1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/kernel/smp.c
4  *
5  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
6  */
7 #include <linux/module.h>
8 #include <linux/delay.h>
9 #include <linux/init.h>
10 #include <linux/spinlock.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/task_stack.h>
14 #include <linux/interrupt.h>
15 #include <linux/cache.h>
16 #include <linux/profile.h>
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/err.h>
20 #include <linux/cpu.h>
21 #include <linux/seq_file.h>
22 #include <linux/irq.h>
23 #include <linux/nmi.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28 #include <linux/irq_work.h>
29 #include <linux/kernel_stat.h>
30 
31 #include <linux/atomic.h>
32 #include <asm/bugs.h>
33 #include <asm/smp.h>
34 #include <asm/cacheflush.h>
35 #include <asm/cpu.h>
36 #include <asm/cputype.h>
37 #include <asm/exception.h>
38 #include <asm/idmap.h>
39 #include <asm/topology.h>
40 #include <asm/mmu_context.h>
41 #include <asm/procinfo.h>
42 #include <asm/processor.h>
43 #include <asm/sections.h>
44 #include <asm/tlbflush.h>
45 #include <asm/ptrace.h>
46 #include <asm/smp_plat.h>
47 #include <asm/virt.h>
48 #include <asm/mach/arch.h>
49 #include <asm/mpu.h>
50 
51 #define CREATE_TRACE_POINTS
52 #include <trace/events/ipi.h>
53 
54 /*
55  * as from 2.5, kernels no longer have an init_tasks structure
56  * so we need some other way of telling a new secondary core
57  * where to place its SVC stack
58  */
59 struct secondary_data secondary_data;
60 
61 enum ipi_msg_type {
62 	IPI_WAKEUP,
63 	IPI_TIMER,
64 	IPI_RESCHEDULE,
65 	IPI_CALL_FUNC,
66 	IPI_CPU_STOP,
67 	IPI_IRQ_WORK,
68 	IPI_COMPLETION,
69 	NR_IPI,
70 	/*
71 	 * CPU_BACKTRACE is special and not included in NR_IPI
72 	 * or tracable with trace_ipi_*
73 	 */
74 	IPI_CPU_BACKTRACE = NR_IPI,
75 	/*
76 	 * SGI8-15 can be reserved by secure firmware, and thus may
77 	 * not be usable by the kernel. Please keep the above limited
78 	 * to at most 8 entries.
79 	 */
80 	MAX_IPI
81 };
82 
83 static int ipi_irq_base __read_mostly;
84 static int nr_ipi __read_mostly = NR_IPI;
85 static struct irq_desc *ipi_desc[MAX_IPI] __read_mostly;
86 
87 static void ipi_setup(int cpu);
88 
89 static DECLARE_COMPLETION(cpu_running);
90 
91 static struct smp_operations smp_ops __ro_after_init;
92 
smp_set_ops(const struct smp_operations * ops)93 void __init smp_set_ops(const struct smp_operations *ops)
94 {
95 	if (ops)
96 		smp_ops = *ops;
97 };
98 
get_arch_pgd(pgd_t * pgd)99 static unsigned long get_arch_pgd(pgd_t *pgd)
100 {
101 #ifdef CONFIG_ARM_LPAE
102 	return __phys_to_pfn(virt_to_phys(pgd));
103 #else
104 	return virt_to_phys(pgd);
105 #endif
106 }
107 
108 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
secondary_biglittle_prepare(unsigned int cpu)109 static int secondary_biglittle_prepare(unsigned int cpu)
110 {
111 	if (!cpu_vtable[cpu])
112 		cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
113 
114 	return cpu_vtable[cpu] ? 0 : -ENOMEM;
115 }
116 
secondary_biglittle_init(void)117 static void secondary_biglittle_init(void)
118 {
119 	init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
120 }
121 #else
secondary_biglittle_prepare(unsigned int cpu)122 static int secondary_biglittle_prepare(unsigned int cpu)
123 {
124 	return 0;
125 }
126 
secondary_biglittle_init(void)127 static void secondary_biglittle_init(void)
128 {
129 }
130 #endif
131 
__cpu_up(unsigned int cpu,struct task_struct * idle)132 int __cpu_up(unsigned int cpu, struct task_struct *idle)
133 {
134 	int ret;
135 
136 	if (!smp_ops.smp_boot_secondary)
137 		return -ENOSYS;
138 
139 	ret = secondary_biglittle_prepare(cpu);
140 	if (ret)
141 		return ret;
142 
143 	/*
144 	 * We need to tell the secondary core where to find
145 	 * its stack and the page tables.
