1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (C) 2008 RuggedCom, Inc.
4  * Richard Retanubun <RichardRetanubun@RuggedCom.com>
5  */
6 
7 /*
8  * NOTE:
9  *   when CONFIG_SYS_64BIT_LBA is not defined, lbaint_t is 32 bits; this
10  *   limits the maximum size of addressable storage to < 2 tebibytes
11  */
12 #include <common.h>
13 #include <blk.h>
14 #include <log.h>
15 #include <part.h>
16 #include <uuid.h>
17 #include <asm/cache.h>
18 #include <asm/global_data.h>
19 #include <asm/unaligned.h>
20 #include <command.h>
21 #include <fdtdec.h>
22 #include <ide.h>
23 #include <malloc.h>
24 #include <memalign.h>
25 #include <part_efi.h>
26 #include <linux/compiler.h>
27 #include <linux/ctype.h>
28 #include <u-boot/crc.h>
29 
30 DECLARE_GLOBAL_DATA_PTR;
31 
32 /*
33  * GUID for basic data partions.
34  */
35 static const efi_guid_t partition_basic_data_guid = PARTITION_BASIC_DATA_GUID;
36 
37 #ifdef CONFIG_HAVE_BLOCK_DEVICE
38 /**
39  * efi_crc32() - EFI version of crc32 function
40  * @buf: buffer to calculate crc32 of
41  * @len - length of buf
42  *
43  * Description: Returns EFI-style CRC32 value for @buf
44  */
efi_crc32(const void * buf,u32 len)45 static inline u32 efi_crc32(const void *buf, u32 len)
46 {
47 	return crc32(0, buf, len);
48 }
49 
50 /*
51  * Private function prototypes
52  */
53 
54 static int pmbr_part_valid(struct partition *part);
55 static int is_pmbr_valid(legacy_mbr * mbr);
56 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
57 				gpt_header *pgpt_head, gpt_entry **pgpt_pte);
58 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
59 					 gpt_header *pgpt_head);
60 static int is_pte_valid(gpt_entry * pte);
61 static int find_valid_gpt(struct blk_desc *dev_desc, gpt_header *gpt_head,
62 			  gpt_entry **pgpt_pte);
63 
print_efiname(gpt_entry * pte)64 static char *print_efiname(gpt_entry *pte)
65 {
66 	static char name[PARTNAME_SZ + 1];
67 	int i;
68 	for (i = 0; i < PARTNAME_SZ; i++) {
69 		u8 c;
70 		c = pte->partition_name[i] & 0xff;
71 		c = (c && !isprint(c)) ? '.' : c;
72 		name[i] = c;
73 	}
74 	name[PARTNAME_SZ] = 0;
75 	return name;
76 }
77 
78 static const efi_guid_t system_guid = PARTITION_SYSTEM_GUID;
79 
get_bootable(gpt_entry * p)80 static int get_bootable(gpt_entry *p)
81 {
82 	int ret = 0;
83 
84 	if (!memcmp(&p->partition_type_guid, &system_guid, sizeof(efi_guid_t)))
85 		ret |=  PART_EFI_SYSTEM_PARTITION;
86 	if (p->attributes.fields.legacy_bios_bootable)
87 		ret |=  PART_BOOTABLE;
88 	return ret;
89 }
90 
validate_gpt_header(gpt_header * gpt_h,lbaint_t lba,lbaint_t lastlba)91 static int validate_gpt_header(gpt_header *gpt_h, lbaint_t lba,
92 		lbaint_t lastlba)
93 {
94 	uint32_t crc32_backup = 0;
95 	uint32_t calc_crc32;
96 
97 	/* Check the GPT header signature */
98 	if (le64_to_cpu(gpt_h->signature) != GPT_HEADER_SIGNATURE_UBOOT) {
99 		printf("%s signature is wrong: 0x%llX != 0x%llX\n",
100 		       "GUID Partition Table Header",
101 		       le64_to_cpu(gpt_h->signature),
102 		       GPT_HEADER_SIGNATURE_UBOOT);
103 		return -1;
104 	}
105 
106 	/* Check the GUID Partition Table CRC */
107 	memcpy(&crc32_backup, &gpt_h->header_crc32, sizeof(crc32_backup));
108 	memset(&gpt_h->header_crc32, 0, sizeof(gpt_h->header_crc32));
109 
110 	calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
111 		le32_to_cpu(gpt_h->header_size));
112 
113 	memcpy(&gpt_h->header_crc32, &crc32_backup, sizeof(crc32_backup));
114 
115 	if (calc_crc32 != le32_to_cpu(crc32_backup)) {
116 		printf("%s CRC is wrong: 0x%x != 0x%x\n",
117 		       "GUID Partition Table Header",
118 		       le32_to_cpu(crc32_backup), calc_crc32);
119 		return -1;
120 	}
121 
122 	/*
123 	 * Check that the my_lba entry points to the LBA that contains the GPT
124 	 */
125 	if (le64_to_cpu(gpt_h->my_lba) != lba) {
126 		printf("GPT: my_lba incorrect: %llX != " LBAF "\n",
127 		       le64_to_cpu(gpt_h->my_lba),
128 		       lba);
129 		return -1;
130 	}
131 
132 	/*
133 	 * Check that the first_usable_lba and that the last_usable_lba are
134 	 * within the disk.
