual address is globally visible and valid up to the
28 * point where it is unmapped via kunmap(). The pointer can be handed to
29 * other contexts.
30 *
31 * For highmem pages on 32bit systems this can be slow as the mapping space
32 * is limited and protected by a global lock. In case that there is no
33 * mapping slot available the function blocks until a slot is released via
34 * kunmap().
35 */
36 static inline void *kmap(struct page *page);
37
38 /**
39 * kunmap - Unmap the virtual address mapped by kmap()
40 * @addr: Virtual address to be unmapped
41 *
42 * Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of
43 * pages in the low memory area.
44 */
45 static inline void kunmap(struct page *page);
46
47 /**
48 * kmap_to_page - Get the page for a kmap'ed address
49 * @addr: The address to look up
50 *
51 * Returns: The page which is mapped to @addr.
52 */
53 static inline struct page *kmap_to_page(void *addr);
54
55 /**
56 * kmap_flush_unused - Flush all unused kmap mappings in order to
57 * remove stray mappings
58 */
59 static inline void kmap_flush_unused(void);
60
61 /**
62 * kmap_local_page - Map a page for temporary usage
63 * @page: Pointer to the page to be mapped
64 *
65 * Returns: The virtual address of the mapping
66 *
67 * Can be invoked from any context.
68 *
69 * Requires careful handling when nesting multiple mappings because the map
70 * management is stack based. The unmap has to be in the reverse order of
71 * the map operation:
72 *
73 * addr1 = kmap_local_page(page1);
74 * addr2 = kmap_local_page(page2);
75 * ...
76 * kunmap_local(addr2);
77 * kunmap_local(addr1);
78 *
79 * Unmapping addr1 before addr2 is invalid and causes malfunction.
80 *
81 * Contrary to kmap() mappings the mapping is only valid in the context of
82 * the caller and cannot be handed to other contexts.
83 *
84 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
85 * virtual address of the direct mapping. Only real highmem pages are
86 * temporarily mapped.
87 *
88 * While it is significantly faster than kmap() for the higmem case it
89 * comes with restrictions about the pointer validity. Only use when really
90 * necessary.
91 *
92 * On HIGHMEM enabled systems mapping a highmem page has the side effect of
93 * disabling migration in order to keep the virtual address stable across
94 * preemption. No caller of kmap_local_page() can rely on this side effect.
95 */
96 static inline void *kmap_local_page(struct page *page);
97
98 /**
99 * kmap_local_folio - Map a page in this folio for temporary usage
100 * @folio: The folio containing the page.
101 * @offset: The byte offset within the folio which identifies the page.
102 *
103 * Requires careful handling when nesting multiple mappings because the map
104 * management is stack based. The unmap has to be in the reverse order of
105 * the map operation::
106 *
107 * addr1 = kmap_local_folio(folio1, offset1);
108 * addr2 = kmap_local_folio(folio2, offset2);
109 * ...
110 * kunmap_local(addr2);
111 * kunmap_local(addr1);
112 *
113 * Unmapping addr1 before addr2 is invalid and causes malfunction.
114 *
115 * Contrary to kmap() mappings the mapping is only valid in the context of
116 * the caller and cannot be handed to other contexts.
117 *
118 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
119 * virtual address of the direct mapping. Only real highmem pages are
120 * temporarily mapped.
121 *
122 * While it is significantly faster than kmap() for the higmem case it
123 * comes with restrictions about the pointer validity. Only use when really
124 * necessary.
125 *
126 * On HIGHMEM enabled systems mapping a highmem page has the side effect of
127 * disabling migration in order to keep the virtual address stable across
128 * preemption. No caller of kmap_local_folio() can rely on this side effect.
129 *
130 * Context: Can be invoked from any context.
131 * Return: The virtual address of @offset.
132 */
133 static inline void *kmap_local_folio(struct folio *folio, size_t offset);
134
135 /**
136 * kmap_atomic - Atomically map a page for temporary usage - Deprecated!
137 * @page: Pointer to the page to be mapped
138 *
139 * Returns: The virtual address of the mapping
140 *
141 * Effectively a wrapper around kmap_local_page() which disables pagefaults
142 * and preemption.
143 *
144 * Do not use in new code. Use kmap_local_page() instead.
145 */
146 static inline void *kmap_atomic(struct page *page);
147
148 /**
149 * kunmap_atomic - Unmap the virtual address mapped by kmap_atomic()
150 * @addr: Virtual address to be unmapped
151 *
152 * Counterpart to kmap_atomic().
153 *
154 * Effectively a wrapper around kunmap_local() which additionally undoes
155 * the side effects of kmap_atomic(), i.e. reenabling pagefaults and
156 * preemption.