146 	 */
147 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
148 #ifdef CONFIG_ARM_MPU
149 	secondary_data.mpu_rgn_info = &mpu_rgn_info;
150 #endif
151 
152 #ifdef CONFIG_MMU
153 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
154 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
155 #endif
156 	secondary_data.task = idle;
157 	if (IS_ENABLED(CONFIG_THREAD_INFO_IN_TASK))
158 		task_thread_info(idle)->cpu = cpu;
159 
160 	sync_cache_w(&secondary_data);
161 
162 	/*
163 	 * Now bring the CPU into our world.
164 	 */
165 	ret = smp_ops.smp_boot_secondary(cpu, idle);
166 	if (ret == 0) {
167 		/*
168 		 * CPU was successfully started, wait for it
169 		 * to come online or time out.
170 		 */
171 		wait_for_completion_timeout(&cpu_running,
172 						 msecs_to_jiffies(1000));
173 
174 		if (!cpu_online(cpu)) {
175 			pr_crit("CPU%u: failed to come online\n", cpu);
176 			ret = -EIO;
177 		}
178 	} else {
179 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
180 	}
181 
182 
183 	memset(&secondary_data, 0, sizeof(secondary_data));
184 	return ret;
185 }
186 
187 /* platform specific SMP operations */
smp_init_cpus(void)188 void __init smp_init_cpus(void)
189 {
190 	if (smp_ops.smp_init_cpus)
191 		smp_ops.smp_init_cpus();
192 }
193 
platform_can_secondary_boot(void)194 int platform_can_secondary_boot(void)
195 {
196 	return !!smp_ops.smp_boot_secondary;
197 }
198 
platform_can_cpu_hotplug(void)199 int platform_can_cpu_hotplug(void)
200 {
201 #ifdef CONFIG_HOTPLUG_CPU
202 	if (smp_ops.cpu_kill)
203 		return 1;
204 #endif
205 
206 	return 0;
207 }
208 
209 #ifdef CONFIG_HOTPLUG_CPU
platform_cpu_kill(unsigned int cpu)210 static int platform_cpu_kill(unsigned int cpu)
211 {
212 	if (smp_ops.cpu_kill)
213 		return smp_ops.cpu_kill(cpu);
214 	return 1;
215 }
216 
platform_cpu_disable(unsigned int cpu)217 static int platform_cpu_disable(unsigned int cpu)
218 {
219 	if (smp_ops.cpu_disable)
220 		return smp_ops.cpu_disable(cpu);
221 
222 	return 0;
223 }
224 
platform_can_hotplug_cpu(unsigned int cpu)225 int platform_can_hotplug_cpu(unsigned int cpu)
226 {
227 	/* cpu_die must be specified to support hotplug */
228 	if (!smp_ops.cpu_die)
229 		return 0;
230 
231 	if (smp_ops.cpu_can_disable)
232 		return smp_ops.cpu_can_disable(cpu);
233 
234 	/*
235 	 * By default, allow disabling all CPUs except the first one,
236 	 * since this is special on a lot of platforms, e.g. because
237 	 * of clock tick interrupts.
238 	 */
239 	return cpu != 0;
240 }
241 
ipi_teardown(int cpu)242 static void ipi_teardown(int cpu)
243 {
244 	int i;
245 
246 	if (WARN_ON_ONCE(!ipi_irq_base))
247 		return;
248 
249 	for (i = 0; i < nr_ipi; i++)
250 		disable_percpu_irq(ipi_irq_base + i);
251 }
252 
253 /*
254  * __cpu_disable runs on the processor to be shutdown.
