1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * (C) Copyright 2016 Carlo Caione <carlo@caione.org>
4 */
5
6 #include <common.h>
7 #include <clk.h>
8 #include <cpu_func.h>
9 #include <dm.h>
10 #include <fdtdec.h>
11 #include <malloc.h>
12 #include <pwrseq.h>
13 #include <mmc.h>
14 #include <asm/io.h>
15 #include <asm/gpio.h>
16 #include <linux/delay.h>
17 #include <linux/log2.h>
18 #include "meson_gx_mmc.h"
19
meson_gx_mmc_is_compatible(struct udevice * dev,enum meson_gx_mmc_compatible family)20 bool meson_gx_mmc_is_compatible(struct udevice *dev,
21 enum meson_gx_mmc_compatible family)
22 {
23 enum meson_gx_mmc_compatible compat = dev_get_driver_data(dev);
24
25 return compat == family;
26 }
27
get_regbase(const struct mmc * mmc)28 static inline void *get_regbase(const struct mmc *mmc)
29 {
30 struct meson_mmc_plat *pdata = mmc->priv;
31
32 return pdata->regbase;
33 }
34
meson_read(struct mmc * mmc,int offset)35 static inline uint32_t meson_read(struct mmc *mmc, int offset)
36 {
37 return readl(get_regbase(mmc) + offset);
38 }
39
meson_write(struct mmc * mmc,uint32_t val,int offset)40 static inline void meson_write(struct mmc *mmc, uint32_t val, int offset)
41 {
42 writel(val, get_regbase(mmc) + offset);
43 }
44
meson_mmc_config_clock(struct mmc * mmc)45 static void meson_mmc_config_clock(struct mmc *mmc)
46 {
47 uint32_t meson_mmc_clk = 0;
48 unsigned int clk, clk_src, clk_div;
49
50 if (!mmc->clock)
51 return;
52
53 /* TOFIX This should use the proper clock taken from DT */
54
55 /* 1GHz / CLK_MAX_DIV = 15,9 MHz */
56 if (mmc->clock > 16000000) {
57 clk = SD_EMMC_CLKSRC_DIV2;
58 clk_src = CLK_SRC_DIV2;
59 } else {
60 clk = SD_EMMC_CLKSRC_24M;
61 clk_src = CLK_SRC_24M;
62 }
63 clk_div = DIV_ROUND_UP(clk, mmc->clock);
64
65 /*
66 * SM1 SoCs doesn't work fine over 50MHz with CLK_CO_PHASE_180
67 * If CLK_CO_PHASE_270 is used, it's more stable than other.
68 * Other SoCs use CLK_CO_PHASE_180 by default.
69 * It needs to find what is a proper value about each SoCs.
70 */
71 if (meson_gx_mmc_is_compatible(mmc->dev, MMC_COMPATIBLE_SM1))
72 meson_mmc_clk |= CLK_CO_PHASE_270;
73 else
74 meson_mmc_clk |= CLK_CO_PHASE_180;
75
76 /* 180 phase tx clock */
77 meson_mmc_clk |= CLK_TX_PHASE_000;
78
79 /* clock settings */
80 meson_mmc_clk |= clk_src;
81 meson_mmc_clk |= clk_div;
82
83 meson_write(mmc, meson_mmc_clk, MESON_SD_EMMC_CLOCK);
84 }
85
meson_dm_mmc_set_ios(struct udevice * dev)86 static int meson_dm_mmc_set_ios(struct udevice *dev)
87 {
88 struct mmc *mmc = mmc_get_mmc_dev(dev);
89 uint32_t meson_mmc_cfg;
90
91 meson_mmc_config_clock(mmc);
92
93 meson_mmc_cfg = meson_read(mmc, MESON_SD_EMMC_CFG);
94
95 meson_mmc_cfg &= ~CFG_BUS_WIDTH_MASK;
96 if (mmc->bus_width == 1)
97 meson_mmc_cfg |= CFG_BUS_WIDTH_1;
98 else if (mmc->bus_width == 4)
99 meson_mmc_cfg |= CFG_BUS_WIDTH_4;