135 	 */
136 	if (le64_to_cpu(gpt_h->first_usable_lba) > lastlba) {
137 		printf("GPT: first_usable_lba incorrect: %llX > " LBAF "\n",
138 		       le64_to_cpu(gpt_h->first_usable_lba), lastlba);
139 		return -1;
140 	}
141 	if (le64_to_cpu(gpt_h->last_usable_lba) > lastlba) {
142 		printf("GPT: last_usable_lba incorrect: %llX > " LBAF "\n",
143 		       le64_to_cpu(gpt_h->last_usable_lba), lastlba);
144 		return -1;
145 	}
146 
147 	debug("GPT: first_usable_lba: %llX last_usable_lba: %llX last lba: "
148 	      LBAF "\n", le64_to_cpu(gpt_h->first_usable_lba),
149 	      le64_to_cpu(gpt_h->last_usable_lba), lastlba);
150 
151 	return 0;
152 }
153 
validate_gpt_entries(gpt_header * gpt_h,gpt_entry * gpt_e)154 static int validate_gpt_entries(gpt_header *gpt_h, gpt_entry *gpt_e)
155 {
156 	uint32_t calc_crc32;
157 
158 	/* Check the GUID Partition Table Entry Array CRC */
159 	calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
160 		le32_to_cpu(gpt_h->num_partition_entries) *
161 		le32_to_cpu(gpt_h->sizeof_partition_entry));
162 
163 	if (calc_crc32 != le32_to_cpu(gpt_h->partition_entry_array_crc32)) {
164 		printf("%s: 0x%x != 0x%x\n",
165 		       "GUID Partition Table Entry Array CRC is wrong",
166 		       le32_to_cpu(gpt_h->partition_entry_array_crc32),
167 		       calc_crc32);
168 		return -1;
169 	}
170 
171 	return 0;
172 }
173 
prepare_backup_gpt_header(gpt_header * gpt_h)174 static void prepare_backup_gpt_header(gpt_header *gpt_h)
175 {
176 	uint32_t calc_crc32;
177 	uint64_t val;
178 
179 	/* recalculate the values for the Backup GPT Header */
180 	val = le64_to_cpu(gpt_h->my_lba);
181 	gpt_h->my_lba = gpt_h->alternate_lba;
182 	gpt_h->alternate_lba = cpu_to_le64(val);
183 	gpt_h->partition_entry_lba =
184 			cpu_to_le64(le64_to_cpu(gpt_h->last_usable_lba) + 1);
185 	gpt_h->header_crc32 = 0;
186 
187 	calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
188 			       le32_to_cpu(gpt_h->header_size));
189 	gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
190 }
191 
192 #if CONFIG_IS_ENABLED(EFI_PARTITION)
193 /*
194  * Public Functions (include/part.h)
195  */
196 
197 /*
198  * UUID is displayed as 32 hexadecimal digits, in 5 groups,
199  * separated by hyphens, in the form 8-4-4-4-12 for a total of 36 characters
200  */
get_disk_guid(struct blk_desc * dev_desc,char * guid)201 int get_disk_guid(struct blk_desc * dev_desc, char *guid)
202 {
203 	ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
204 	gpt_entry *gpt_pte = NULL;
205 	unsigned char *guid_bin;
206 
207 	/* This function validates AND fills in the GPT header and PTE */
208 	if (find_valid_gpt(dev_desc, gpt_head, &gpt_pte) != 1)
209 		return -EINVAL;
210 
211 	guid_bin = gpt_head->disk_guid.b;
212 	uuid_bin_to_str(guid_bin, guid, UUID_STR_FORMAT_GUID);
213 
214 	/* Remember to free pte */
215 	free(gpt_pte);
216 	return 0;
217 }
218 
part_print_efi(struct blk_desc * dev_desc)219 void part_print_efi(struct blk_desc *dev_desc)
220 {
221 	ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
222 	gpt_entry *gpt_pte = NULL;
223 	int i = 0;
224 	char uuid[UUID_STR_LEN + 1];
225 	unsigned char *uuid_bin;
226 
227 	/* This function validates AND fills in the GPT header and PTE */
228 	if (find_valid_gpt(dev_desc, gpt_head, &gpt_pte) != 1)
229 		return;
230 
231 	debug("%s: gpt-entry at %p\n", __func__, gpt_pte);
232 
233 	printf("Part\tStart LBA\tEnd LBA\t\tName\n");
234 	printf("\tAttributes\n");
235 	printf("\tType GUID\n");
236 	printf("\tPartition GUID\n");
237 
238 	for (i = 0; i < le32_to_cpu(gpt_head->num_partition_entries); i++) {
239 		/* Stop at the first non valid PTE */
240 		if (!is_pte_valid(&gpt_pte[i]))
241 			break;
242 
243 		printf("%3d\t0x%08llx\t0x%08llx\t\"%s\"\n", (i + 1),
244 			le64_to_cpu(gpt_pte[i].starting_lba),
245 			le64_to_cpu(gpt_pte[i].ending_lba),
246 			print_efiname(&gpt_pte[i]));
247 		printf("\tattrs:\t0x%016llx\n", gpt_pte[i].attributes.raw);
248 		uuid_bin = (unsigned char *)gpt_pte[i].partition_type_guid.b;
249 		uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
250 		printf("\ttype:\t%s\n", uuid);
251 		if (CONFIG_IS_ENABLED(PARTITION_TYPE_GUID)) {
252 			const char *type = uuid_guid_get_str(uuid_bin);
253 			if (type)
254 				printf("\ttype:\t%s\n", type);
255 		}
256 		uuid_bin = (unsigned char *)gpt_pte[i].unique_partition_guid.b;
257 		uuid_bin_to_str(uuid_bin, uuid, UUID_STR_FORMAT_GUID);
258 		printf("\tguid:\t%s\n", uuid);
259 	}
260 
261 	/* Remember to free pte */
262 	free(gpt_pte);
263 	return;
264 }
265 
part_get_info_efi(struct blk_desc * dev_desc,int part,struct disk_partition * info)266 int part_get_info_efi(struct blk_desc *dev_desc, int part,
267 		      struct disk_partition *info)
268 {
269 	ALLOC_CACHE_ALIGN_BUFFER_PAD(gpt_header, gpt_head, 1, dev_desc->blksz);
270 	gpt_entry *gpt_pte = NULL;
271 
