1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/clocksource/arm_arch_timer.c
4 *
5 * Copyright (C) 2011 ARM Ltd.
6 * All Rights Reserved
7 */
8
9 #define pr_fmt(fmt) "arch_timer: " fmt
10
11 #include <linux/init.h>
12 #include <linux/kernel.h>
13 #include <linux/device.h>
14 #include <linux/smp.h>
15 #include <linux/cpu.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/clocksource_ids.h>
20 #include <linux/interrupt.h>
21 #include <linux/of_irq.h>
22 #include <linux/of_address.h>
23 #include <linux/io.h>
24 #include <linux/slab.h>
25 #include <linux/sched/clock.h>
26 #include <linux/sched_clock.h>
27 #include <linux/acpi.h>
28 #include <linux/arm-smccc.h>
29 #include <linux/ptp_kvm.h>
30
31 #include <asm/arch_timer.h>
32 #include <asm/virt.h>
33
34 #include <clocksource/arm_arch_timer.h>
35
36 #define CNTTIDR 0x08
37 #define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
38
39 #define CNTACR(n) (0x40 + ((n) * 4))
40 #define CNTACR_RPCT BIT(0)
41 #define CNTACR_RVCT BIT(1)
42 #define CNTACR_RFRQ BIT(2)
43 #define CNTACR_RVOFF BIT(3)
44 #define CNTACR_RWVT BIT(4)
45 #define CNTACR_RWPT BIT(5)
46
47 #define CNTVCT_LO 0x00
48 #define CNTPCT_LO 0x08
49 #define CNTFRQ 0x10
50 #define CNTP_CVAL_LO 0x20
51 #define CNTP_CTL 0x2c
52 #define CNTV_CVAL_LO 0x30
53 #define CNTV_CTL 0x3c
54
55 /*
56 * The minimum amount of time a generic counter is guaranteed to not roll over
57 * (40 years)
58 */
59 #define MIN_ROLLOVER_SECS (40ULL * 365 * 24 * 3600)
60
61 static unsigned arch_timers_present __initdata;
62
63 struct arch_timer {
64 void __iomem *base;
65 struct clock_event_device evt;
66 };
67
68 static struct arch_timer *arch_timer_mem __ro_after_init;
69
70 #define to_arch_timer(e) container_of(e, struct arch_timer, evt)
71
72 static u32 arch_timer_rate __ro_after_init;
73 static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI] __ro_after_init;
74
75 static const char *arch_timer_ppi_names[ARCH_TIMER_MAX_TIMER_PPI] = {
76 [ARCH_TIMER_PHYS_SECURE_PPI] = "sec-phys",
77 [ARCH_TIMER_PHYS_NONSECURE_PPI] = "phys",
78 [ARCH_TIMER_VIRT_PPI] = "virt",
79 [ARCH_TIMER_HYP_PPI] = "hyp-phys",
80 [ARCH_TIMER_HYP_VIRT_PPI] = "hyp-virt",
81 };
82
83 static struct clock_event_device __percpu *arch_timer_evt;
84
85 static enum arch_timer_ppi_nr arch_timer_uses_ppi __ro_after_init = ARCH_TIMER_VIRT_PPI;
86 static bool arch_timer_c3stop __ro_after_init;
87 static bool arch_timer_mem_use_virtual __ro_after_init;
88 static bool arch_counter_suspend_stop __ro_after_init;
89 #ifdef CONFIG_GENERIC_GETTIMEOFDAY
90 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_ARCHTIMER;
91 #else
92 static enum vdso_clock_mode vdso_default = VDSO_CLOCKMODE_NONE;
93 #endif /* CONFIG_GENERIC_GETTIMEOFDAY */
94
95 static cpumask_t evtstrm_available = CPU_MASK_NONE;
96 static bool evtstrm_enable __ro_after_init = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
97
early_evtstrm_cfg(char * buf)98 static int __init early_evtstrm_cfg(char *buf)
99 {
100 return strtobool(buf, &evtstrm_enable);
101 }
102 early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
103
104 /*
105 * Makes an educated guess at a valid counter width based on the Generic Timer
106 * specification. Of note:
107 * 1) the system counter is at least 56 bits wide
108 * 2) a roll-over time of not less than 40 years
109 *
110 * See 'ARM DDI 0487G.a D11.1.2 ("The system counter")' for more details.
111 */
arch_counter_get_width(void)112 static int arch_counter_get_width(void)
113 {
114 u64 min_cycles = MIN_ROLLOVER_SECS * arch_timer_rate;
115
116 /* guarantee the returned width is within the valid range */
117 return clamp_val(ilog2(min_cycles - 1) + 1, 56, 64);
118 }
119
120 /*
121 * Architected system timer support.
122 */
123
124 static __always_inline
arch_timer_reg_write(int access,enum arch_timer_reg reg,u64 val,struct clock_event_device * clk)125 void arch_timer_reg_write(int access, enum arch_timer_reg reg, u64 val,
126 struct clock_event_device *clk)
127 {
128 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
129 struct arch_timer *timer = to_arch_timer(clk);
130 switch (reg) {
131 case ARCH_TIMER_REG_CTRL:
132 writel_relaxed((u32)val, timer->base + CNTP_CTL);
133 break;
134 case ARCH_TIMER_REG_CVAL:
135 /*
136 * Not guaranteed to be atomic, so the timer
137 * must be disabled at this point.
138 */
139 writeq_relaxed(val, timer->base + CNTP_CVAL_LO);
140 break;
141 default:
142 BUILD_BUG();
143 }
144 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
145 struct arch_timer *timer = to_arch_timer(clk);
146 switch (reg) {
147 case ARCH_TIMER_REG_CTRL:
148 writel_relaxed((u32)val, timer->base + CNTV_CTL);
149 break;
150 case ARCH_TIMER_REG_CVAL:
151 /* Same restriction as above */
152 writeq_relaxed(val, timer->base + CNTV_CVAL_LO);
153 break;
154 default:
155 BUILD_BUG();
156 }
157 } else {
158 arch_timer_reg_write_cp15(access, reg, val);
159 }
160 }
161
162 static __always_inline
arch_timer_reg_read(int access,enum arch_timer_reg reg,struct clock_event_device * clk)163 u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
164 struct clock_event_device *clk)
165 {
166 u32 val;
167
168 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
169 struct arch_timer *timer = to_arch_timer(clk);
170 switch (reg) {
171 case ARCH_TIMER_REG_CTRL:
172 val = readl_relaxed(timer->base + CNTP_CTL);
173 break;
174 default:
175 BUILD_BUG();
176 }
177 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
178 struct arch_timer *timer = to_arch_timer(clk);
179 switch (reg) {
180 case ARCH_TIMER_REG_CTRL:
181 val = readl_relaxed(timer->base + CNTV_CTL);
182 break;
183 default:
184 BUILD_BUG();
185 }
186 } else {
187 val = arch_timer_reg_read_cp15(access, reg);
188 }
189
190 return val;
191 }
192
arch_counter_get_cntpct_stable(void)193 static notrace u64 arch_counter_get_cntpct_stable(void)
194 {
195 return __arch_counter_get_cntpct_stable();
196 }
197
arch_counter_get_cntpct(void)198 static notrace u64 arch_counter_get_cntpct(void)
199 {
200 return __arch_counter_get_cntpct();
201 }
202
arch_counter_get_cntvct_stable(void)203 static notrace u64 arch_counter_get_cntvct_stable(void)
204 {
205 return __arch_counter_get_cntvct_stable();
206 }
207
arch_counter_get_cntvct(void)208 static notrace u64 arch_counter_get_cntvct(void)
209 {
210 return __arch_counter_get_cntvct();
211 }
212
213 /*
214 * Default to cp15 based access because arm64 uses this function for
215 * sched_clock() before DT is probed and the cp15 method is guaranteed
216 * to exist on arm64. arm doesn't use this before DT is probed so even
217 * if we don't have the cp15 accessors we won't have a problem.