157 */
158
159 /* Highmem related interfaces for management code */
160 static inline unsigned int nr_free_highpages(void);
161 static inline unsigned long totalhigh_pages(void);
162
163 #ifndef ARCH_HAS_FLUSH_ANON_PAGE
flush_anon_page(struct vm_area_struct * vma,struct page * page,unsigned long vmaddr)164 static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
165 {
166 }
167 #endif
168
169 #ifndef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
flush_kernel_vmap_range(void * vaddr,int size)170 static inline void flush_kernel_vmap_range(void *vaddr, int size)
171 {
172 }
invalidate_kernel_vmap_range(void * vaddr,int size)173 static inline void invalidate_kernel_vmap_range(void *vaddr, int size)
174 {
175 }
176 #endif
177
178 /* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */
179 #ifndef clear_user_highpage
clear_user_highpage(struct page * page,unsigned long vaddr)180 static inline void clear_user_highpage(struct page *page, unsigned long vaddr)
181 {
182 void *addr = kmap_local_page(page);
183 clear_user_page(addr, vaddr, page);
184 kunmap_local(addr);
185 }
186 #endif
187
188 #ifndef __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE
189 /**
190 * alloc_zeroed_user_highpage_movable - Allocate a zeroed HIGHMEM page for a VMA that the caller knows can move
191 * @vma: The VMA the page is to be allocated for
192 * @vaddr: The virtual address the page will be inserted into
193 *
194 * This function will allocate a page for a VMA that the caller knows will
195 * be able to migrate in the future using move_pages() or reclaimed
196 *
197 * An architecture may override this function by defining
198 * __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE and providing their own
199 * implementation.
200 */
201 static inline struct page *
alloc_zeroed_user_highpage_movable(struct vm_area_struct * vma,unsigned long vaddr)202 alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma,
203 unsigned long vaddr)
204 {
205 struct page *page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
206
207 if (page)
208 clear_user_highpage(page, vaddr);
209
210 return page;
211 }
212 #endif
213
clear_highpage(struct page * page)214 static inline void clear_highpage(struct page *page)
215 {
216 void *kaddr = kmap_local_page(page);
217 clear_page(kaddr);
218 kunmap_local(kaddr);
219 }
220
221 #ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGE
222
tag_clear_highpage(struct page * page)223 static inline void tag_clear_highpage(struct page *page)
224 {
225 }
226
227 #endif
228
229 /*
230 * If we pass in a base or tail page, we can zero up to PAGE_SIZE.
231 * If we pass in a head page, we can zero up to the size of the compound page.
232 */
233 #ifdef CONFIG_HIGHMEM
234 void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
235 unsigned start2, unsigned end2);
236 #else
zero_user_segments(struct page * page,unsigned start1,unsigned end1,unsigned start2,unsigned end2)237 static inline void zero_user_segments(struct page *page,
238 unsigned start1, unsigned end1,
239 unsigned start2, unsigned end2)
240 {
241 void *kaddr = kmap_local_page(page);
242 unsigned int i;
243
244 BUG_ON(end1 > page_size(page) || end2 > page_size(page));
245
246 if (end1 > start1)
247 memset(kaddr + start1, 0, end1 - start1);
248
249 if (end2 > start2)
250 memset(kaddr + start2, 0, end2 - start2);
251
252 kunmap_local(kaddr);
253 for (i = 0; i < compound_nr(page); i++)
254 flush_dcache_page(page + i);
255 }
256 #endif
257
zero_user_segment(struct page * page,unsigned start,unsigned end)258 static inline void zero_user_segment(struct page *page,
259 unsigned start, unsigned end)
260 {
261 zero_user_segments(page, start, end, 0, 0);
262 }
263
zero_user(struct page * page,unsigned start,unsigned size)264 static inline void zero_user(struct page *page,
265 unsigned start, unsigned size)
266 {
267 zero_user_segments(page, start, start + size, 0, 0);
268 }
269
270 #ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE
271
copy_user_highpage(struct page * to,struct page * from,unsigned long vaddr,struct vm_area_struct * vma)272 static inline void copy_user_highpage(struct page *to, struct page *from,
273 unsigned long vaddr, struct vm_area_struct *vma)
274 {
275 char *vfrom, *vto;
276
277 vfrom = kmap_local_page(from);
278 vto = kmap_local_page(to);