255  */
__cpu_disable(void)256 int __cpu_disable(void)
257 {
258 	unsigned int cpu = smp_processor_id();
259 	int ret;
260 
261 	ret = platform_cpu_disable(cpu);
262 	if (ret)
263 		return ret;
264 
265 #ifdef CONFIG_GENERIC_ARCH_TOPOLOGY
266 	remove_cpu_topology(cpu);
267 #endif
268 
269 	/*
270 	 * Take this CPU offline.  Once we clear this, we can't return,
271 	 * and we must not schedule until we're ready to give up the cpu.
272 	 */
273 	set_cpu_online(cpu, false);
274 	ipi_teardown(cpu);
275 
276 	/*
277 	 * OK - migrate IRQs away from this CPU
278 	 */
279 	irq_migrate_all_off_this_cpu();
280 
281 	/*
282 	 * Flush user cache and TLB mappings, and then remove this CPU
283 	 * from the vm mask set of all processes.
284 	 *
285 	 * Caches are flushed to the Level of Unification Inner Shareable
286 	 * to write-back dirty lines to unified caches shared by all CPUs.
287 	 */
288 	flush_cache_louis();
289 	local_flush_tlb_all();
290 
291 	return 0;
292 }
293 
294 /*
295  * called on the thread which is asking for a CPU to be shutdown -
296  * waits until shutdown has completed, or it is timed out.
297  */
__cpu_die(unsigned int cpu)298 void __cpu_die(unsigned int cpu)
299 {
300 	if (!cpu_wait_death(cpu, 5)) {
301 		pr_err("CPU%u: cpu didn't die\n", cpu);
302 		return;
303 	}
304 	pr_debug("CPU%u: shutdown\n", cpu);
305 
306 	clear_tasks_mm_cpumask(cpu);
307 	/*
308 	 * platform_cpu_kill() is generally expected to do the powering off
309 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
310 	 * be done by the CPU which is dying in preference to supporting
311 	 * this call, but that means there is _no_ synchronisation between
312 	 * the requesting CPU and the dying CPU actually losing power.
313 	 */
314 	if (!platform_cpu_kill(cpu))
315 		pr_err("CPU%u: unable to kill\n", cpu);
316 }
317 
318 /*
319  * Called from the idle thread for the CPU which has been shutdown.
320  *
321  * Note that we disable IRQs here, but do not re-enable them
322  * before returning to the caller. This is also the behaviour
323  * of the other hotplug-cpu capable cores, so presumably coming
324  * out of idle fixes this.
325  */
arch_cpu_idle_dead(void)326 void arch_cpu_idle_dead(void)
327 {
328 	unsigned int cpu = smp_processor_id();
329 
330 	idle_task_exit();
331 
332 	local_irq_disable();
333 
334 	/*
335 	 * Flush the data out of the L1 cache for this CPU.  This must be
336 	 * before the completion to ensure that data is safely written out
337 	 * before platform_cpu_kill() gets called - which may disable
338 	 * *this* CPU and power down its cache.
339 	 */
340 	flush_cache_louis();
341 
342 	/*
343 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
344 	 * this returns, power and/or clocks can be removed at any point
345 	 * from this CPU and its cache by platform_cpu_kill().
346 	 */
347 	(void)cpu_report_death();
348 
349 	/*
350 	 * Ensure that the cache lines associated with that completion are
351 	 * written out.  This covers the case where _this_ CPU is doing the
352 	 * powering down, to ensure that the completion is visible to the
353 	 * CPU waiting for this one.
354 	 */
355 	flush_cache_louis();
356 
357 	/*
358 	 * The actual CPU shutdown procedure is at least platform (if not
359 	 * CPU) specific.  This may remove power, or it may simply spin.
360 	 *
361 	 * Platforms are generally expected *NOT* to return from this call,
362 	 * although there are some which do because they have no way to
363 	 * power down the CPU.  These platforms are the _only_ reason we
364 	 * have a return path which uses the fragment of assembly below.
365 	 *
366 	 * The return path should not be used for platforms which can
367 	 * power off the CPU.