218 */
219 u64 (*arch_timer_read_counter)(void) __ro_after_init = arch_counter_get_cntvct;
220 EXPORT_SYMBOL_GPL(arch_timer_read_counter);
221
arch_counter_read(struct clocksource * cs)222 static u64 arch_counter_read(struct clocksource *cs)
223 {
224 return arch_timer_read_counter();
225 }
226
arch_counter_read_cc(const struct cyclecounter * cc)227 static u64 arch_counter_read_cc(const struct cyclecounter *cc)
228 {
229 return arch_timer_read_counter();
230 }
231
232 static struct clocksource clocksource_counter = {
233 .name = "arch_sys_counter",
234 .id = CSID_ARM_ARCH_COUNTER,
235 .rating = 400,
236 .read = arch_counter_read,
237 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
238 };
239
240 static struct cyclecounter cyclecounter __ro_after_init = {
241 .read = arch_counter_read_cc,
242 };
243
244 struct ate_acpi_oem_info {
245 char oem_id[ACPI_OEM_ID_SIZE + 1];
246 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
247 u32 oem_revision;
248 };
249
250 #ifdef CONFIG_FSL_ERRATUM_A008585
251 /*
252 * The number of retries is an arbitrary value well beyond the highest number
253 * of iterations the loop has been observed to take.
254 */
255 #define __fsl_a008585_read_reg(reg) ({ \
256 u64 _old, _new; \
257 int _retries = 200; \
258 \
259 do { \
260 _old = read_sysreg(reg); \
261 _new = read_sysreg(reg); \
262 _retries--; \
263 } while (unlikely(_old != _new) && _retries); \
264 \
265 WARN_ON_ONCE(!_retries); \
266 _new; \
267 })
268
fsl_a008585_read_cntpct_el0(void)269 static u64 notrace fsl_a008585_read_cntpct_el0(void)
270 {
271 return __fsl_a008585_read_reg(cntpct_el0);
272 }
273
fsl_a008585_read_cntvct_el0(void)274 static u64 notrace fsl_a008585_read_cntvct_el0(void)
275 {
276 return __fsl_a008585_read_reg(cntvct_el0);
277 }
278 #endif
279
280 #ifdef CONFIG_HISILICON_ERRATUM_161010101
281 /*
282 * Verify whether the value of the second read is larger than the first by
283 * less than 32 is the only way to confirm the value is correct, so clear the
284 * lower 5 bits to check whether the difference is greater than 32 or not.
285 * Theoretically the erratum should not occur more than twice in succession
286 * when reading the system counter, but it is possible that some interrupts
287 * may lead to more than twice read errors, triggering the warning, so setting
288 * the number of retries far beyond the number of iterations the loop has been
289 * observed to take.
290 */
291 #define __hisi_161010101_read_reg(reg) ({ \
292 u64 _old, _new; \
293 int _retries = 50; \
294 \
295 do { \
296 _old = read_sysreg(reg); \
297 _new = read_sysreg(reg); \
298 _retries--; \
299 } while (unlikely((_new - _old) >> 5) && _retries); \
300 \
301 WARN_ON_ONCE(!_retries); \
302 _new; \
303 })
304
hisi_161010101_read_cntpct_el0(void)305 static u64 notrace hisi_161010101_read_cntpct_el0(void)
306 {
307 return __hisi_161010101_read_reg(cntpct_el0);
308 }
309
hisi_161010101_read_cntvct_el0(void)310 static u64 notrace hisi_161010101_read_cntvct_el0(void)
311 {
312 return __hisi_161010101_read_reg(cntvct_el0);
313 }
314
315 static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
316 /*
317 * Note that trailing spaces are required to properly match
318 * the OEM table information.
319 */
320 {
321 .oem_id = "HISI ",
322 .oem_table_id = "HIP05 ",
323 .oem_revision = 0,
324 },
325 {
326 .oem_id = "HISI ",
327 .oem_table_id = "HIP06 ",
328 .oem_revision = 0,
329 },
330 {
331 .oem_id = "HISI ",
332 .oem_table_id = "HIP07 ",
333 .oem_revision = 0,
334 },
335 { /* Sentinel indicating the end of the OEM array */ },
336 };
337 #endif
338
339 #ifdef CONFIG_ARM64_ERRATUM_858921
arm64_858921_read_cntpct_el0(void)340 static u64 notrace arm64_858921_read_cntpct_el0(void)
341 {
342 u64 old, new;
343
344 old = read_sysreg(cntpct_el0);
345 new = read_sysreg(cntpct_el0);
346 return (((old ^ new) >> 32) & 1) ? old : new;
347 }
348
arm64_858921_read_cntvct_el0(void)349 static u64 notrace arm64_858921_read_cntvct_el0(void)
350 {
351 u64 old, new;
352
353 old = read_sysreg(cntvct_el0);
354 new = read_sysreg(cntvct_el0);
355 return (((old ^ new) >> 32) & 1) ? old : new;
356 }
357 #endif
358
359 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
360 /*
361 * The low bits of the counter registers are indeterminate while bit 10 or
362 * greater is rolling over. Since the counter value can jump both backward
363 * (7ff -> 000 -> 800) and forward (7ff -> fff -> 800), ignore register values
364 * with all ones or all zeros in the low bits. Bound the loop by the maximum
365 * number of CPU cycles in 3 consecutive 24 MHz counter periods.
366 */
367 #define __sun50i_a64_read_reg(reg) ({ \
368 u64 _val; \
369 int _retries = 150; \
370 \
371 do { \
372 _val = read_sysreg(reg); \
373 _retries--; \
374 } while (((_val + 1) & GENMASK(8, 0)) <= 1 && _retries); \
375 \
376 WARN_ON_ONCE(!_retries); \
377 _val; \
378 })
379
sun50i_a64_read_cntpct_el0(void)380 static u64 notrace sun50i_a64_read_cntpct_el0(void)
381 {
382 return __sun50i_a64_read_reg(cntpct_el0);
383 }
384
sun50i_a64_read_cntvct_el0(void)385 static u64 notrace sun50i_a64_read_cntvct_el0(void)
386 {
387 return __sun50i_a64_read_reg(cntvct_el0);
388 }
389 #endif
390
391 #ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
392 DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
393 EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
394
395 static atomic_t timer_unstable_counter_workaround_in_use = ATOMIC_INIT(0);
396
397 /*
398 * Force the inlining of this function so that the register accesses
399 * can be themselves correctly inlined.