279 copy_user_page(vto, vfrom, vaddr, to);
280 kunmap_local(vto);
281 kunmap_local(vfrom);
282 }
283
284 #endif
285
286 #ifndef __HAVE_ARCH_COPY_HIGHPAGE
287
copy_highpage(struct page * to,struct page * from)288 static inline void copy_highpage(struct page *to, struct page *from)
289 {
290 char *vfrom, *vto;
291
292 vfrom = kmap_local_page(from);
293 vto = kmap_local_page(to);
294 copy_page(vto, vfrom);
295 kunmap_local(vto);
296 kunmap_local(vfrom);
297 }
298
299 #endif
300
memcpy_page(struct page * dst_page,size_t dst_off,struct page * src_page,size_t src_off,size_t len)301 static inline void memcpy_page(struct page *dst_page, size_t dst_off,
302 struct page *src_page, size_t src_off,
303 size_t len)
304 {
305 char *dst = kmap_local_page(dst_page);
306 char *src = kmap_local_page(src_page);
307
308 VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
309 memcpy(dst + dst_off, src + src_off, len);
310 kunmap_local(src);
311 kunmap_local(dst);
312 }
313
memmove_page(struct page * dst_page,size_t dst_off,struct page * src_page,size_t src_off,size_t len)314 static inline void memmove_page(struct page *dst_page, size_t dst_off,
315 struct page *src_page, size_t src_off,
316 size_t len)
317 {
318 char *dst = kmap_local_page(dst_page);
319 char *src = kmap_local_page(src_page);
320
321 VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
322 memmove(dst + dst_off, src + src_off, len);
323 kunmap_local(src);
324 kunmap_local(dst);
325 }
326
memset_page(struct page * page,size_t offset,int val,size_t len)327 static inline void memset_page(struct page *page, size_t offset, int val,
328 size_t len)
329 {
330 char *addr = kmap_local_page(page);
331
332 VM_BUG_ON(offset + len > PAGE_SIZE);
333 memset(addr + offset, val, len);
334 kunmap_local(addr);
335 }
336
memcpy_from_page(char * to,struct page * page,size_t offset,size_t len)337 static inline void memcpy_from_page(char *to, struct page *page,
338 size_t offset, size_t len)
339 {
340 char *from = kmap_local_page(page);
341
342 VM_BUG_ON(offset + len > PAGE_SIZE);
343 memcpy(to, from + offset, len);
344 kunmap_local(from);
345 }
346
memcpy_to_page(struct page * page,size_t offset,const char * from,size_t len)347 static inline void memcpy_to_page(struct page *page, size_t offset,
348 const char *from, size_t len)
349 {
350 char *to = kmap_local_page(page);
351
352 VM_BUG_ON(offset + len > PAGE_SIZE);
353 memcpy(to + offset, from, len);
354 flush_dcache_page(page);
355 kunmap_local(to);
356 }
357
memzero_page(struct page * page,size_t offset,size_t len)358 static inline void memzero_page(struct page *page, size_t offset, size_t len)
359 {
360 char *addr = kmap_local_page(page);
361 memset(addr + offset, 0, len);
362 flush_dcache_page(page);
363 kunmap_local(addr);
364 }
365
366 /**
367 * folio_zero_segments() - Zero two byte ranges in a folio.
368 * @folio: The folio to write to.
369 * @start1: The first byte to zero.
370 * @xend1: One more than the last byte in the first range.
371 * @start2: The first byte to zero in the second range.
372 * @xend2: One more than the last byte in the second range.
373 */
folio_zero_segments(struct folio * folio,size_t start1,size_t xend1,size_t start2,size_t xend2)374 static inline void folio_zero_segments(struct folio *folio,
375 size_t start1, size_t xend1, size_t start2, size_t xend2)
376 {
377 zero_user_segments(&folio->page, start1, xend1, start2, xend2);
378 }
379
380 /**
381 * folio_zero_segment() - Zero a byte range in a folio.
382 * @folio: The folio to write to.
383 * @start: The first byte to zero.
384 * @xend: One more than the last byte to zero.
385 */
folio_zero_segment(struct folio * folio,size_t start,size_t xend)386 static inline void folio_zero_segment(struct folio *folio,
387 size_t start, size_t xend)
388 {
389 zero_user_segments(&folio->page, start, xend, 0, 0);
390 }
391
392 /**
393 * folio_zero_range() - Zero a byte range in a folio.
394 * @folio: The folio to write to.
395 * @start: The first byte to zero.
396 * @length: The number of bytes to zero.
397 */
folio_zero_range(struct folio * folio,size_t start,size_t length)398 static inline void folio_zero_range(struct folio *folio,
399 size_t start, size_t length)
400 {
401 zero_user_segments(&folio->page, start, start + length, 0, 0);
402 }
403
404 #endif /* _LINUX_HIGHMEM_H */
405