100 else if (mmc->bus_width == 8)
101 meson_mmc_cfg |= CFG_BUS_WIDTH_8;
102 else
103 return -EINVAL;
104
105 /* 512 bytes block length */
106 meson_mmc_cfg &= ~CFG_BL_LEN_MASK;
107 meson_mmc_cfg |= CFG_BL_LEN_512;
108
109 /* Response timeout 256 clk */
110 meson_mmc_cfg &= ~CFG_RESP_TIMEOUT_MASK;
111 meson_mmc_cfg |= CFG_RESP_TIMEOUT_256;
112
113 /* Command-command gap 16 clk */
114 meson_mmc_cfg &= ~CFG_RC_CC_MASK;
115 meson_mmc_cfg |= CFG_RC_CC_16;
116
117 meson_write(mmc, meson_mmc_cfg, MESON_SD_EMMC_CFG);
118
119 return 0;
120 }
121
meson_mmc_setup_cmd(struct mmc * mmc,struct mmc_data * data,struct mmc_cmd * cmd)122 static void meson_mmc_setup_cmd(struct mmc *mmc, struct mmc_data *data,
123 struct mmc_cmd *cmd)
124 {
125 uint32_t meson_mmc_cmd = 0, cfg;
126
127 meson_mmc_cmd |= cmd->cmdidx << CMD_CFG_CMD_INDEX_SHIFT;
128
129 if (cmd->resp_type & MMC_RSP_PRESENT) {
130 if (cmd->resp_type & MMC_RSP_136)
131 meson_mmc_cmd |= CMD_CFG_RESP_128;
132
133 if (cmd->resp_type & MMC_RSP_BUSY)
134 meson_mmc_cmd |= CMD_CFG_R1B;
135
136 if (!(cmd->resp_type & MMC_RSP_CRC))
137 meson_mmc_cmd |= CMD_CFG_RESP_NOCRC;
138 } else {
139 meson_mmc_cmd |= CMD_CFG_NO_RESP;
140 }
141
142 if (data) {
143 cfg = meson_read(mmc, MESON_SD_EMMC_CFG);
144 cfg &= ~CFG_BL_LEN_MASK;
145 cfg |= ilog2(data->blocksize) << CFG_BL_LEN_SHIFT;
146 meson_write(mmc, cfg, MESON_SD_EMMC_CFG);
147
148 if (data->flags == MMC_DATA_WRITE)
149 meson_mmc_cmd |= CMD_CFG_DATA_WR;
150
151 meson_mmc_cmd |= CMD_CFG_DATA_IO | CMD_CFG_BLOCK_MODE |
152 data->blocks;
153 }
154
155 meson_mmc_cmd |= CMD_CFG_TIMEOUT_4S | CMD_CFG_OWNER |
156 CMD_CFG_END_OF_CHAIN;
157
158 meson_write(mmc, meson_mmc_cmd, MESON_SD_EMMC_CMD_CFG);
159 }
160
meson_mmc_setup_addr(struct mmc * mmc,struct mmc_data * data)161 static void meson_mmc_setup_addr(struct mmc *mmc, struct mmc_data *data)
162 {
163 struct meson_mmc_plat *pdata = mmc->priv;
164 unsigned int data_size;
165 uint32_t data_addr = 0;
166
167 if (data) {
168 data_size = data->blocks * data->blocksize;
169
170 if (data->flags == MMC_DATA_READ) {
171 data_addr = (ulong) data->dest;
172 invalidate_dcache_range(data_addr,
173 data_addr + data_size);
174 } else {
175 pdata->w_buf = calloc(data_size, sizeof(char));
176 data_addr = (ulong) pdata->w_buf;
177 memcpy(pdata->w_buf, data->src, data_size);
178 flush_dcache_range(data_addr, data_addr + data_size);
179 }
180 }
181
182 meson_write(mmc, data_addr, MESON_SD_EMMC_CMD_DAT);
183 }
184
meson_mmc_read_response(struct mmc * mmc,struct mmc_cmd * cmd)185 static void meson_mmc_read_response(struct mmc *mmc, struct mmc_cmd *cmd)
186 {
187 if (cmd->resp_type & MMC_RSP_136) {
188 cmd->response[0] = meson_read(mmc, MESON_SD_EMMC_CMD_RSP3);
189 cmd->response[1] = meson_read(mmc, MESON_SD_EMMC_CMD_RSP2);
190 cmd->response[2] = meson_read(mmc, MESON_SD_EMMC_CMD_RSP1);