368 	 */
369 	if (smp_ops.cpu_die)
370 		smp_ops.cpu_die(cpu);
371 
372 	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
373 		cpu);
374 
375 	/*
376 	 * Do not return to the idle loop - jump back to the secondary
377 	 * cpu initialisation.  There's some initialisation which needs
378 	 * to be repeated to undo the effects of taking the CPU offline.
379 	 */
380 	__asm__("mov	sp, %0\n"
381 	"	mov	fp, #0\n"
382 	"	mov	r0, %1\n"
383 	"	b	secondary_start_kernel"
384 		:
385 		: "r" (task_stack_page(current) + THREAD_SIZE - 8),
386 		  "r" (current)
387 		: "r0");
388 }
389 #endif /* CONFIG_HOTPLUG_CPU */
390 
391 /*
392  * Called by both boot and secondaries to move global data into
393  * per-processor storage.
394  */
smp_store_cpu_info(unsigned int cpuid)395 static void smp_store_cpu_info(unsigned int cpuid)
396 {
397 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
398 
399 	cpu_info->loops_per_jiffy = loops_per_jiffy;
400 	cpu_info->cpuid = read_cpuid_id();
401 
402 	store_cpu_topology(cpuid);
403 	check_cpu_icache_size(cpuid);
404 }
405 
406 /*
407  * This is the secondary CPU boot entry.  We're using this CPUs
408  * idle thread stack, but a set of temporary page tables.
409  */
secondary_start_kernel(struct task_struct * task)410 asmlinkage void secondary_start_kernel(struct task_struct *task)
411 {
412 	struct mm_struct *mm = &init_mm;
413 	unsigned int cpu;
414 
415 	set_current(task);
416 
417 	secondary_biglittle_init();
418 
419 	/*
420 	 * The identity mapping is uncached (strongly ordered), so
421 	 * switch away from it before attempting any exclusive accesses.
422 	 */
423 	cpu_switch_mm(mm->pgd, mm);
424 	local_flush_bp_all();
425 	enter_lazy_tlb(mm, current);
426 	local_flush_tlb_all();
427 
428 	/*
429 	 * All kernel threads share the same mm context; grab a
430 	 * reference and switch to it.
431 	 */
432 	cpu = smp_processor_id();
433 	mmgrab(mm);
434 	current->active_mm = mm;
435 	cpumask_set_cpu(cpu, mm_cpumask(mm));
436 
437 	cpu_init();
438 
439 #ifndef CONFIG_MMU
440 	setup_vectors_base();
441 #endif
442 	pr_debug("CPU%u: Booted secondary processor\n", cpu);
443 
444 	trace_hardirqs_off();
445 
446 	/*
447 	 * Give the platform a chance to do its own initialisation.
448 	 */
449 	if (smp_ops.smp_secondary_init)
450 		smp_ops.smp_secondary_init(cpu);
451 
452 	notify_cpu_starting(cpu);
453 
454 	ipi_setup(cpu);
455 
456 	calibrate_delay();
457 
458 	smp_store_cpu_info(cpu);
459 
460 	/*
461 	 * OK, now it's safe to let the boot CPU continue.  Wait for
462 	 * the CPU migration code to notice that the CPU is online
463 	 * before we continue - which happens after __cpu_up returns.
464 	 */
465 	set_cpu_online(cpu, true);
466 
467 	check_other_bugs();
468 
469 	complete(&cpu_running);
470 
471 	local_irq_enable();
472 	local_fiq_enable();
473 	local_abt_enable();
474 
475 	/*
476 	 * OK, it's off to the idle thread for us
477 	 */
478 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
479 }
480 
smp_cpus_done(unsigned int max_cpus)481 void __init smp_cpus_done(unsigned int max_cpus)
482 {
483 	int cpu;
484 	unsigned long bogosum = 0;
485 
486 	for_each_online_cpu(cpu)
487 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
488 
489 	printk(KERN_INFO "SMP: Total of %d processors activated "
490 	       "(%lu.%02lu BogoMIPS).\n",
491 	       num_online_cpus(),
492 	       bogosum / (500000/HZ),
493 	       (bogosum / (5000/HZ)) % 100);
494 
495 	hyp_mode_check();
496 }
497 
smp_prepare_boot_cpu(void)498 void __init smp_prepare_boot_cpu(void)
499 {
500 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
501 }
502 
smp_prepare_cpus(unsigned int max_cpus)503 void __init smp_prepare_cpus(unsigned int max_cpus)
504 {
505 	unsigned int ncores = num_possible_cpus();
506 
507 	init_cpu_topology();
508 
509 	smp_store_cpu_info(smp_processor_id());
510 
511 	/*
512 	 * are we trying to boot more cores than exist?