400 */
401 static __always_inline
erratum_set_next_event_generic(const int access,unsigned long evt,struct clock_event_device * clk)402 void erratum_set_next_event_generic(const int access, unsigned long evt,
403 struct clock_event_device *clk)
404 {
405 unsigned long ctrl;
406 u64 cval;
407
408 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
409 ctrl |= ARCH_TIMER_CTRL_ENABLE;
410 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
411
412 if (access == ARCH_TIMER_PHYS_ACCESS) {
413 cval = evt + arch_counter_get_cntpct_stable();
414 write_sysreg(cval, cntp_cval_el0);
415 } else {
416 cval = evt + arch_counter_get_cntvct_stable();
417 write_sysreg(cval, cntv_cval_el0);
418 }
419
420 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
421 }
422
erratum_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)423 static __maybe_unused int erratum_set_next_event_virt(unsigned long evt,
424 struct clock_event_device *clk)
425 {
426 erratum_set_next_event_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
427 return 0;
428 }
429
erratum_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)430 static __maybe_unused int erratum_set_next_event_phys(unsigned long evt,
431 struct clock_event_device *clk)
432 {
433 erratum_set_next_event_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
434 return 0;
435 }
436
437 static const struct arch_timer_erratum_workaround ool_workarounds[] = {
438 #ifdef CONFIG_FSL_ERRATUM_A008585
439 {
440 .match_type = ate_match_dt,
441 .id = "fsl,erratum-a008585",
442 .desc = "Freescale erratum a005858",
443 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
444 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
445 .set_next_event_phys = erratum_set_next_event_phys,
446 .set_next_event_virt = erratum_set_next_event_virt,
447 },
448 #endif
449 #ifdef CONFIG_HISILICON_ERRATUM_161010101
450 {
451 .match_type = ate_match_dt,
452 .id = "hisilicon,erratum-161010101",
453 .desc = "HiSilicon erratum 161010101",
454 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
455 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
456 .set_next_event_phys = erratum_set_next_event_phys,
457 .set_next_event_virt = erratum_set_next_event_virt,
458 },
459 {
460 .match_type = ate_match_acpi_oem_info,
461 .id = hisi_161010101_oem_info,
462 .desc = "HiSilicon erratum 161010101",
463 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
464 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
465 .set_next_event_phys = erratum_set_next_event_phys,
466 .set_next_event_virt = erratum_set_next_event_virt,
467 },
468 #endif
469 #ifdef CONFIG_ARM64_ERRATUM_858921
470 {
471 .match_type = ate_match_local_cap_id,
472 .id = (void *)ARM64_WORKAROUND_858921,
473 .desc = "ARM erratum 858921",
474 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
475 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
476 },
477 #endif
478 #ifdef CONFIG_SUN50I_ERRATUM_UNKNOWN1
479 {
480 .match_type = ate_match_dt,
481 .id = "allwinner,erratum-unknown1",
482 .desc = "Allwinner erratum UNKNOWN1",
483 .read_cntpct_el0 = sun50i_a64_read_cntpct_el0,
484 .read_cntvct_el0 = sun50i_a64_read_cntvct_el0,
485 .set_next_event_phys = erratum_set_next_event_phys,
486 .set_next_event_virt = erratum_set_next_event_virt,
487 },
488 #endif
489 #ifdef CONFIG_ARM64_ERRATUM_1418040
490 {
491 .match_type = ate_match_local_cap_id,
492 .id = (void *)ARM64_WORKAROUND_1418040,
493 .desc = "ARM erratum 1418040",
494 .disable_compat_vdso = true,
495 },
496 #endif
497 };
498
499 typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
500 const void *);
501
502 static
arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)503 bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
504 const void *arg)
505 {
506 const struct device_node *np = arg;
507
508 return of_property_read_bool(np, wa->id);
509 }
510
511 static
arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)512 bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
513 const void *arg)
514 {
515 return this_cpu_has_cap((uintptr_t)wa->id);
516 }
517
518
519 static
arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround * wa,const void * arg)520 bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
521 const void *arg)
522 {
523 static const struct ate_acpi_oem_info empty_oem_info = {};
524 const struct ate_acpi_oem_info *info = wa->id;
525 const struct acpi_table_header *table = arg;
526
527 /* Iterate over the ACPI OEM info array, looking for a match */
528 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
529 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
530 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
531 info->oem_revision == table->oem_revision)
532 return true;
533
534 info++;
535 }
536
537 return false;
538 }
539
540 static const struct arch_timer_erratum_workaround *
arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,ate_match_fn_t match_fn,void * arg)541 arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
542 ate_match_fn_t match_fn,
543 void *arg)
544 {
545 int i;
546
547 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
548 if (ool_workarounds[i].match_type != type)
549 continue;
550
551 if (match_fn(&ool_workarounds[i], arg))
552 return &ool_workarounds[i];
553 }
554
555 return NULL;
556 }
557
558 static
arch_timer_enable_workaround(const struct arch_timer_erratum_workaround * wa,bool local)559 void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
560 bool local)
561 {
562 int i;
563
564 if (local) {
565 __this_cpu_write(timer_unstable_counter_workaround, wa);
566 } else {
567 for_each_possible_cpu(i)
568 per_cpu(timer_unstable_counter_workaround, i) = wa;
569 }
570
571 if (wa->read_cntvct_el0 || wa->read_cntpct_el0)
572 atomic_set(&timer_unstable_counter_workaround_in_use, 1);
573
574 /*
575 * Don't use the vdso fastpath if errata require using the
576 * out-of-line counter accessor. We may change our mind pretty
577 * late in the game (with a per-CPU erratum, for example), so
578 * change both the default value and the vdso itself.
