1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Based on arch/arm/include/asm/cacheflush.h
4 *
5 * Copyright (C) 1999-2002 Russell King.
6 * Copyright (C) 2012 ARM Ltd.
7 */
8 #ifndef __ASM_CACHEFLUSH_H
9 #define __ASM_CACHEFLUSH_H
10
11 #include <linux/kgdb.h>
12 #include <linux/mm.h>
13
14 /*
15 * This flag is used to indicate that the page pointed to by a pte is clean
16 * and does not require cleaning before returning it to the user.
17 */
18 #define PG_dcache_clean PG_arch_1
19
20 /*
21 * MM Cache Management
22 * ===================
23 *
24 * The arch/arm64/mm/cache.S implements these methods.
25 *
26 * Start addresses are inclusive and end addresses are exclusive; start
27 * addresses should be rounded down, end addresses up.
28 *
29 * See Documentation/core-api/cachetlb.rst for more information. Please note that
30 * the implementation assumes non-aliasing VIPT D-cache and (aliasing)
31 * VIPT I-cache.
32 *
33 * All functions below apply to the interval [start, end)
34 * - start - virtual start address (inclusive)
35 * - end - virtual end address (exclusive)
36 *
37 * caches_clean_inval_pou(start, end)
38 *
39 * Ensure coherency between the I-cache and the D-cache region to
40 * the Point of Unification.
41 *
42 * caches_clean_inval_user_pou(start, end)
43 *
44 * Ensure coherency between the I-cache and the D-cache region to
45 * the Point of Unification.
46 * Use only if the region might access user memory.
47 *
48 * icache_inval_pou(start, end)
49 *
50 * Invalidate I-cache region to the Point of Unification.
51 *
52 * dcache_clean_inval_poc(start, end)
53 *
54 * Clean and invalidate D-cache region to the Point of Coherency.
55 *
56 * dcache_inval_poc(start, end)
57 *
58 * Invalidate D-cache region to the Point of Coherency.
59 *
60 * dcache_clean_poc(start, end)
61 *
62 * Clean D-cache region to the Point of Coherency.
63 *
64 * dcache_clean_pop(start, end)
65 *
66 * Clean D-cache region to the Point of Persistence.
67 *
68 * dcache_clean_pou(start, end)
69 *
70 * Clean D-cache region to the Point of Unification.
71 */
72 extern void caches_clean_inval_pou(unsigned long start, unsigned long end);
73 extern void icache_inval_pou(unsigned long start, unsigned long end);
74 extern void dcache_clean_inval_poc(unsigned long start, unsigned long end);
75 extern void dcache_inval_poc(unsigned long start, unsigned long end);
76 extern void dcache_clean_poc(unsigned long start, unsigned long end);
77 extern void dcache_clean_pop(unsigned long start, unsigned long end);
78 extern void dcache_clean_pou(unsigned long start, unsigned long end);
79 extern long caches_clean_inval_user_pou(unsigned long start, unsigned long end);
80 extern void sync_icache_aliases(unsigned long start, unsigned long end);
81
flush_icache_range(unsigned long start,unsigned long end)82 static inline void flush_icache_range(unsigned long start, unsigned long end)
83 {
84 caches_clean_inval_pou(start, end);
85
86 /*
87 * IPI all online CPUs so that they undergo a context synchronization
88 * event and are forced to refetch the new instructions.
89 */
90
91 /*
92 * KGDB performs cache maintenance with interrupts disabled, so we
93 * will deadlock trying to IPI the secondary CPUs. In theory, we can
94 * set CACHE_FLUSH_IS_SAFE to 0 to avoid this known issue, but that
95 * just means that KGDB will elide the maintenance altogether! As it
96 * turns out, KGDB uses IPIs to round-up the secondary CPUs during
97 * the patching operation, so we don't need extra IPIs here anyway.
98 * In which case, add a KGDB-specific bodge and return early.
99 */
100 if (in_dbg_master())
101 return;
102
103 kick_all_cpus_sync();
104 }
105 #define flush_icache_range flush_icache_range
106
107 /*
108 * Cache maintenance functions used by the DMA API. No to be used directly.
109 */
110 extern void __dma_map_area(const void *, size_t, int);
111 extern void __dma_unmap_area(const void *, size_t, int);
112 extern void __dma_flush_area(const void *, size_t);
113
114 /*
115 * Copy user data from/to a page which is mapped into a different
116 * processes address space. Really, we want to allow our "user
117 * space" model to handle this.
118 */
119 extern void copy_to_user_page(struct vm_area_struct *, struct page *,
120 unsigned long, void *, const void *, unsigned long);
121 #define copy_to_user_page copy_to_user_page
122
123 /*
124 * flush_dcache_page is used when the kernel has written to the page
125 * cache page at virtual address page->virtual.
126 *
127 * If this page isn't mapped (ie, page_mapping == NULL), or it might
128 * have userspace mappings, then we _must_ always clean + invalidate
129 * the dcache entries associated with the kernel mapping.
130 *
131 * Otherwise we can defer the operation, and clean the cache when we are
132 * about to change to user space. This is the same method as used on SPARC64.
133 * See update_mmu_cache for the user space part.
134 */
135 #define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
136 extern void flush_dcache_page(struct page *);
137
icache_inval_all_pou(void)138 static __always_inline void icache_inval_all_pou(void)
139 {
140 if (cpus_have_const_cap(ARM64_HAS_CACHE_DIC))
141 return;
142
143 asm("ic ialluis");
144 dsb(ish);
145 }
146
147 #include <asm-generic/cacheflush.h>
148
149 #endif /* __ASM_CACHEFLUSH_H */
150