1/* 2 * Copyright (c) 2016-2021, ARM Limited and Contributors. All rights reserved. 3 * 4 * SPDX-License-Identifier: BSD-3-Clause 5 */ 6 7#include <arch.h> 8#include <asm_macros.S> 9#include <common/bl_common.h> 10#include <common/runtime_svc.h> 11#include <context.h> 12#include <el3_common_macros.S> 13#include <lib/el3_runtime/cpu_data.h> 14#include <lib/pmf/aarch32/pmf_asm_macros.S> 15#include <lib/runtime_instr.h> 16#include <lib/xlat_tables/xlat_tables_defs.h> 17#include <smccc_helpers.h> 18#include <smccc_macros.S> 19 20 .globl sp_min_vector_table 21 .globl sp_min_entrypoint 22 .globl sp_min_warm_entrypoint 23 .globl sp_min_handle_smc 24 .globl sp_min_handle_fiq 25 26#define FIXUP_SIZE ((BL32_LIMIT) - (BL32_BASE)) 27 28 .macro route_fiq_to_sp_min reg 29 /* ----------------------------------------------------- 30 * FIQs are secure interrupts trapped by Monitor and non 31 * secure is not allowed to mask the FIQs. 32 * ----------------------------------------------------- 33 */ 34 ldcopr \reg, SCR 35 orr \reg, \reg, #SCR_FIQ_BIT 36 bic \reg, \reg, #SCR_FW_BIT 37 stcopr \reg, SCR 38 .endm 39 40 .macro clrex_on_monitor_entry 41#if (ARM_ARCH_MAJOR == 7) 42 /* 43 * ARMv7 architectures need to clear the exclusive access when 44 * entering Monitor mode. 45 */ 46 clrex 47#endif 48 .endm 49 50vector_base sp_min_vector_table 51 b sp_min_entrypoint 52 b plat_panic_handler /* Undef */ 53 b sp_min_handle_smc /* Syscall */ 54 b plat_panic_handler /* Prefetch abort */ 55 b plat_panic_handler /* Data abort */ 56 b plat_panic_handler /* Reserved */ 57 b plat_panic_handler /* IRQ */ 58 b sp_min_handle_fiq /* FIQ */ 59 60 61/* 62 * The Cold boot/Reset entrypoint for SP_MIN 63 */ 64func sp_min_entrypoint 65#if !RESET_TO_SP_MIN 66 /* --------------------------------------------------------------- 67 * Preceding bootloader has populated r0 with a pointer to a 68 * 'bl_params_t' structure & r1 with a pointer to platform 69 * specific structure 70 * --------------------------------------------------------------- 71 */ 72 mov r9, r0 73 mov r10, r1 74 mov r11, r2 75 mov r12, r3 76 77 /* --------------------------------------------------------------------- 78 * For !RESET_TO_SP_MIN systems, only the primary CPU ever reaches 79 * sp_min_entrypoint() during the cold boot flow, so the cold/warm boot 80 * and primary/secondary CPU logic should not be executed in this case. 81 * 82 * Also, assume that the previous bootloader has already initialised the 83 * SCTLR, including the CPU endianness, and has initialised the memory. 84 * --------------------------------------------------------------------- 85 */ 86 el3_entrypoint_common \ 87 _init_sctlr=0 \ 88 _warm_boot_mailbox=0 \ 89 _secondary_cold_boot=0 \ 90 _init_memory=0 \ 91 _init_c_runtime=1 \ 92 _exception_vectors=sp_min_vector_table \ 93 _pie_fixup_size=FIXUP_SIZE 94 95 /* --------------------------------------------------------------------- 96 * Relay the previous bootloader's arguments to the platform layer 97 * --------------------------------------------------------------------- 98 */ 99#else 100 /* --------------------------------------------------------------------- 101 * For RESET_TO_SP_MIN systems which have a programmable reset address, 102 * sp_min_entrypoint() is executed only on the cold boot path so we can 103 * skip the warm boot mailbox mechanism. 104 * --------------------------------------------------------------------- 105 */ 106 el3_entrypoint_common \ 107 _init_sctlr=1 \ 108 _warm_boot_mailbox=!PROGRAMMABLE_RESET_ADDRESS \ 109 _secondary_cold_boot=!COLD_BOOT_SINGLE_CPU \ 110 _init_memory=1 \ 111 _init_c_runtime=1 \ 112 _exception_vectors=sp_min_vector_table \ 113 _pie_fixup_size=FIXUP_SIZE 114 115 /* --------------------------------------------------------------------- 116 * For RESET_TO_SP_MIN systems, BL32 (SP_MIN) is the first bootloader 117 * to run so there's no argument to relay from a previous bootloader. 