579 */
580 if (wa->read_cntvct_el0) {
581 clocksource_counter.vdso_clock_mode = VDSO_CLOCKMODE_NONE;
582 vdso_default = VDSO_CLOCKMODE_NONE;
583 } else if (wa->disable_compat_vdso && vdso_default != VDSO_CLOCKMODE_NONE) {
584 vdso_default = VDSO_CLOCKMODE_ARCHTIMER_NOCOMPAT;
585 clocksource_counter.vdso_clock_mode = vdso_default;
586 }
587 }
588
arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,void * arg)589 static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
590 void *arg)
591 {
592 const struct arch_timer_erratum_workaround *wa, *__wa;
593 ate_match_fn_t match_fn = NULL;
594 bool local = false;
595
596 switch (type) {
597 case ate_match_dt:
598 match_fn = arch_timer_check_dt_erratum;
599 break;
600 case ate_match_local_cap_id:
601 match_fn = arch_timer_check_local_cap_erratum;
602 local = true;
603 break;
604 case ate_match_acpi_oem_info:
605 match_fn = arch_timer_check_acpi_oem_erratum;
606 break;
607 default:
608 WARN_ON(1);
609 return;
610 }
611
612 wa = arch_timer_iterate_errata(type, match_fn, arg);
613 if (!wa)
614 return;
615
616 __wa = __this_cpu_read(timer_unstable_counter_workaround);
617 if (__wa && wa != __wa)
618 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
619 wa->desc, __wa->desc);
620
621 if (__wa)
622 return;
623
624 arch_timer_enable_workaround(wa, local);
625 pr_info("Enabling %s workaround for %s\n",
626 local ? "local" : "global", wa->desc);
627 }
628
arch_timer_this_cpu_has_cntvct_wa(void)629 static bool arch_timer_this_cpu_has_cntvct_wa(void)
630 {
631 return has_erratum_handler(read_cntvct_el0);
632 }
633
arch_timer_counter_has_wa(void)634 static bool arch_timer_counter_has_wa(void)
635 {
636 return atomic_read(&timer_unstable_counter_workaround_in_use);
637 }
638 #else
639 #define arch_timer_check_ool_workaround(t,a) do { } while(0)
640 #define arch_timer_this_cpu_has_cntvct_wa() ({false;})
641 #define arch_timer_counter_has_wa() ({false;})
642 #endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
643
timer_handler(const int access,struct clock_event_device * evt)644 static __always_inline irqreturn_t timer_handler(const int access,
645 struct clock_event_device *evt)
646 {
647 unsigned long ctrl;
648
649 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
650 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
651 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
652 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
653 evt->event_handler(evt);
654 return IRQ_HANDLED;
655 }
656
657 return IRQ_NONE;
658 }
659
arch_timer_handler_virt(int irq,void * dev_id)660 static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
661 {
662 struct clock_event_device *evt = dev_id;
663
664 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
665 }
666
arch_timer_handler_phys(int irq,void * dev_id)667 static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
668 {
669 struct clock_event_device *evt = dev_id;
670
671 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
672 }
673
arch_timer_handler_phys_mem(int irq,void * dev_id)674 static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
675 {
676 struct clock_event_device *evt = dev_id;
677
678 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
679 }
680
arch_timer_handler_virt_mem(int irq,void * dev_id)681 static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
682 {
683 struct clock_event_device *evt = dev_id;
684
685 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
686 }
687
timer_shutdown(const int access,struct clock_event_device * clk)688 static __always_inline int timer_shutdown(const int access,
689 struct clock_event_device *clk)
690 {
691 unsigned long ctrl;
692
693 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
694 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
695 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
696
697 return 0;
698 }
699
arch_timer_shutdown_virt(struct clock_event_device * clk)700 static int arch_timer_shutdown_virt(struct clock_event_device *clk)
701 {
702 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
703 }
704
arch_timer_shutdown_phys(struct clock_event_device * clk)705 static int arch_timer_shutdown_phys(struct clock_event_device *clk)
706 {
707 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
708 }
709
arch_timer_shutdown_virt_mem(struct clock_event_device * clk)710 static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
711 {
712 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
713 }
714
arch_timer_shutdown_phys_mem(struct clock_event_device * clk)715 static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
716 {
717 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
718 }
719
set_next_event(const int access,unsigned long evt,struct clock_event_device * clk)720 static __always_inline void set_next_event(const int access, unsigned long evt,
721 struct clock_event_device *clk)
722 {
723 unsigned long ctrl;
724 u64 cnt;
725
726 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
727 ctrl |= ARCH_TIMER_CTRL_ENABLE;
728 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
729
730 if (access == ARCH_TIMER_PHYS_ACCESS)
731 cnt = __arch_counter_get_cntpct();
732 else
733 cnt = __arch_counter_get_cntvct();
734
735 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
736 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
737 }
738
arch_timer_set_next_event_virt(unsigned long evt,struct clock_event_device * clk)739 static int arch_timer_set_next_event_virt(unsigned long evt,
740 struct clock_event_device *clk)
741 {
742 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
743 return 0;
744 }
745
arch_timer_set_next_event_phys(unsigned long evt,struct clock_event_device * clk)746 static int arch_timer_set_next_event_phys(unsigned long evt,
747 struct clock_event_device *clk)
748 {
749 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
750 return 0;
751 }
752
arch_counter_get_cnt_mem(struct arch_timer * t,int offset_lo)753 static u64 arch_counter_get_cnt_mem(struct arch_timer *t, int offset_lo)
754 {
755 u32 cnt_lo, cnt_hi, tmp_hi;
756
757 do {
758 cnt_hi = readl_relaxed(t->base + offset_lo + 4);
759 cnt_lo = readl_relaxed(t->base + offset_lo);
760 tmp_hi = readl_relaxed(t->base + offset_lo + 4);
761 } while (cnt_hi != tmp_hi);
762
763 return ((u64) cnt_hi << 32) | cnt_lo;
764 }
765
set_next_event_mem(const int access,unsigned long evt,struct clock_event_device * clk)766 static __always_inline void set_next_event_mem(const int access, unsigned long evt,
767 struct clock_event_device *clk)
768 {
769 struct arch_timer *timer = to_arch_timer(clk);
770 unsigned long ctrl;
771 u64 cnt;
772
773 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
774 ctrl |= ARCH_TIMER_CTRL_ENABLE;
775 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
776
777 if (access == ARCH_TIMER_MEM_VIRT_ACCESS)
778 cnt = arch_counter_get_cnt_mem(timer, CNTVCT_LO);
779 else
780 cnt = arch_counter_get_cnt_mem(timer, CNTPCT_LO);
781
782 arch_timer_reg_write(access, ARCH_TIMER_REG_CVAL, evt + cnt, clk);
783 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
784 }
785
arch_timer_set_next_event_virt_mem(unsigned long evt,struct clock_event_device * clk)786 static int arch_timer_set_next_event_virt_mem(unsigned long evt,
787 struct clock_event_device *clk)
788 {
789 set_next_event_mem(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
790 return 0;
791 }
792
arch_timer_set_next_event_phys_mem(unsigned long evt,struct clock_event_device * clk)793 static int arch_timer_set_next_event_phys_mem(unsigned long evt,
794 struct clock_event_device *clk)
795 {
796 set_next_event_mem(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
797 return 0;
798 }
799
__arch_timer_check_delta(void)800 static u64 __arch_timer_check_delta(void)
801 {
802 #ifdef CONFIG_ARM64
803 const struct midr_range broken_cval_midrs[] = {
804 /*
805 * XGene-1 implements CVAL in terms of TVAL, meaning
806 * that the maximum timer range is 32bit. Shame on them.