272 	/* "part" argument must be at least 1 */
273 	if (part < 1) {
274 		printf("%s: Invalid Argument(s)\n", __func__);
275 		return -1;
276 	}
277 
278 	/* This function validates AND fills in the GPT header and PTE */
279 	if (find_valid_gpt(dev_desc, gpt_head, &gpt_pte) != 1)
280 		return -1;
281 
282 	if (part > le32_to_cpu(gpt_head->num_partition_entries) ||
283 	    !is_pte_valid(&gpt_pte[part - 1])) {
284 		debug("%s: *** ERROR: Invalid partition number %d ***\n",
285 			__func__, part);
286 		free(gpt_pte);
287 		return -1;
288 	}
289 
290 	/* The 'lbaint_t' casting may limit the maximum disk size to 2 TB */
291 	info->start = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].starting_lba);
292 	/* The ending LBA is inclusive, to calculate size, add 1 to it */
293 	info->size = (lbaint_t)le64_to_cpu(gpt_pte[part - 1].ending_lba) + 1
294 		     - info->start;
295 	info->blksz = dev_desc->blksz;
296 
297 	snprintf((char *)info->name, sizeof(info->name), "%s",
298 		 print_efiname(&gpt_pte[part - 1]));
299 	strcpy((char *)info->type, "U-Boot");
300 	info->bootable = get_bootable(&gpt_pte[part - 1]);
301 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
302 	uuid_bin_to_str(gpt_pte[part - 1].unique_partition_guid.b, info->uuid,
303 			UUID_STR_FORMAT_GUID);
304 #endif
305 #ifdef CONFIG_PARTITION_TYPE_GUID
306 	uuid_bin_to_str(gpt_pte[part - 1].partition_type_guid.b,
307 			info->type_guid, UUID_STR_FORMAT_GUID);
308 #endif
309 
310 	debug("%s: start 0x" LBAF ", size 0x" LBAF ", name %s\n", __func__,
311 	      info->start, info->size, info->name);
312 
313 	/* Remember to free pte */
314 	free(gpt_pte);
315 	return 0;
316 }
317 
part_test_efi(struct blk_desc * dev_desc)318 static int part_test_efi(struct blk_desc *dev_desc)
319 {
320 	ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, legacymbr, 1, dev_desc->blksz);
321 
322 	/* Read legacy MBR from block 0 and validate it */
323 	if ((blk_dread(dev_desc, 0, 1, (ulong *)legacymbr) != 1)
324 		|| (is_pmbr_valid(legacymbr) != 1)) {
325 		return -1;
326 	}
327 	return 0;
328 }
329 
330 /**
331  * set_protective_mbr(): Set the EFI protective MBR
332  * @param dev_desc - block device descriptor
333  *
334  * @return - zero on success, otherwise error
335  */
set_protective_mbr(struct blk_desc * dev_desc)336 static int set_protective_mbr(struct blk_desc *dev_desc)
337 {
338 	/* Setup the Protective MBR */
339 	ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, p_mbr, 1, dev_desc->blksz);
340 	if (p_mbr == NULL) {
341 		printf("%s: calloc failed!\n", __func__);
342 		return -1;
343 	}
344 
345 	/* Read MBR to backup boot code if it exists */
346 	if (blk_dread(dev_desc, 0, 1, p_mbr) != 1) {
347 		pr_err("** Can't read from device %d **\n", dev_desc->devnum);
348 		return -1;
349 	}
350 
351 	/* Clear all data in MBR except of backed up boot code */
352 	memset((char *)p_mbr + MSDOS_MBR_BOOT_CODE_SIZE, 0, sizeof(*p_mbr) -
353 			MSDOS_MBR_BOOT_CODE_SIZE);
354 
355 	/* Append signature */
356 	p_mbr->signature = MSDOS_MBR_SIGNATURE;
357 	p_mbr->partition_record[0].sys_ind = EFI_PMBR_OSTYPE_EFI_GPT;
358 	p_mbr->partition_record[0].start_sect = 1;
359 	p_mbr->partition_record[0].nr_sects = (u32) dev_desc->lba - 1;
360 
361 	/* Write MBR sector to the MMC device */
362 	if (blk_dwrite(dev_desc, 0, 1, p_mbr) != 1) {
363 		printf("** Can't write to device %d **\n",
364 			dev_desc->devnum);
365 		return -1;
366 	}
367 
368 	return 0;
369 }
370 
write_gpt_table(struct blk_desc * dev_desc,gpt_header * gpt_h,gpt_entry * gpt_e)371 int write_gpt_table(struct blk_desc *dev_desc,
372 		gpt_header *gpt_h, gpt_entry *gpt_e)
373 {
374 	const int pte_blk_cnt = BLOCK_CNT((gpt_h->num_partition_entries
375 					   * sizeof(gpt_entry)), dev_desc);
376 	u32 calc_crc32;
377 
378 	debug("max lba: %x\n", (u32) dev_desc->lba);
379 	/* Setup the Protective MBR */
380 	if (set_protective_mbr(dev_desc) < 0)
381 		goto err;
382 
383 	/* Generate CRC for the Primary GPT Header */
384 	calc_crc32 = efi_crc32((const unsigned char *)gpt_e,
385 			      le32_to_cpu(gpt_h->num_partition_entries) *
386 			      le32_to_cpu(gpt_h->sizeof_partition_entry));
387 	gpt_h->partition_entry_array_crc32 = cpu_to_le32(calc_crc32);
388 
389 	calc_crc32 = efi_crc32((const unsigned char *)gpt_h,
390 			      le32_to_cpu(gpt_h->header_size));
391 	gpt_h->header_crc32 = cpu_to_le32(calc_crc32);
392 
393 	/* Write the First GPT to the block right after the Legacy MBR */
394 	if (blk_dwrite(dev_desc, 1, 1, gpt_h) != 1)
395 		goto err;
396 
397 	if (blk_dwrite(dev_desc, le64_to_cpu(gpt_h->partition_entry_lba),
398 		       pte_blk_cnt, gpt_e) != pte_blk_cnt)
399 		goto err;
400 
401 	prepare_backup_gpt_header(gpt_h);
402 
403 	if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->last_usable_lba)
404 		       + 1, pte_blk_cnt, gpt_e) != pte_blk_cnt)