513 	 */
514 	if (max_cpus > ncores)
515 		max_cpus = ncores;
516 	if (ncores > 1 && max_cpus) {
517 		/*
518 		 * Initialise the present map, which describes the set of CPUs
519 		 * actually populated at the present time. A platform should
520 		 * re-initialize the map in the platforms smp_prepare_cpus()
521 		 * if present != possible (e.g. physical hotplug).
522 		 */
523 		init_cpu_present(cpu_possible_mask);
524 
525 		/*
526 		 * Initialise the SCU if there are more than one CPU
527 		 * and let them know where to start.
528 		 */
529 		if (smp_ops.smp_prepare_cpus)
530 			smp_ops.smp_prepare_cpus(max_cpus);
531 	}
532 }
533 
534 static const char *ipi_types[NR_IPI] __tracepoint_string = {
535 	[IPI_WAKEUP]		= "CPU wakeup interrupts",
536 	[IPI_TIMER]		= "Timer broadcast interrupts",
537 	[IPI_RESCHEDULE]	= "Rescheduling interrupts",
538 	[IPI_CALL_FUNC]		= "Function call interrupts",
539 	[IPI_CPU_STOP]		= "CPU stop interrupts",
540 	[IPI_IRQ_WORK]		= "IRQ work interrupts",
541 	[IPI_COMPLETION]	= "completion interrupts",
542 };
543 
544 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr);
545 
show_ipi_list(struct seq_file * p,int prec)546 void show_ipi_list(struct seq_file *p, int prec)
547 {
548 	unsigned int cpu, i;
549 
550 	for (i = 0; i < NR_IPI; i++) {
551 		if (!ipi_desc[i])
552 			continue;
553 
554 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
555 
556 		for_each_online_cpu(cpu)
557 			seq_printf(p, "%10u ", irq_desc_kstat_cpu(ipi_desc[i], cpu));
558 
559 		seq_printf(p, " %s\n", ipi_types[i]);
560 	}
561 }
562 
arch_send_call_function_ipi_mask(const struct cpumask * mask)563 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
564 {
565 	smp_cross_call(mask, IPI_CALL_FUNC);
566 }
567 
arch_send_wakeup_ipi_mask(const struct cpumask * mask)568 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
569 {
570 	smp_cross_call(mask, IPI_WAKEUP);
571 }
572 
arch_send_call_function_single_ipi(int cpu)573 void arch_send_call_function_single_ipi(int cpu)
574 {
575 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
576 }
577 
578 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)579 void arch_irq_work_raise(void)
580 {
581 	if (arch_irq_work_has_interrupt())
582 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
583 }
584 #endif
585 
586 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)587 void tick_broadcast(const struct cpumask *mask)
588 {
589 	smp_cross_call(mask, IPI_TIMER);
590 }
591 #endif
592 
593 static DEFINE_RAW_SPINLOCK(stop_lock);
594 
595 /*
596  * ipi_cpu_stop - handle IPI from smp_send_stop()
597  */
ipi_cpu_stop(unsigned int cpu)598 static void ipi_cpu_stop(unsigned int cpu)
599 {
600 	if (system_state <= SYSTEM_RUNNING) {
601 		raw_spin_lock(&stop_lock);
602 		pr_crit("CPU%u: stopping\n", cpu);
603 		dump_stack();
604 		raw_spin_unlock(&stop_lock);
605 	}
606 
607 	set_cpu_online(cpu, false);
608 
609 	local_fiq_disable();
610 	local_irq_disable();
611 
612 	while (1) {
613 		cpu_relax();
614 		wfe();
615 	}
616 }
617 
618 static DEFINE_PER_CPU(struct completion *, cpu_completion);
619 
register_ipi_completion(struct completion * completion,int cpu)620 int register_ipi_completion(struct completion *completion, int cpu)
621 {
622 	per_cpu(cpu_completion, cpu) = completion;
623 	return IPI_COMPLETION;
624 }
625 
ipi_complete(unsigned int cpu)626 static void ipi_complete(unsigned int cpu)
627 {
628 	complete(per_cpu(cpu_completion, cpu));
629 }
630 
631 /*
632  * Main handler for inter-processor interrupts
633  */
do_IPI(int ipinr,struct pt_regs * regs)634 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
635 {
636 	handle_IPI(ipinr, regs);
637 }
638 