807 */
808 MIDR_ALL_VERSIONS(MIDR_CPU_MODEL(ARM_CPU_IMP_APM,
809 APM_CPU_PART_POTENZA)),
810 {},
811 };
812
813 if (is_midr_in_range_list(read_cpuid_id(), broken_cval_midrs)) {
814 pr_warn_once("Broken CNTx_CVAL_EL1, limiting width to 32bits");
815 return CLOCKSOURCE_MASK(32);
816 }
817 #endif
818 return CLOCKSOURCE_MASK(arch_counter_get_width());
819 }
820
__arch_timer_setup(unsigned type,struct clock_event_device * clk)821 static void __arch_timer_setup(unsigned type,
822 struct clock_event_device *clk)
823 {
824 u64 max_delta;
825
826 clk->features = CLOCK_EVT_FEAT_ONESHOT;
827
828 if (type == ARCH_TIMER_TYPE_CP15) {
829 typeof(clk->set_next_event) sne;
830
831 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
832
833 if (arch_timer_c3stop)
834 clk->features |= CLOCK_EVT_FEAT_C3STOP;
835 clk->name = "arch_sys_timer";
836 clk->rating = 450;
837 clk->cpumask = cpumask_of(smp_processor_id());
838 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
839 switch (arch_timer_uses_ppi) {
840 case ARCH_TIMER_VIRT_PPI:
841 clk->set_state_shutdown = arch_timer_shutdown_virt;
842 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
843 sne = erratum_handler(set_next_event_virt);
844 break;
845 case ARCH_TIMER_PHYS_SECURE_PPI:
846 case ARCH_TIMER_PHYS_NONSECURE_PPI:
847 case ARCH_TIMER_HYP_PPI:
848 clk->set_state_shutdown = arch_timer_shutdown_phys;
849 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
850 sne = erratum_handler(set_next_event_phys);
851 break;
852 default:
853 BUG();
854 }
855
856 clk->set_next_event = sne;
857 max_delta = __arch_timer_check_delta();
858 } else {
859 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
860 clk->name = "arch_mem_timer";
861 clk->rating = 400;
862 clk->cpumask = cpu_possible_mask;
863 if (arch_timer_mem_use_virtual) {
864 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
865 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
866 clk->set_next_event =
867 arch_timer_set_next_event_virt_mem;
868 } else {
869 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
870 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
871 clk->set_next_event =
872 arch_timer_set_next_event_phys_mem;
873 }
874
875 max_delta = CLOCKSOURCE_MASK(56);
876 }
877
878 clk->set_state_shutdown(clk);
879
880 clockevents_config_and_register(clk, arch_timer_rate, 0xf, max_delta);
881 }
882
arch_timer_evtstrm_enable(int divider)883 static void arch_timer_evtstrm_enable(int divider)
884 {
885 u32 cntkctl = arch_timer_get_cntkctl();
886
887 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
888 /* Set the divider and enable virtual event stream */
889 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
890 | ARCH_TIMER_VIRT_EVT_EN;
891 arch_timer_set_cntkctl(cntkctl);
892 arch_timer_set_evtstrm_feature();
893 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
894 }
895
arch_timer_configure_evtstream(void)896 static void arch_timer_configure_evtstream(void)
897 {
898 int evt_stream_div, lsb;
899
900 /*
901 * As the event stream can at most be generated at half the frequency
902 * of the counter, use half the frequency when computing the divider.
903 */
904 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ / 2;
905
906 /*
907 * Find the closest power of two to the divisor. If the adjacent bit
908 * of lsb (last set bit, starts from 0) is set, then we use (lsb + 1).
909 */
910 lsb = fls(evt_stream_div) - 1;
911 if (lsb > 0 && (evt_stream_div & BIT(lsb - 1)))
912 lsb++;
913
914 /* enable event stream */
915 arch_timer_evtstrm_enable(max(0, min(lsb, 15)));
916 }
917
arch_counter_set_user_access(void)918 static void arch_counter_set_user_access(void)
919 {
920 u32 cntkctl = arch_timer_get_cntkctl();
921
922 /* Disable user access to the timers and both counters */
923 /* Also disable virtual event stream */
924 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
925 | ARCH_TIMER_USR_VT_ACCESS_EN
926 | ARCH_TIMER_USR_VCT_ACCESS_EN
927 | ARCH_TIMER_VIRT_EVT_EN
928 | ARCH_TIMER_USR_PCT_ACCESS_EN);
929
930 /*
931 * Enable user access to the virtual counter if it doesn't
932 * need to be workaround. The vdso may have been already
933 * disabled though.
934 */
935 if (arch_timer_this_cpu_has_cntvct_wa())
936 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
937 else
938 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
939
940 arch_timer_set_cntkctl(cntkctl);
941 }
942
arch_timer_has_nonsecure_ppi(void)943 static bool arch_timer_has_nonsecure_ppi(void)
944 {
945 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
946 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
947 }
948
check_ppi_trigger(int irq)949 static u32 check_ppi_trigger(int irq)
950 {
951 u32 flags = irq_get_trigger_type(irq);
952
953 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
954 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
955 pr_warn("WARNING: Please fix your firmware\n");
956 flags = IRQF_TRIGGER_LOW;
957 }
958
959 return flags;
960 }
961
arch_timer_starting_cpu(unsigned int cpu)962 static int arch_timer_starting_cpu(unsigned int cpu)
963 {
964 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
965 u32 flags;
966
967 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
968
969 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
970 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
971
972 if (arch_timer_has_nonsecure_ppi()) {
973 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
974 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
975 flags);
976 }
977
978 arch_counter_set_user_access();
979 if (evtstrm_enable)
980 arch_timer_configure_evtstream();
981
982 return 0;
983 }
984
validate_timer_rate(void)985 static int validate_timer_rate(void)
986 {
987 if (!arch_timer_rate)
988 return -EINVAL;
989
990 /* Arch timer frequency < 1MHz can cause trouble */
991 WARN_ON(arch_timer_rate < 1000000);
992
993 return 0;
994 }
995
996 /*
997 * For historical reasons, when probing with DT we use whichever (non-zero)
998 * rate was probed first, and don't verify that others match. If the first node
999 * probed has a clock-frequency property, this overrides the HW register.
1000 */
arch_timer_of_configure_rate(u32 rate,struct device_node * np)1001 static void __init arch_timer_of_configure_rate(u32 rate, struct device_node *np)
1002 {
1003 /* Who has more than one independent system counter? */
1004 if (arch_timer_rate)
1005 return;
1006
1007 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
1008 arch_timer_rate = rate;
1009
1010 /* Check the timer frequency. */
1011 if (validate_timer_rate())
1012 pr_warn("frequency not available\n");
1013 }
1014
arch_timer_banner(unsigned type)1015 static void __init arch_timer_banner(unsigned type)
1016 {
1017 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
1018 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
1019 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
1020 " and " : "",
1021 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
1022 (unsigned long)arch_timer_rate / 1000000,
1023 (unsigned long)(arch_timer_rate / 10000) % 100,
1024 type & ARCH_TIMER_TYPE_CP15 ?
1025 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
1026 "",
1027 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
1028 type & ARCH_TIMER_TYPE_MEM ?
1029 arch_timer_mem_use_virtual ? "virt" : "phys" :
1030 "");
1031 }
1032
arch_timer_get_rate(void)1033 u32 arch_timer_get_rate(void)
1034 {
1035 return arch_timer_rate;
1036 }
1037
arch_timer_evtstrm_available(void)1038 bool arch_timer_evtstrm_available(void)
1039 {
1040 /*
1041 * We might get called from a preemptible context. This is fine
1042 * because availability of the event stream should be always the same
1043 * for a preemptible context and context where we might resume a task.