405 		goto err;
406 
407 	if (blk_dwrite(dev_desc, (lbaint_t)le64_to_cpu(gpt_h->my_lba), 1,
408 		       gpt_h) != 1)
409 		goto err;
410 
411 	debug("GPT successfully written to block device!\n");
412 	return 0;
413 
414  err:
415 	printf("** Can't write to device %d **\n", dev_desc->devnum);
416 	return -1;
417 }
418 
gpt_fill_pte(struct blk_desc * dev_desc,gpt_header * gpt_h,gpt_entry * gpt_e,struct disk_partition * partitions,int parts)419 int gpt_fill_pte(struct blk_desc *dev_desc,
420 		 gpt_header *gpt_h, gpt_entry *gpt_e,
421 		 struct disk_partition *partitions, int parts)
422 {
423 	lbaint_t offset = (lbaint_t)le64_to_cpu(gpt_h->first_usable_lba);
424 	lbaint_t last_usable_lba = (lbaint_t)
425 			le64_to_cpu(gpt_h->last_usable_lba);
426 	int i, k;
427 	size_t efiname_len, dosname_len;
428 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
429 	char *str_uuid;
430 	unsigned char *bin_uuid;
431 #endif
432 #ifdef CONFIG_PARTITION_TYPE_GUID
433 	char *str_type_guid;
434 	unsigned char *bin_type_guid;
435 #endif
436 	size_t hdr_start = gpt_h->my_lba;
437 	size_t hdr_end = hdr_start + 1;
438 
439 	size_t pte_start = gpt_h->partition_entry_lba;
440 	size_t pte_end = pte_start +
441 		gpt_h->num_partition_entries * gpt_h->sizeof_partition_entry /
442 		dev_desc->blksz;
443 
444 	for (i = 0; i < parts; i++) {
445 		/* partition starting lba */
446 		lbaint_t start = partitions[i].start;
447 		lbaint_t size = partitions[i].size;
448 
449 		if (start) {
450 			offset = start + size;
451 		} else {
452 			start = offset;
453 			offset += size;
454 		}
455 
456 		/*
457 		 * If our partition overlaps with either the GPT
458 		 * header, or the partition entry, reject it.
459 		 */
460 		if (((start < hdr_end && hdr_start < (start + size)) ||
461 		     (start < pte_end && pte_start < (start + size)))) {
462 			printf("Partition overlap\n");
463 			return -1;
464 		}
465 
466 		gpt_e[i].starting_lba = cpu_to_le64(start);
467 
468 		if (offset > (last_usable_lba + 1)) {
469 			printf("Partitions layout exceds disk size\n");
470 			return -1;
471 		}
472 		/* partition ending lba */
473 		if ((i == parts - 1) && (size == 0))
474 			/* extend the last partition to maximuim */
475 			gpt_e[i].ending_lba = gpt_h->last_usable_lba;
476 		else
477 			gpt_e[i].ending_lba = cpu_to_le64(offset - 1);
478 
479 #ifdef CONFIG_PARTITION_TYPE_GUID
480 		str_type_guid = partitions[i].type_guid;
481 		bin_type_guid = gpt_e[i].partition_type_guid.b;
482 		if (strlen(str_type_guid)) {
483 			if (uuid_str_to_bin(str_type_guid, bin_type_guid,
484 					    UUID_STR_FORMAT_GUID)) {
485 				printf("Partition no. %d: invalid type guid: %s\n",
486 				       i, str_type_guid);
487 				return -1;
488 			}
489 		} else {
490 			/* default partition type GUID */
491 			memcpy(bin_type_guid,
492 			       &partition_basic_data_guid, 16);
493 		}
494 #else
495 		/* partition type GUID */
496 		memcpy(gpt_e[i].partition_type_guid.b,
497 			&partition_basic_data_guid, 16);
498 #endif
499 
500 #if CONFIG_IS_ENABLED(PARTITION_UUIDS)
501 		str_uuid = partitions[i].uuid;
502 		bin_uuid = gpt_e[i].unique_partition_guid.b;
503 
504 		if (uuid_str_to_bin(str_uuid, bin_uuid, UUID_STR_FORMAT_GUID)) {
505 			printf("Partition no. %d: invalid guid: %s\n",
506 				i, str_uuid);
507 			return -1;
508 		}
509 #endif
510 
511 		/* partition attributes */
512 		memset(&gpt_e[i].attributes, 0,
513 		       sizeof(gpt_entry_attributes));
514 
515 		if (partitions[i].bootable & PART_BOOTABLE)
516 			gpt_e[i].attributes.fields.legacy_bios_bootable = 1;
517 
518 		/* partition name */
519 		efiname_len = sizeof(gpt_e[i].partition_name)
520 			/ sizeof(efi_char16_t);
521 		dosname_len = sizeof(partitions[i].name);
522 
523 		memset(gpt_e[i].partition_name, 0,
524 		       sizeof(gpt_e[i].partition_name));
525 
526 		for (k = 0; k < min(dosname_len, efiname_len); k++)
527 			gpt_e[i].partition_name[k] =
528 				(efi_char16_t)(partitions[i].name[k]);
529 
530 		debug("%s: name: %s offset[%d]: 0x" LBAF
531 		      " size[%d]: 0x" LBAF "\n",
532 		      __func__, partitions[i].name, i,
533 		      offset, i, size);
534 	}
535 
536 	return 0;
537 }
538 
partition_entries_offset(struct blk_desc * dev_desc)539 static uint32_t partition_entries_offset(struct blk_desc *dev_desc)
540 {
541 	uint32_t offset_blks = 2;
542 	uint32_t __maybe_unused offset_bytes;
543 	int __maybe_unused config_offset;
544 
545 #if defined(CONFIG_EFI_PARTITION_ENTRIES_OFF)
546 	/*
547 	 * Some architectures require their SPL loader at a fixed
548 	 * address within the first 16KB of the disk.  To avoid an
549 	 * overlap with the partition entries of the EFI partition
550 	 * table, the first safe offset (in bytes, from the start of
551 	 * the disk) for the entries can be set in
552 	 * CONFIG_EFI_PARTITION_ENTRIES_OFF.