118 * Zero the arguments passed to the platform layer to reflect that. 119 * --------------------------------------------------------------------- 120 */ 121 mov r9, #0 122 mov r10, #0 123 mov r11, #0 124 mov r12, #0 125 126#endif /* RESET_TO_SP_MIN */ 127 128#if SP_MIN_WITH_SECURE_FIQ 129 route_fiq_to_sp_min r4 130#endif 131 132 mov r0, r9 133 mov r1, r10 134 mov r2, r11 135 mov r3, r12 136 bl sp_min_early_platform_setup2 137 bl sp_min_plat_arch_setup 138 139 /* Jump to the main function */ 140 bl sp_min_main 141 142 /* ------------------------------------------------------------- 143 * Clean the .data & .bss sections to main memory. This ensures 144 * that any global data which was initialised by the primary CPU 145 * is visible to secondary CPUs before they enable their data 146 * caches and participate in coherency. 147 * ------------------------------------------------------------- 148 */ 149 ldr r0, =__DATA_START__ 150 ldr r1, =__DATA_END__ 151 sub r1, r1, r0 152 bl clean_dcache_range 153 154 ldr r0, =__BSS_START__ 155 ldr r1, =__BSS_END__ 156 sub r1, r1, r0 157 bl clean_dcache_range 158 159 bl smc_get_next_ctx 160 161 /* r0 points to `smc_ctx_t` */ 162 /* The PSCI cpu_context registers have been copied to `smc_ctx_t` */ 163 b sp_min_exit 164endfunc sp_min_entrypoint 165 166 167/* 168 * SMC handling function for SP_MIN. 169 */ 170func sp_min_handle_smc 171 /* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */ 172 str lr, [sp, #SMC_CTX_LR_MON] 173 174#if ENABLE_RUNTIME_INSTRUMENTATION 175 /* 176 * Read the timestamp value and store it on top of the C runtime stack. 177 * The value will be saved to the per-cpu data once the C stack is 178 * available, as a valid stack is needed to call _cpu_data() 179 */ 180 strd r0, r1, [sp, #SMC_CTX_GPREG_R0] 181 ldcopr16 r0, r1, CNTPCT_64 182 ldr lr, [sp, #SMC_CTX_SP_MON] 183 strd r0, r1, [lr, #-8]! 184 str lr, [sp, #SMC_CTX_SP_MON] 185 ldrd r0, r1, [sp, #SMC_CTX_GPREG_R0] 186#endif 187 188 smccc_save_gp_mode_regs 189 190 clrex_on_monitor_entry 191 192 /* 193 * `sp` still points to `smc_ctx_t`. Save it to a register 194 * and restore the C runtime stack pointer to `sp`. 195 */ 196 mov r2, sp /* handle */ 197 ldr sp, [r2, #SMC_CTX_SP_MON] 198 199#if ENABLE_RUNTIME_INSTRUMENTATION 200 /* Save handle to a callee saved register */ 201 mov r6, r2 202 203 /* 204 * Restore the timestamp value and store it in per-cpu data. The value 205 * will be extracted from per-cpu data by the C level SMC handler and 206 * saved to the PMF timestamp region. 207 */ 208 ldrd r4, r5, [sp], #8 209 bl _cpu_data 210 strd r4, r5, [r0, #CPU_DATA_PMF_TS0_OFFSET] 211 212 /* Restore handle */ 213 mov r2, r6 214#endif 215 216 ldr r0, [r2, #SMC_CTX_SCR] 217 and r3, r0, #SCR_NS_BIT /* flags */ 218 219 /* Switch to Secure Mode*/ 220 bic r0, #SCR_NS_BIT 221 stcopr r0, SCR 222 isb 223 224 ldr r0, [r2, #SMC_CTX_GPREG_R0] /* smc_fid */ 225 /* Check whether an SMC64 is issued */ 226 tst r0, #(FUNCID_CC_MASK << FUNCID_CC_SHIFT) 227 beq 1f 228 /* SMC32 is not detected. Return error back to caller */ 229 mov r0, #SMC_UNK 230 str r0, [r2, #SMC_CTX_GPREG_R0] 231 mov r0, r2 232 b sp_min_exit 2331: 234 /* SMC32 is detected */ 235 mov r1, #0 /* cookie */ 236 bl handle_runtime_svc 237 238 /* `r0` points to `smc_ctx_t` */ 239 b sp_min_exit 240endfunc sp_min_handle_smc 241 242/* 243 * Secure Interrupts handling function for SP_MIN. 244 */ 245func sp_min_handle_fiq 246#if !SP_MIN_WITH_SECURE_FIQ 247 b plat_panic_handler 248#else 249 /* FIQ has a +4 offset for lr compared to preferred return address */ 250 sub lr, lr, #4 251 /* On SMC entry, `sp` points to `smc_ctx_t`. Save `lr`. */ 252 str lr, [sp, #SMC_CTX_LR_MON] 253 254 smccc_save_gp_mode_regs 255 256 clrex_on_monitor_entry 