1044 */
1045 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
1046 }
1047
arch_counter_get_cntvct_mem(void)1048 static u64 arch_counter_get_cntvct_mem(void)
1049 {
1050 return arch_counter_get_cnt_mem(arch_timer_mem, CNTVCT_LO);
1051 }
1052
1053 static struct arch_timer_kvm_info arch_timer_kvm_info;
1054
arch_timer_get_kvm_info(void)1055 struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
1056 {
1057 return &arch_timer_kvm_info;
1058 }
1059
arch_counter_register(unsigned type)1060 static void __init arch_counter_register(unsigned type)
1061 {
1062 u64 start_count;
1063 int width;
1064
1065 /* Register the CP15 based counter if we have one */
1066 if (type & ARCH_TIMER_TYPE_CP15) {
1067 u64 (*rd)(void);
1068
1069 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
1070 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) {
1071 if (arch_timer_counter_has_wa())
1072 rd = arch_counter_get_cntvct_stable;
1073 else
1074 rd = arch_counter_get_cntvct;
1075 } else {
1076 if (arch_timer_counter_has_wa())
1077 rd = arch_counter_get_cntpct_stable;
1078 else
1079 rd = arch_counter_get_cntpct;
1080 }
1081
1082 arch_timer_read_counter = rd;
1083 clocksource_counter.vdso_clock_mode = vdso_default;
1084 } else {
1085 arch_timer_read_counter = arch_counter_get_cntvct_mem;
1086 }
1087
1088 width = arch_counter_get_width();
1089 clocksource_counter.mask = CLOCKSOURCE_MASK(width);
1090 cyclecounter.mask = CLOCKSOURCE_MASK(width);
1091
1092 if (!arch_counter_suspend_stop)
1093 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1094 start_count = arch_timer_read_counter();
1095 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
1096 cyclecounter.mult = clocksource_counter.mult;
1097 cyclecounter.shift = clocksource_counter.shift;
1098 timecounter_init(&arch_timer_kvm_info.timecounter,
1099 &cyclecounter, start_count);
1100
1101 sched_clock_register(arch_timer_read_counter, width, arch_timer_rate);
1102 }
1103
arch_timer_stop(struct clock_event_device * clk)1104 static void arch_timer_stop(struct clock_event_device *clk)
1105 {
1106 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
1107
1108 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
1109 if (arch_timer_has_nonsecure_ppi())
1110 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
1111
1112 clk->set_state_shutdown(clk);
1113 }
1114
arch_timer_dying_cpu(unsigned int cpu)1115 static int arch_timer_dying_cpu(unsigned int cpu)
1116 {
1117 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
1118
1119 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1120
1121 arch_timer_stop(clk);
1122 return 0;
1123 }
1124
1125 #ifdef CONFIG_CPU_PM
1126 static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
arch_timer_cpu_pm_notify(struct notifier_block * self,unsigned long action,void * hcpu)1127 static int arch_timer_cpu_pm_notify(struct notifier_block *self,
1128 unsigned long action, void *hcpu)
1129 {
1130 if (action == CPU_PM_ENTER) {
1131 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
1132
1133 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
1134 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
1135 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
1136
1137 if (arch_timer_have_evtstrm_feature())
1138 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
1139 }
1140 return NOTIFY_OK;
1141 }
1142
1143 static struct notifier_block arch_timer_cpu_pm_notifier = {
1144 .notifier_call = arch_timer_cpu_pm_notify,
1145 };
1146
arch_timer_cpu_pm_init(void)1147 static int __init arch_timer_cpu_pm_init(void)
1148 {
1149 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1150 }
1151
arch_timer_cpu_pm_deinit(void)1152 static void __init arch_timer_cpu_pm_deinit(void)
1153 {
1154 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1155 }
1156
1157 #else
arch_timer_cpu_pm_init(void)1158 static int __init arch_timer_cpu_pm_init(void)
1159 {
1160 return 0;
1161 }
1162
arch_timer_cpu_pm_deinit(void)1163 static void __init arch_timer_cpu_pm_deinit(void)
1164 {
1165 }
1166 #endif
1167
arch_timer_register(void)1168 static int __init arch_timer_register(void)
1169 {
1170 int err;
1171 int ppi;
1172
1173 arch_timer_evt = alloc_percpu(struct clock_event_device);
1174 if (!arch_timer_evt) {
1175 err = -ENOMEM;
1176 goto out;
1177 }
1178
1179 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1180 switch (arch_timer_uses_ppi) {
1181 case ARCH_TIMER_VIRT_PPI:
1182 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1183 "arch_timer", arch_timer_evt);
1184 break;
1185 case ARCH_TIMER_PHYS_SECURE_PPI:
1186 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1187 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1188 "arch_timer", arch_timer_evt);
1189 if (!err && arch_timer_has_nonsecure_ppi()) {
1190 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1191 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1192 "arch_timer", arch_timer_evt);
1193 if (err)
1194 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1195 arch_timer_evt);
1196 }
1197 break;
1198 case ARCH_TIMER_HYP_PPI:
1199 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1200 "arch_timer", arch_timer_evt);
1201 break;
1202 default:
1203 BUG();
1204 }
1205
1206 if (err) {
1207 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1208 goto out_free;
1209 }
1210
1211 err = arch_timer_cpu_pm_init();
1212 if (err)
1213 goto out_unreg_notify;
1214
1215 /* Register and immediately configure the timer on the boot CPU */
1216 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1217 "clockevents/arm/arch_timer:starting",
1218 arch_timer_starting_cpu, arch_timer_dying_cpu);
1219 if (err)
1220 goto out_unreg_cpupm;
1221 return 0;
1222
1223 out_unreg_cpupm:
1224 arch_timer_cpu_pm_deinit();
1225
1226 out_unreg_notify:
1227 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1228 if (arch_timer_has_nonsecure_ppi())
1229 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1230 arch_timer_evt);
1231
1232 out_free:
1233 free_percpu(arch_timer_evt);
1234 out:
1235 return err;
1236 }
1237
arch_timer_mem_register(void __iomem * base,unsigned int irq)1238 static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1239 {
1240 int ret;
1241 irq_handler_t func;
1242
1243 arch_timer_mem = kzalloc(sizeof(*arch_timer_mem), GFP_KERNEL);
1244 if (!arch_timer_mem)
1245 return -ENOMEM;
1246
1247 arch_timer_mem->base = base;
1248 arch_timer_mem->evt.irq = irq;
1249 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &arch_timer_mem->evt);
1250
1251 if (arch_timer_mem_use_virtual)
1252 func = arch_timer_handler_virt_mem;
1253 else
1254 func = arch_timer_handler_phys_mem;
1255
1256 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &arch_timer_mem->evt);
1257 if (ret) {
1258 pr_err("Failed to request mem timer irq\n");
1259 kfree(arch_timer_mem);
1260 arch_timer_mem = NULL;
1261 }
1262
1263 return ret;
1264 }
1265
1266 static const struct of_device_id arch_timer_of_match[] __initconst = {
1267 { .compatible = "arm,armv7-timer", },
1268 { .compatible = "arm,armv8-timer", },
1269 {},
1270 };
1271
1272 static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1273 { .compatible = "arm,armv7-timer-mem", },
1274 {},
1275 };
1276
arch_timer_needs_of_probing(void)1277 static bool __init arch_timer_needs_of_probing(void)
1278 {
1279 struct device_node *dn;
1280 bool needs_probing = false;
1281 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1282
1283 /* We have two timers, and both device-tree nodes are probed. */
1284 if ((arch_timers_present & mask) == mask)
1285 return false;
1286
1287 /*
1288 * Only one type of timer is probed,
1289 * check if we have another type of timer node in device-tree.