do_handle_IPI(int ipinr)639 static void do_handle_IPI(int ipinr)
640 {
641 	unsigned int cpu = smp_processor_id();
642 
643 	if ((unsigned)ipinr < NR_IPI)
644 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
645 
646 	switch (ipinr) {
647 	case IPI_WAKEUP:
648 		break;
649 
650 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
651 	case IPI_TIMER:
652 		tick_receive_broadcast();
653 		break;
654 #endif
655 
656 	case IPI_RESCHEDULE:
657 		scheduler_ipi();
658 		break;
659 
660 	case IPI_CALL_FUNC:
661 		generic_smp_call_function_interrupt();
662 		break;
663 
664 	case IPI_CPU_STOP:
665 		ipi_cpu_stop(cpu);
666 		break;
667 
668 #ifdef CONFIG_IRQ_WORK
669 	case IPI_IRQ_WORK:
670 		irq_work_run();
671 		break;
672 #endif
673 
674 	case IPI_COMPLETION:
675 		ipi_complete(cpu);
676 		break;
677 
678 	case IPI_CPU_BACKTRACE:
679 		printk_deferred_enter();
680 		nmi_cpu_backtrace(get_irq_regs());
681 		printk_deferred_exit();
682 		break;
683 
684 	default:
685 		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
686 		        cpu, ipinr);
687 		break;
688 	}
689 
690 	if ((unsigned)ipinr < NR_IPI)
691 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
692 }
693 
694 /* Legacy version, should go away once all irqchips have been converted */
handle_IPI(int ipinr,struct pt_regs * regs)695 void handle_IPI(int ipinr, struct pt_regs *regs)
696 {
697 	struct pt_regs *old_regs = set_irq_regs(regs);
698 
699 	irq_enter();
700 	do_handle_IPI(ipinr);
701 	irq_exit();
702 
703 	set_irq_regs(old_regs);
704 }
705 
ipi_handler(int irq,void * data)706 static irqreturn_t ipi_handler(int irq, void *data)
707 {
708 	do_handle_IPI(irq - ipi_irq_base);
709 	return IRQ_HANDLED;
710 }
711 
smp_cross_call(const struct cpumask * target,unsigned int ipinr)712 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
713 {
714 	trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
715 	__ipi_send_mask(ipi_desc[ipinr], target);
716 }
717 
ipi_setup(int cpu)718 static void ipi_setup(int cpu)
719 {
720 	int i;
721 
722 	if (WARN_ON_ONCE(!ipi_irq_base))
723 		return;
724 
725 	for (i = 0; i < nr_ipi; i++)
726 		enable_percpu_irq(ipi_irq_base + i, 0);
727 }
728 
set_smp_ipi_range(int ipi_base,int n)729 void __init set_smp_ipi_range(int ipi_base, int n)
730 {
731 	int i;
732 
733 	WARN_ON(n < MAX_IPI);
734 	nr_ipi = min(n, MAX_IPI);
735 
736 	for (i = 0; i < nr_ipi; i++) {
737 		int err;
738 
739 		err = request_percpu_irq(ipi_base + i, ipi_handler,
740 					 "IPI", &irq_stat);
741 		WARN_ON(err);
742 
743 		ipi_desc[i] = irq_to_desc(ipi_base + i);
744 		irq_set_status_flags(ipi_base + i, IRQ_HIDDEN);
745 	}
746 
747 	ipi_irq_base = ipi_base;
748 
749 	/* Setup the boot CPU immediately */
750 	ipi_setup(smp_processor_id());
751 }
752 
smp_send_reschedule(int cpu)753 void smp_send_reschedule(int cpu)
754 {
755 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
756 }
757 
smp_send_stop(void)758 void smp_send_stop(void)
759 {
760 	unsigned long timeout;
761 	struct cpumask mask;
762 
763 	cpumask_copy(&mask, cpu_online_mask);
764 	cpumask_clear_cpu(smp_processor_id(), &mask);
765 	if (!cpumask_empty(&mask))
766 		smp_cross_call(&mask, IPI_CPU_STOP);
767 
768 	/* Wait up to one second for other CPUs to stop */
769 	timeout = USEC_PER_SEC;
770 	while (num_online_cpus() > 1 && timeout--)
771 		udelay(1);
772 
773 	if (num_online_cpus() > 1)
774 		pr_warn("SMP: failed to stop secondary CPUs\n");
775 }
776 
777 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
778  * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
779  * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
780  * kdump fails. So split out the panic_smp_self_stop() and add
781  * set_cpu_online(smp_processor_id(), false).