553 	 */
554 	offset_bytes =
555 		PAD_TO_BLOCKSIZE(CONFIG_EFI_PARTITION_ENTRIES_OFF, dev_desc);
556 	offset_blks = offset_bytes / dev_desc->blksz;
557 #endif
558 
559 #if defined(CONFIG_OF_CONTROL)
560 	/*
561 	 * Allow the offset of the first partition entires (in bytes
562 	 * from the start of the device) to be specified as a property
563 	 * of the device tree '/config' node.
564 	 */
565 	config_offset = fdtdec_get_config_int(gd->fdt_blob,
566 					      "u-boot,efi-partition-entries-offset",
567 					      -EINVAL);
568 	if (config_offset != -EINVAL) {
569 		offset_bytes = PAD_TO_BLOCKSIZE(config_offset, dev_desc);
570 		offset_blks = offset_bytes / dev_desc->blksz;
571 	}
572 #endif
573 
574 	debug("efi: partition entries offset (in blocks): %d\n", offset_blks);
575 
576 	/*
577 	 * The earliest LBA this can be at is LBA#2 (i.e. right behind
578 	 * the (protective) MBR and the GPT header.
579 	 */
580 	if (offset_blks < 2)
581 		offset_blks = 2;
582 
583 	return offset_blks;
584 }
585 
gpt_fill_header(struct blk_desc * dev_desc,gpt_header * gpt_h,char * str_guid,int parts_count)586 int gpt_fill_header(struct blk_desc *dev_desc, gpt_header *gpt_h,
587 		char *str_guid, int parts_count)
588 {
589 	gpt_h->signature = cpu_to_le64(GPT_HEADER_SIGNATURE_UBOOT);
590 	gpt_h->revision = cpu_to_le32(GPT_HEADER_REVISION_V1);
591 	gpt_h->header_size = cpu_to_le32(sizeof(gpt_header));
592 	gpt_h->my_lba = cpu_to_le64(1);
593 	gpt_h->alternate_lba = cpu_to_le64(dev_desc->lba - 1);
594 	gpt_h->last_usable_lba = cpu_to_le64(dev_desc->lba - 34);
595 	gpt_h->partition_entry_lba =
596 		cpu_to_le64(partition_entries_offset(dev_desc));
597 	gpt_h->first_usable_lba =
598 		cpu_to_le64(le64_to_cpu(gpt_h->partition_entry_lba) + 32);
599 	gpt_h->num_partition_entries = cpu_to_le32(GPT_ENTRY_NUMBERS);
600 	gpt_h->sizeof_partition_entry = cpu_to_le32(sizeof(gpt_entry));
601 	gpt_h->header_crc32 = 0;
602 	gpt_h->partition_entry_array_crc32 = 0;
603 
604 	if (uuid_str_to_bin(str_guid, gpt_h->disk_guid.b, UUID_STR_FORMAT_GUID))
605 		return -1;
606 
607 	return 0;
608 }
609 
gpt_restore(struct blk_desc * dev_desc,char * str_disk_guid,struct disk_partition * partitions,int parts_count)610 int gpt_restore(struct blk_desc *dev_desc, char *str_disk_guid,
611 		struct disk_partition *partitions, int parts_count)
612 {
613 	gpt_header *gpt_h;
614 	gpt_entry *gpt_e;
615 	int ret, size;
616 
617 	size = PAD_TO_BLOCKSIZE(sizeof(gpt_header), dev_desc);
618 	gpt_h = malloc_cache_aligned(size);
619 	if (gpt_h == NULL) {
620 		printf("%s: calloc failed!\n", __func__);
621 		return -1;
622 	}
623 	memset(gpt_h, 0, size);
624 
625 	size = PAD_TO_BLOCKSIZE(GPT_ENTRY_NUMBERS * sizeof(gpt_entry),
626 				dev_desc);
627 	gpt_e = malloc_cache_aligned(size);
628 	if (gpt_e == NULL) {
629 		printf("%s: calloc failed!\n", __func__);
630 		free(gpt_h);
631 		return -1;
632 	}
633 	memset(gpt_e, 0, size);
634 
635 	/* Generate Primary GPT header (LBA1) */
636 	ret = gpt_fill_header(dev_desc, gpt_h, str_disk_guid, parts_count);
637 	if (ret)
638 		goto err;
639 
640 	/* Generate partition entries */
641 	ret = gpt_fill_pte(dev_desc, gpt_h, gpt_e, partitions, parts_count);
642 	if (ret)
643 		goto err;
644 
645 	/* Write GPT partition table */
646 	ret = write_gpt_table(dev_desc, gpt_h, gpt_e);
647 
648 err:
649 	free(gpt_e);
650 	free(gpt_h);
651 	return ret;
652 }
653 
654 /**
655  * gpt_convert_efi_name_to_char() - convert u16 string to char string
656  *
657  * TODO: this conversion only supports ANSI characters
658  *
659  * @s:	target buffer
660  * @es:	u16 string to be converted
661  * @n:	size of target buffer
662  */
gpt_convert_efi_name_to_char(char * s,void * es,int n)663 static void gpt_convert_efi_name_to_char(char *s, void *es, int n)
664 {
665 	char *ess = es;
666 	int i, j;
667 
668 	memset(s, '\0', n);
669 
670 	for (i = 0, j = 0; j < n; i += 2, j++) {
671 		s[j] = ess[i];
672 		if (!ess[i])
673 			return;
674 	}
675 }
676 
gpt_verify_headers(struct blk_desc * dev_desc,gpt_header * gpt_head,gpt_entry ** gpt_pte)677 int gpt_verify_headers(struct blk_desc *dev_desc, gpt_header *gpt_head,
678 		       gpt_entry **gpt_pte)
679 {
680 	/*
681 	 * This function validates AND
682 	 * fills in the GPT header and PTE
683 	 */
684 	if (is_gpt_valid(dev_desc,
685 			 GPT_PRIMARY_PARTITION_TABLE_LBA,
686 			 gpt_head, gpt_pte) != 1) {
687 		printf("%s: *** ERROR: Invalid GPT ***\n",
688 		       __func__);
689 		return -1;
690 	}
691 
692 	/* Free pte before allocating again */
693 	free(*gpt_pte);
694 
695 	if (is_gpt_valid(dev_desc, (dev_desc->lba - 1),
696 			 gpt_head, gpt_pte) != 1) {
697 		printf("%s: *** ERROR: Invalid Backup GPT ***\n",