1290 */
1291 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1292 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1293 else
1294 dn = of_find_matching_node(NULL, arch_timer_of_match);
1295
1296 if (dn && of_device_is_available(dn))
1297 needs_probing = true;
1298
1299 of_node_put(dn);
1300
1301 return needs_probing;
1302 }
1303
arch_timer_common_init(void)1304 static int __init arch_timer_common_init(void)
1305 {
1306 arch_timer_banner(arch_timers_present);
1307 arch_counter_register(arch_timers_present);
1308 return arch_timer_arch_init();
1309 }
1310
1311 /**
1312 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1313 *
1314 * If HYP mode is available, we know that the physical timer
1315 * has been configured to be accessible from PL1. Use it, so
1316 * that a guest can use the virtual timer instead.
1317 *
1318 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1319 * accesses to CNTP_*_EL1 registers are silently redirected to
1320 * their CNTHP_*_EL2 counterparts, and use a different PPI
1321 * number.
1322 *
1323 * If no interrupt provided for virtual timer, we'll have to
1324 * stick to the physical timer. It'd better be accessible...
1325 * For arm64 we never use the secure interrupt.
1326 *
1327 * Return: a suitable PPI type for the current system.
1328 */
arch_timer_select_ppi(void)1329 static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1330 {
1331 if (is_kernel_in_hyp_mode())
1332 return ARCH_TIMER_HYP_PPI;
1333
1334 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1335 return ARCH_TIMER_VIRT_PPI;
1336
1337 if (IS_ENABLED(CONFIG_ARM64))
1338 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1339
1340 return ARCH_TIMER_PHYS_SECURE_PPI;
1341 }
1342
arch_timer_populate_kvm_info(void)1343 static void __init arch_timer_populate_kvm_info(void)
1344 {
1345 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1346 if (is_kernel_in_hyp_mode())
1347 arch_timer_kvm_info.physical_irq = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1348 }
1349
arch_timer_of_init(struct device_node * np)1350 static int __init arch_timer_of_init(struct device_node *np)
1351 {
1352 int i, irq, ret;
1353 u32 rate;
1354 bool has_names;
1355
1356 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1357 pr_warn("multiple nodes in dt, skipping\n");
1358 return 0;
1359 }
1360
1361 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1362
1363 has_names = of_property_read_bool(np, "interrupt-names");
1364
1365 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++) {
1366 if (has_names)
1367 irq = of_irq_get_byname(np, arch_timer_ppi_names[i]);
1368 else
1369 irq = of_irq_get(np, i);
1370 if (irq > 0)
1371 arch_timer_ppi[i] = irq;
1372 }
1373
1374 arch_timer_populate_kvm_info();
1375
1376 rate = arch_timer_get_cntfrq();
1377 arch_timer_of_configure_rate(rate, np);
1378
1379 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1380
1381 /* Check for globally applicable workarounds */
1382 arch_timer_check_ool_workaround(ate_match_dt, np);
1383
1384 /*
1385 * If we cannot rely on firmware initializing the timer registers then
1386 * we should use the physical timers instead.
1387 */
1388 if (IS_ENABLED(CONFIG_ARM) &&
1389 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1390 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1391 else
1392 arch_timer_uses_ppi = arch_timer_select_ppi();
1393
1394 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1395 pr_err("No interrupt available, giving up\n");
1396 return -EINVAL;
1397 }
1398
1399 /* On some systems, the counter stops ticking when in suspend. */
1400 arch_counter_suspend_stop = of_property_read_bool(np,
1401 "arm,no-tick-in-suspend");
1402
1403 ret = arch_timer_register();
1404 if (ret)
1405 return ret;
1406
1407 if (arch_timer_needs_of_probing())
1408 return 0;
1409
1410 return arch_timer_common_init();
1411 }
1412 TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1413 TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1414
1415 static u32 __init
arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame * frame)1416 arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1417 {
1418 void __iomem *base;
1419 u32 rate;
1420
1421 base = ioremap(frame->cntbase, frame->size);
1422 if (!base) {
1423 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1424 return 0;
1425 }
1426
1427 rate = readl_relaxed(base + CNTFRQ);
1428
1429 iounmap(base);
1430
1431 return rate;
1432 }
1433
1434 static struct arch_timer_mem_frame * __init
arch_timer_mem_find_best_frame(struct arch_timer_mem * timer_mem)1435 arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1436 {
1437 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1438 void __iomem *cntctlbase;
1439 u32 cnttidr;
1440 int i;
1441
1442 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1443 if (!cntctlbase) {
1444 pr_err("Can't map CNTCTLBase @ %pa\n",
1445 &timer_mem->cntctlbase);
1446 return NULL;
1447 }
1448
1449 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1450
1451 /*
1452 * Try to find a virtual capable frame. Otherwise fall back to a
1453 * physical capable frame.
1454 */
1455 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1456 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1457 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1458
1459 frame = &timer_mem->frame[i];
1460 if (!frame->valid)
1461 continue;
1462
1463 /* Try enabling everything, and see what sticks */
1464 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1465 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1466
1467 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1468 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1469 best_frame = frame;
1470 arch_timer_mem_use_virtual = true;
1471 break;
1472 }
1473
1474 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1475 continue;
1476
1477 best_frame = frame;
1478 }
1479
1480 iounmap(cntctlbase);
1481
1482 return best_frame;
1483 }
1484
1485 static int __init
arch_timer_mem_frame_register(struct arch_timer_mem_frame * frame)1486 arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1487 {
1488 void __iomem *base;
1489 int ret, irq = 0;
1490
1491 if (arch_timer_mem_use_virtual)
1492 irq = frame->virt_irq;
1493 else
1494 irq = frame->phys_irq;
1495
1496 if (!irq) {
1497 pr_err("Frame missing %s irq.\n",
1498 arch_timer_mem_use_virtual ? "virt" : "phys");
1499 return -EINVAL;
1500 }
1501
1502 if (!request_mem_region(frame->cntbase, frame->size,
1503 "arch_mem_timer"))
1504 return -EBUSY;
1505
1506 base = ioremap(frame->cntbase, frame->size);
1507 if (!base) {
1508 pr_err("Can't map frame's registers\n");
1509 return -ENXIO;
1510 }
1511
1512 ret = arch_timer_mem_register(base, irq);
1513 if (ret) {
1514 iounmap(base);
1515 return ret;
1516 }
1517
1518 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1519
1520 return 0;
1521 }
1522
arch_timer_mem_of_init(struct device_node * np)1523 static int __init arch_timer_mem_of_init(struct device_node *np)
1524 {
1525 struct arch_timer_mem *timer_mem;
1526 struct arch_timer_mem_frame *frame;
1527 struct device_node *frame_node;