257 258 /* load run-time stack */ 259 mov r2, sp 260 ldr sp, [r2, #SMC_CTX_SP_MON] 261 262 /* Switch to Secure Mode */ 263 ldr r0, [r2, #SMC_CTX_SCR] 264 bic r0, #SCR_NS_BIT 265 stcopr r0, SCR 266 isb 267 268 push {r2, r3} 269 bl sp_min_fiq 270 pop {r0, r3} 271 272 b sp_min_exit 273#endif 274endfunc sp_min_handle_fiq 275 276/* 277 * The Warm boot entrypoint for SP_MIN. 278 */ 279func sp_min_warm_entrypoint 280#if ENABLE_RUNTIME_INSTRUMENTATION 281 /* 282 * This timestamp update happens with cache off. The next 283 * timestamp collection will need to do cache maintenance prior 284 * to timestamp update. 285 */ 286 pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_HW_LOW_PWR 287 ldcopr16 r2, r3, CNTPCT_64 288 strd r2, r3, [r0] 289#endif 290 /* 291 * On the warm boot path, most of the EL3 initialisations performed by 292 * 'el3_entrypoint_common' must be skipped: 293 * 294 * - Only when the platform bypasses the BL1/BL32 (SP_MIN) entrypoint by 295 * programming the reset address do we need to initialied the SCTLR. 296 * In other cases, we assume this has been taken care by the 297 * entrypoint code. 298 * 299 * - No need to determine the type of boot, we know it is a warm boot. 300 * 301 * - Do not try to distinguish between primary and secondary CPUs, this 302 * notion only exists for a cold boot. 303 * 304 * - No need to initialise the memory or the C runtime environment, 305 * it has been done once and for all on the cold boot path. 306 */ 307 el3_entrypoint_common \ 308 _init_sctlr=PROGRAMMABLE_RESET_ADDRESS \ 309 _warm_boot_mailbox=0 \ 310 _secondary_cold_boot=0 \ 311 _init_memory=0 \ 312 _init_c_runtime=0 \ 313 _exception_vectors=sp_min_vector_table \ 314 _pie_fixup_size=0 315 316 /* 317 * We're about to enable MMU and participate in PSCI state coordination. 318 * 319 * The PSCI implementation invokes platform routines that enable CPUs to 320 * participate in coherency. On a system where CPUs are not 321 * cache-coherent without appropriate platform specific programming, 322 * having caches enabled until such time might lead to coherency issues 323 * (resulting from stale data getting speculatively fetched, among 324 * others). Therefore we keep data caches disabled even after enabling 325 * the MMU for such platforms. 326 * 327 * On systems with hardware-assisted coherency, or on single cluster 328 * platforms, such platform specific programming is not required to 329 * enter coherency (as CPUs already are); and there's no reason to have 330 * caches disabled either. 331 */ 332#if HW_ASSISTED_COHERENCY || WARMBOOT_ENABLE_DCACHE_EARLY 333 mov r0, #0 334#else 335 mov r0, #DISABLE_DCACHE 336#endif 337 bl bl32_plat_enable_mmu 338 339#if SP_MIN_WITH_SECURE_FIQ 340 route_fiq_to_sp_min r0 341#endif 342 343 bl sp_min_warm_boot 344 bl smc_get_next_ctx 345 /* r0 points to `smc_ctx_t` */ 346 /* The PSCI cpu_context registers have been copied to `smc_ctx_t` */ 347 348#if ENABLE_RUNTIME_INSTRUMENTATION 349 /* Save smc_ctx_t */ 350 mov r5, r0 351 352 pmf_calc_timestamp_addr rt_instr_svc, RT_INSTR_EXIT_PSCI 353 mov r4, r0 354 355 /* 356 * Invalidate before updating timestamp to ensure previous timestamp 357 * updates on the same cache line with caches disabled are properly 358 * seen by the same core. Without the cache invalidate, the core might 359 * write into a stale cache line. 360 */ 361 mov r1, #PMF_TS_SIZE 362 bl inv_dcache_range 363 364 ldcopr16 r0, r1, CNTPCT_64 365 strd r0, r1, [r4] 366 367 /* Restore smc_ctx_t */ 368 mov r0, r5 369#endif 370 371 b sp_min_exit 372endfunc sp_min_warm_entrypoint 373 374/* 375 * The function to restore the registers from SMC context and return 376 * to the mode restored to SPSR. 377 * 378 * Arguments : r0 must point to the SMC context to restore from. 379 */ 380func sp_min_exit 381 monitor_exit 382endfunc sp_min_exit 383