698 		       __func__);
699 		return -1;
700 	}
701 
702 	return 0;
703 }
704 
gpt_verify_partitions(struct blk_desc * dev_desc,struct disk_partition * partitions,int parts,gpt_header * gpt_head,gpt_entry ** gpt_pte)705 int gpt_verify_partitions(struct blk_desc *dev_desc,
706 			  struct disk_partition *partitions, int parts,
707 			  gpt_header *gpt_head, gpt_entry **gpt_pte)
708 {
709 	char efi_str[PARTNAME_SZ + 1];
710 	u64 gpt_part_size;
711 	gpt_entry *gpt_e;
712 	int ret, i;
713 
714 	ret = gpt_verify_headers(dev_desc, gpt_head, gpt_pte);
715 	if (ret)
716 		return ret;
717 
718 	gpt_e = *gpt_pte;
719 
720 	for (i = 0; i < parts; i++) {
721 		if (i == gpt_head->num_partition_entries) {
722 			pr_err("More partitions than allowed!\n");
723 			return -1;
724 		}
725 
726 		/* Check if GPT and ENV partition names match */
727 		gpt_convert_efi_name_to_char(efi_str, gpt_e[i].partition_name,
728 					     PARTNAME_SZ + 1);
729 
730 		debug("%s: part: %2d name - GPT: %16s, ENV: %16s ",
731 		      __func__, i, efi_str, partitions[i].name);
732 
733 		if (strncmp(efi_str, (char *)partitions[i].name,
734 			    sizeof(partitions->name))) {
735 			pr_err("Partition name: %s does not match %s!\n",
736 			      efi_str, (char *)partitions[i].name);
737 			return -1;
738 		}
739 
740 		/* Check if GPT and ENV sizes match */
741 		gpt_part_size = le64_to_cpu(gpt_e[i].ending_lba) -
742 			le64_to_cpu(gpt_e[i].starting_lba) + 1;
743 		debug("size(LBA) - GPT: %8llu, ENV: %8llu ",
744 		      (unsigned long long)gpt_part_size,
745 		      (unsigned long long)partitions[i].size);
746 
747 		if (le64_to_cpu(gpt_part_size) != partitions[i].size) {
748 			/* We do not check the extend partition size */
749 			if ((i == parts - 1) && (partitions[i].size == 0))
750 				continue;
751 
752 			pr_err("Partition %s size: %llu does not match %llu!\n",
753 			      efi_str, (unsigned long long)gpt_part_size,
754 			      (unsigned long long)partitions[i].size);
755 			return -1;
756 		}
757 
758 		/*
759 		 * Start address is optional - check only if provided
760 		 * in '$partition' variable
761 		 */
762 		if (!partitions[i].start) {
763 			debug("\n");
764 			continue;
765 		}
766 
767 		/* Check if GPT and ENV start LBAs match */
768 		debug("start LBA - GPT: %8llu, ENV: %8llu\n",
769 		      le64_to_cpu(gpt_e[i].starting_lba),
770 		      (unsigned long long)partitions[i].start);
771 
772 		if (le64_to_cpu(gpt_e[i].starting_lba) != partitions[i].start) {
773 			pr_err("Partition %s start: %llu does not match %llu!\n",
774 			      efi_str, le64_to_cpu(gpt_e[i].starting_lba),
775 			      (unsigned long long)partitions[i].start);
776 			return -1;
777 		}
778 	}
779 
780 	return 0;
781 }
782 
is_valid_gpt_buf(struct blk_desc * dev_desc,void * buf)783 int is_valid_gpt_buf(struct blk_desc *dev_desc, void *buf)
784 {
785 	gpt_header *gpt_h;
786 	gpt_entry *gpt_e;
787 
788 	/* determine start of GPT Header in the buffer */
789 	gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
790 		       dev_desc->blksz);
791 	if (validate_gpt_header(gpt_h, GPT_PRIMARY_PARTITION_TABLE_LBA,
792 				dev_desc->lba))
793 		return -1;
794 
795 	/* determine start of GPT Entries in the buffer */
796 	gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
797 		       dev_desc->blksz);
798 	if (validate_gpt_entries(gpt_h, gpt_e))
799 		return -1;
800 
801 	return 0;
802 }
803 
write_mbr_and_gpt_partitions(struct blk_desc * dev_desc,void * buf)804 int write_mbr_and_gpt_partitions(struct blk_desc *dev_desc, void *buf)
805 {
806 	gpt_header *gpt_h;
807 	gpt_entry *gpt_e;
808 	int gpt_e_blk_cnt;
809 	lbaint_t lba;
810 	int cnt;
811 
812 	if (is_valid_gpt_buf(dev_desc, buf))
813 		return -1;
814 
815 	/* determine start of GPT Header in the buffer */
816 	gpt_h = buf + (GPT_PRIMARY_PARTITION_TABLE_LBA *
817 		       dev_desc->blksz);
818 
819 	/* determine start of GPT Entries in the buffer */
820 	gpt_e = buf + (le64_to_cpu(gpt_h->partition_entry_lba) *
821 		       dev_desc->blksz);
822 	gpt_e_blk_cnt = BLOCK_CNT((le32_to_cpu(gpt_h->num_partition_entries) *
823 				   le32_to_cpu(gpt_h->sizeof_partition_entry)),
824 				  dev_desc);
825 
826 	/* write MBR */
827 	lba = 0;	/* MBR is always at 0 */
828 	cnt = 1;	/* MBR (1 block) */
829 	if (blk_dwrite(dev_desc, lba, cnt, buf) != cnt) {
830 		printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
831 		       __func__, "MBR", cnt, lba);
832 		return 1;
833 	}
834 
835 	/* write Primary GPT */
836 	lba = GPT_PRIMARY_PARTITION_TABLE_LBA;
837 	cnt = 1;	/* GPT Header (1 block) */
838 	if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
839 		printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