782  */
panic_smp_self_stop(void)783 void panic_smp_self_stop(void)
784 {
785 	pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
786 	         smp_processor_id());
787 	set_cpu_online(smp_processor_id(), false);
788 	while (1)
789 		cpu_relax();
790 }
791 
792 /*
793  * not supported here
794  */
setup_profiling_timer(unsigned int multiplier)795 int setup_profiling_timer(unsigned int multiplier)
796 {
797 	return -EINVAL;
798 }
799 
800 #ifdef CONFIG_CPU_FREQ
801 
802 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
803 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
804 static unsigned long global_l_p_j_ref;
805 static unsigned long global_l_p_j_ref_freq;
806 
cpufreq_callback(struct notifier_block * nb,unsigned long val,void * data)807 static int cpufreq_callback(struct notifier_block *nb,
808 					unsigned long val, void *data)
809 {
810 	struct cpufreq_freqs *freq = data;
811 	struct cpumask *cpus = freq->policy->cpus;
812 	int cpu, first = cpumask_first(cpus);
813 	unsigned int lpj;
814 
815 	if (freq->flags & CPUFREQ_CONST_LOOPS)
816 		return NOTIFY_OK;
817 
818 	if (!per_cpu(l_p_j_ref, first)) {
819 		for_each_cpu(cpu, cpus) {
820 			per_cpu(l_p_j_ref, cpu) =
821 				per_cpu(cpu_data, cpu).loops_per_jiffy;
822 			per_cpu(l_p_j_ref_freq, cpu) = freq->old;
823 		}
824 
825 		if (!global_l_p_j_ref) {
826 			global_l_p_j_ref = loops_per_jiffy;
827 			global_l_p_j_ref_freq = freq->old;
828 		}
829 	}
830 
831 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
832 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
833 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
834 						global_l_p_j_ref_freq,
835 						freq->new);
836 
837 		lpj = cpufreq_scale(per_cpu(l_p_j_ref, first),
838 				    per_cpu(l_p_j_ref_freq, first), freq->new);
839 		for_each_cpu(cpu, cpus)
840 			per_cpu(cpu_data, cpu).loops_per_jiffy = lpj;
841 	}
842 	return NOTIFY_OK;
843 }
844 
845 static struct notifier_block cpufreq_notifier = {
846 	.notifier_call  = cpufreq_callback,
847 };
848 
register_cpufreq_notifier(void)849 static int __init register_cpufreq_notifier(void)
850 {
851 	return cpufreq_register_notifier(&cpufreq_notifier,
852 						CPUFREQ_TRANSITION_NOTIFIER);
853 }
854 core_initcall(register_cpufreq_notifier);
855 
856 #endif
857 
raise_nmi(cpumask_t * mask)858 static void raise_nmi(cpumask_t *mask)
859 {
860 	__ipi_send_mask(ipi_desc[IPI_CPU_BACKTRACE], mask);
861 }
862 
arch_trigger_cpumask_backtrace(const cpumask_t * mask,bool exclude_self)863 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
864 {
865 	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
866 }
867