1528 struct resource res;
1529 int ret = -EINVAL;
1530 u32 rate;
1531
1532 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1533 if (!timer_mem)
1534 return -ENOMEM;
1535
1536 if (of_address_to_resource(np, 0, &res))
1537 goto out;
1538 timer_mem->cntctlbase = res.start;
1539 timer_mem->size = resource_size(&res);
1540
1541 for_each_available_child_of_node(np, frame_node) {
1542 u32 n;
1543 struct arch_timer_mem_frame *frame;
1544
1545 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1546 pr_err(FW_BUG "Missing frame-number.\n");
1547 of_node_put(frame_node);
1548 goto out;
1549 }
1550 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1551 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1552 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1553 of_node_put(frame_node);
1554 goto out;
1555 }
1556 frame = &timer_mem->frame[n];
1557
1558 if (frame->valid) {
1559 pr_err(FW_BUG "Duplicated frame-number.\n");
1560 of_node_put(frame_node);
1561 goto out;
1562 }
1563
1564 if (of_address_to_resource(frame_node, 0, &res)) {
1565 of_node_put(frame_node);
1566 goto out;
1567 }
1568 frame->cntbase = res.start;
1569 frame->size = resource_size(&res);
1570
1571 frame->virt_irq = irq_of_parse_and_map(frame_node,
1572 ARCH_TIMER_VIRT_SPI);
1573 frame->phys_irq = irq_of_parse_and_map(frame_node,
1574 ARCH_TIMER_PHYS_SPI);
1575
1576 frame->valid = true;
1577 }
1578
1579 frame = arch_timer_mem_find_best_frame(timer_mem);
1580 if (!frame) {
1581 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1582 &timer_mem->cntctlbase);
1583 ret = -EINVAL;
1584 goto out;
1585 }
1586
1587 rate = arch_timer_mem_frame_get_cntfrq(frame);
1588 arch_timer_of_configure_rate(rate, np);
1589
1590 ret = arch_timer_mem_frame_register(frame);
1591 if (!ret && !arch_timer_needs_of_probing())
1592 ret = arch_timer_common_init();
1593 out:
1594 kfree(timer_mem);
1595 return ret;
1596 }
1597 TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1598 arch_timer_mem_of_init);
1599
1600 #ifdef CONFIG_ACPI_GTDT
1601 static int __init
arch_timer_mem_verify_cntfrq(struct arch_timer_mem * timer_mem)1602 arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1603 {
1604 struct arch_timer_mem_frame *frame;
1605 u32 rate;
1606 int i;
1607
1608 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1609 frame = &timer_mem->frame[i];
1610
1611 if (!frame->valid)
1612 continue;
1613
1614 rate = arch_timer_mem_frame_get_cntfrq(frame);
1615 if (rate == arch_timer_rate)
1616 continue;
1617
1618 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1619 &frame->cntbase,
1620 (unsigned long)rate, (unsigned long)arch_timer_rate);
1621
1622 return -EINVAL;
1623 }
1624
1625 return 0;
1626 }
1627
arch_timer_mem_acpi_init(int platform_timer_count)1628 static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1629 {
1630 struct arch_timer_mem *timers, *timer;
1631 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1632 int timer_count, i, ret = 0;
1633
1634 timers = kcalloc(platform_timer_count, sizeof(*timers),
1635 GFP_KERNEL);
1636 if (!timers)
1637 return -ENOMEM;
1638
1639 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1640 if (ret || !timer_count)
1641 goto out;
1642
1643 /*
1644 * While unlikely, it's theoretically possible that none of the frames
1645 * in a timer expose the combination of feature we want.
1646 */
1647 for (i = 0; i < timer_count; i++) {
1648 timer = &timers[i];
1649
1650 frame = arch_timer_mem_find_best_frame(timer);
1651 if (!best_frame)
1652 best_frame = frame;
1653
1654 ret = arch_timer_mem_verify_cntfrq(timer);
1655 if (ret) {
1656 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1657 goto out;
1658 }
1659
1660 if (!best_frame) /* implies !frame */
1661 /*
1662 * Only complain about missing suitable frames if we
1663 * haven't already found one in a previous iteration.
1664 */
1665 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1666 &timer->cntctlbase);
1667 }
1668
1669 if (best_frame)
1670 ret = arch_timer_mem_frame_register(best_frame);
1671 out:
1672 kfree(timers);
1673 return ret;
1674 }
1675
1676 /* Initialize per-processor generic timer and memory-mapped timer(if present) */
arch_timer_acpi_init(struct acpi_table_header * table)1677 static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1678 {
1679 int ret, platform_timer_count;
1680
1681 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1682 pr_warn("already initialized, skipping\n");
1683 return -EINVAL;
1684 }
1685
1686 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1687
1688 ret = acpi_gtdt_init(table, &platform_timer_count);
1689 if (ret)
1690 return ret;
1691
1692 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1693 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1694
1695 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1696 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1697
1698 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1699 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1700
1701 arch_timer_populate_kvm_info();
1702
1703 /*
1704 * When probing via ACPI, we have no mechanism to override the sysreg
1705 * CNTFRQ value. This *must* be correct.
1706 */
1707 arch_timer_rate = arch_timer_get_cntfrq();
1708 ret = validate_timer_rate();
1709 if (ret) {
1710 pr_err(FW_BUG "frequency not available.\n");
1711 return ret;
1712 }
1713
1714 arch_timer_uses_ppi = arch_timer_select_ppi();
1715 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1716 pr_err("No interrupt available, giving up\n");
1717 return -EINVAL;
1718 }
1719
1720 /* Always-on capability */
1721 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1722
1723 /* Check for globally applicable workarounds */
1724 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1725
1726 ret = arch_timer_register();
1727 if (ret)
1728 return ret;
1729
1730 if (platform_timer_count &&
1731 arch_timer_mem_acpi_init(platform_timer_count))
1732 pr_err("Failed to initialize memory-mapped timer.\n");
1733
1734 return arch_timer_common_init();
1735 }
1736 TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1737 #endif
1738
kvm_arch_ptp_get_crosststamp(u64 * cycle,struct timespec64 * ts,struct clocksource ** cs)1739 int kvm_arch_ptp_get_crosststamp(u64 *cycle, struct timespec64 *ts,
1740 struct clocksource **cs)
1741 {
1742 struct arm_smccc_res hvc_res;
1743 u32 ptp_counter;
1744 ktime_t ktime;
1745
1746 if (!IS_ENABLED(CONFIG_HAVE_ARM_SMCCC_DISCOVERY))
1747 return -EOPNOTSUPP;
1748
1749 if (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
1750 ptp_counter = KVM_PTP_VIRT_COUNTER;
1751 else
1752 ptp_counter = KVM_PTP_PHYS_COUNTER;
1753
1754 arm_smccc_1_1_invoke(ARM_SMCCC_VENDOR_HYP_KVM_PTP_FUNC_ID,
1755 ptp_counter, &hvc_res);
1756
1757 if ((int)(hvc_res.a0) < 0)
1758 return -EOPNOTSUPP;
1759
1760 ktime = (u64)hvc_res.a0 << 32 | hvc_res.a1;
1761 *ts = ktime_to_timespec64(ktime);
1762 if (cycle)
1763 *cycle = (u64)hvc_res.a2 << 32 | hvc_res.a3;
1764 if (cs)
1765 *cs = &clocksource_counter;
1766
1767 return 0;
1768 }
1769 EXPORT_SYMBOL_GPL(kvm_arch_ptp_get_crosststamp);
1770