840 		       __func__, "Primary GPT Header", cnt, lba);
841 		return 1;
842 	}
843 
844 	lba = le64_to_cpu(gpt_h->partition_entry_lba);
845 	cnt = gpt_e_blk_cnt;
846 	if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
847 		printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
848 		       __func__, "Primary GPT Entries", cnt, lba);
849 		return 1;
850 	}
851 
852 	prepare_backup_gpt_header(gpt_h);
853 
854 	/* write Backup GPT */
855 	lba = le64_to_cpu(gpt_h->partition_entry_lba);
856 	cnt = gpt_e_blk_cnt;
857 	if (blk_dwrite(dev_desc, lba, cnt, gpt_e) != cnt) {
858 		printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
859 		       __func__, "Backup GPT Entries", cnt, lba);
860 		return 1;
861 	}
862 
863 	lba = le64_to_cpu(gpt_h->my_lba);
864 	cnt = 1;	/* GPT Header (1 block) */
865 	if (blk_dwrite(dev_desc, lba, cnt, gpt_h) != cnt) {
866 		printf("%s: failed writing '%s' (%d blks at 0x" LBAF ")\n",
867 		       __func__, "Backup GPT Header", cnt, lba);
868 		return 1;
869 	}
870 
871 	/* Update the partition table entries*/
872 	part_init(dev_desc);
873 
874 	return 0;
875 }
876 #endif
877 
878 /*
879  * Private functions
880  */
881 /*
882  * pmbr_part_valid(): Check for EFI partition signature
883  *
884  * Returns: 1 if EFI GPT partition type is found.
885  */
pmbr_part_valid(struct partition * part)886 static int pmbr_part_valid(struct partition *part)
887 {
888 	if (part->sys_ind == EFI_PMBR_OSTYPE_EFI_GPT &&
889 		get_unaligned_le32(&part->start_sect) == 1UL) {
890 		return 1;
891 	}
892 
893 	return 0;
894 }
895 
896 /*
897  * is_pmbr_valid(): test Protective MBR for validity
898  *
899  * Returns: 1 if PMBR is valid, 0 otherwise.
900  * Validity depends on two things:
901  *  1) MSDOS signature is in the last two bytes of the MBR
902  *  2) One partition of type 0xEE is found, checked by pmbr_part_valid()
903  */
is_pmbr_valid(legacy_mbr * mbr)904 static int is_pmbr_valid(legacy_mbr * mbr)
905 {
906 	int i = 0;
907 
908 	if (!mbr || le16_to_cpu(mbr->signature) != MSDOS_MBR_SIGNATURE)
909 		return 0;
910 
911 	for (i = 0; i < 4; i++) {
912 		if (pmbr_part_valid(&mbr->partition_record[i])) {
913 			return 1;
914 		}
915 	}
916 	return 0;
917 }
918 
919 /**
920  * is_gpt_valid() - tests one GPT header and PTEs for validity
921  *
922  * lba is the logical block address of the GPT header to test
923  * gpt is a GPT header ptr, filled on return.
924  * ptes is a PTEs ptr, filled on return.
925  *
926  * Description: returns 1 if valid,  0 on error, 2 if ignored header
927  * If valid, returns pointers to PTEs.
928  */
is_gpt_valid(struct blk_desc * dev_desc,u64 lba,gpt_header * pgpt_head,gpt_entry ** pgpt_pte)929 static int is_gpt_valid(struct blk_desc *dev_desc, u64 lba,
930 			gpt_header *pgpt_head, gpt_entry **pgpt_pte)
931 {
932 	/* Confirm valid arguments prior to allocation. */
933 	if (!dev_desc || !pgpt_head) {
934 		printf("%s: Invalid Argument(s)\n", __func__);
935 		return 0;
936 	}
937 
938 	ALLOC_CACHE_ALIGN_BUFFER_PAD(legacy_mbr, mbr, 1, dev_desc->blksz);
939 
940 	/* Read MBR Header from device */
941 	if (blk_dread(dev_desc, 0, 1, (ulong *)mbr) != 1) {
942 		printf("*** ERROR: Can't read MBR header ***\n");
943 		return 0;
944 	}
945 
946 	/* Read GPT Header from device */
947 	if (blk_dread(dev_desc, (lbaint_t)lba, 1, pgpt_head) != 1) {
948 		printf("*** ERROR: Can't read GPT header ***\n");
949 		return 0;
950 	}
951 
952 	/* Invalid but nothing to yell about. */
953 	if (le64_to_cpu(pgpt_head->signature) == GPT_HEADER_CHROMEOS_IGNORE) {
954 		debug("ChromeOS 'IGNOREME' GPT header found and ignored\n");
955 		return 2;
956 	}
957 
958 	if (validate_gpt_header(pgpt_head, (lbaint_t)lba, dev_desc->lba))
959 		return 0;
960 
961 	if (dev_desc->sig_type == SIG_TYPE_NONE) {
962 		efi_guid_t empty = {};
963 		if (memcmp(&pgpt_head->disk_guid, &empty, sizeof(empty))) {
964 			dev_desc->sig_type = SIG_TYPE_GUID;
965 			memcpy(&dev_desc->guid_sig, &pgpt_head->disk_guid,
966 			      sizeof(empty));
967 		} else if (mbr->unique_mbr_signature != 0) {
968 			dev_desc->sig_type = SIG_TYPE_MBR;
969 			dev_desc->mbr_sig = mbr->unique_mbr_signature;
970 		}
971 	}
972 
973 	/* Read and allocate Partition Table Entries */
974 	*pgpt_pte = alloc_read_gpt_entries(dev_desc, pgpt_head);
975 	if (*pgpt_pte == NULL) {
976 		printf("GPT: Failed to allocate memory for PTE\n");
977 		return 0;
978 	}
979 
980 	if (validate_gpt_entries(pgpt_head, *pgpt_pte)) {
981 		free(*pgpt_pte);
982 		return 0;
983 	}
984 
985 	/* We're done, all's well */
986 	return 1;
987 }
988 
989 /**
990  * find_valid_gpt() - finds a valid GPT header and PTEs
991  *
992  * gpt is a GPT header ptr, filled on return.
993  * ptes is a PTEs ptr, filled on return.
994  *
995  * Description: returns 1 if found a valid gpt,  0 on error.
996  * If valid, returns pointers to PTEs.
997  */
find_valid_gpt(struct blk_desc * dev_desc,gpt_header * gpt_head,gpt_entry ** pgpt_pte)998 static int find_valid_gpt(struct blk_desc *dev_desc, gpt_header *gpt_head,
999 			  gpt_entry **pgpt_pte)
1000 {
1001 	int r;
1002 
1003 	r = is_gpt_valid(dev_desc, GPT_PRIMARY_PARTITION_TABLE_LBA, gpt_head,
1004 			 pgpt_pte);
1005 
1006 	if (r != 1) {
1007 		if (r != 2)
1008 			printf("%s: *** ERROR: Invalid GPT ***\n", __func__);
1009 
1010 		if (is_gpt_valid(dev_desc, (dev_desc->lba - 1), gpt_head,
1011 				 pgpt_pte) != 1) {
1012 			printf("%s: *** ERROR: Invalid Backup GPT ***\n",
1013 			       __func__);
1014 			return 0;
1015 		}
1016 		if (r != 2)
1017 			printf("%s: ***        Using Backup GPT ***\n",
1018 			       __func__);
1019 	}
1020 	return 1;
1021 }
1022 
1023 /**
1024  * alloc_read_gpt_entries(): reads partition entries from disk
1025  * @dev_desc
1026  * @gpt - GPT header
1027  *
1028  * Description: Returns ptes on success,  NULL on error.
1029  * Allocates space for PTEs based on information found in @gpt.
1030  * Notes: remember to free pte when you're done!
1031  */
alloc_read_gpt_entries(struct blk_desc * dev_desc,gpt_header * pgpt_head)1032 static gpt_entry *alloc_read_gpt_entries(struct blk_desc *dev_desc,
1033 					 gpt_header *pgpt_head)
1034 {
1035 	size_t count = 0, blk_cnt;
1036 	lbaint_t blk;
1037 	gpt_entry *pte = NULL;
1038 
1039 	if (!dev_desc || !pgpt_head) {
1040 		printf("%s: Invalid Argument(s)\n", __func__);
1041 		return NULL;
1042 	}
1043 
1044 	count = le32_to_cpu(pgpt_head->num_partition_entries) *
1045 		le32_to_cpu(pgpt_head->sizeof_partition_entry);
1046 
1047 	debug("%s: count = %u * %u = %lu\n", __func__,
1048 	      (u32) le32_to_cpu(pgpt_head->num_partition_entries),
1049 	      (u32) le32_to_cpu(pgpt_head->sizeof_partition_entry),
1050 	      (ulong)count);
1051 
1052 	/* Allocate memory for PTE, remember to FREE */
1053 	if (count != 0) {
1054 		pte = memalign(ARCH_DMA_MINALIGN,
1055 			       PAD_TO_BLOCKSIZE(count, dev_desc));
1056 	}
1057 
1058 	if (count == 0 || pte == NULL) {
1059 		printf("%s: ERROR: Can't allocate %#lX bytes for GPT Entries\n",
1060 		       __func__, (ulong)count);
1061 		return NULL;
1062 	}
1063 
1064 	/* Read GPT Entries from device */
1065 	blk = le64_to_cpu(pgpt_head->partition_entry_lba);
1066 	blk_cnt = BLOCK_CNT(count, dev_desc);
1067 	if (blk_dread(dev_desc, blk, (lbaint_t)blk_cnt, pte) != blk_cnt) {
1068 		printf("*** ERROR: Can't read GPT Entries ***\n");
1069 		free(pte);
1070 		return NULL;
1071 	}
1072 	return pte;
1073 }
1074 
1075 /**
1076  * is_pte_valid(): validates a single Partition Table Entry
1077  * @gpt_entry - Pointer to a single Partition Table Entry
1078  *
1079  * Description: returns 1 if valid,  0 on error.
1080  */
is_pte_valid(gpt_entry * pte)1081 static int is_pte_valid(gpt_entry * pte)
1082 {
1083 	efi_guid_t unused_guid;
1084 
1085 	if (!pte) {
1086 		printf("%s: Invalid Argument(s)\n", __func__);
1087 		return 0;
1088 	}
1089 
1090 	/* Only one validation for now:
1091 	 * The GUID Partition Type != Unused Entry (ALL-ZERO)
1092 	 */
1093 	memset(unused_guid.b, 0, sizeof(unused_guid.b));
1094 
1095 	if (memcmp(pte->partition_type_guid.b, unused_guid.b,
1096 		sizeof(unused_guid.b)) == 0) {
1097 
1098 		debug("%s: Found an unused PTE GUID at 0x%08X\n", __func__,
1099 		      (unsigned int)(uintptr_t)pte);
1100 
1101 		return 0;
1102 	} else {
1103 		return 1;
1104 	}
1105 }
1106 
1107 /*
1108  * Add an 'a_' prefix so it comes before 'dos' in the linker list. We need to
1109  * check EFI first, since a DOS partition is often used as a 'protective MBR'
1110  * with EFI.
1111  */
1112 U_BOOT_PART_TYPE(a_efi) = {
1113 	.name		= "EFI",
1114 	.part_type	= PART_TYPE_EFI,
1115 	.max_entries	= GPT_ENTRY_NUMBERS,
1116 	.get_info	= part_get_info_ptr(part_get_info_efi),
1117 	.print		= part_print_ptr(part_print_efi),
1118 	.test		= part_test_efi,
1119 };
1120 #endif
1121