191 cmd->response[3] = meson_read(mmc, MESON_SD_EMMC_CMD_RSP);
192 } else {
193 cmd->response[0] = meson_read(mmc, MESON_SD_EMMC_CMD_RSP);
194 }
195 }
196
meson_dm_mmc_send_cmd(struct udevice * dev,struct mmc_cmd * cmd,struct mmc_data * data)197 static int meson_dm_mmc_send_cmd(struct udevice *dev, struct mmc_cmd *cmd,
198 struct mmc_data *data)
199 {
200 struct mmc *mmc = mmc_get_mmc_dev(dev);
201 struct meson_mmc_plat *pdata = mmc->priv;
202 uint32_t status;
203 ulong start;
204 int ret = 0;
205
206 /* max block size supported by chip is 512 byte */
207 if (data && data->blocksize > 512)
208 return -EINVAL;
209
210 meson_mmc_setup_cmd(mmc, data, cmd);
211 meson_mmc_setup_addr(mmc, data);
212
213 meson_write(mmc, cmd->cmdarg, MESON_SD_EMMC_CMD_ARG);
214
215 /* use 10s timeout */
216 start = get_timer(0);
217 do {
218 status = meson_read(mmc, MESON_SD_EMMC_STATUS);
219 } while(!(status & STATUS_END_OF_CHAIN) && get_timer(start) < 10000);
220
221 if (!(status & STATUS_END_OF_CHAIN))
222 ret = -ETIMEDOUT;
223 else if (status & STATUS_RESP_TIMEOUT)
224 ret = -ETIMEDOUT;
225 else if (status & STATUS_ERR_MASK)
226 ret = -EIO;
227
228 meson_mmc_read_response(mmc, cmd);
229
230 if (data && data->flags == MMC_DATA_WRITE)
231 free(pdata->w_buf);
232
233 /* reset status bits */
234 meson_write(mmc, STATUS_MASK, MESON_SD_EMMC_STATUS);
235
236 return ret;
237 }
238
239 static const struct dm_mmc_ops meson_dm_mmc_ops = {
240 .send_cmd = meson_dm_mmc_send_cmd,
241 .set_ios = meson_dm_mmc_set_ios,
242 };
243
meson_mmc_of_to_plat(struct udevice * dev)244 static int meson_mmc_of_to_plat(struct udevice *dev)
245 {
246 struct meson_mmc_plat *pdata = dev_get_plat(dev);
247 fdt_addr_t addr;
248
249 addr = dev_read_addr(dev);
250 if (addr == FDT_ADDR_T_NONE)
251 return -EINVAL;
252
253 pdata->regbase = (void *)addr;
254
255 return 0;
256 }
257
meson_mmc_probe(struct udevice * dev)258 static int meson_mmc_probe(struct udevice *dev)
259 {
260 struct meson_mmc_plat *pdata = dev_get_plat(dev);
261 struct mmc_uclass_priv *upriv = dev_get_uclass_priv(dev);
262 struct mmc *mmc = &pdata->mmc;
263 struct mmc_config *cfg = &pdata->cfg;
264 struct clk_bulk clocks;
265 uint32_t val;
266 int ret;
267
268 /* Enable the clocks feeding the MMC controller */
269 ret = clk_get_bulk(dev, &clocks);
270 if (ret)
271 return ret;
272
273 ret = clk_enable_bulk(&clocks);
274 if (ret)
275 return ret;
276
277 cfg->voltages = MMC_VDD_33_34 | MMC_VDD_32_33 |
278 MMC_VDD_31_32 | MMC_VDD_165_195;
279 cfg->host_caps = MMC_MODE_8BIT | MMC_MODE_4BIT |
280 MMC_MODE_HS_52MHz | MMC_MODE_HS;
281 cfg->f_min = DIV_ROUND_UP(SD_EMMC_CLKSRC_24M, CLK_MAX_DIV);
282 cfg->f_max = 100000000; /* 100 MHz */
283 cfg->b_max = 511; /* max 512 - 1 blocks */
284 cfg->name = dev->name;
285
286 mmc->priv = pdata;
287 upriv->mmc = mmc;
288
289 mmc_set_clock(mmc, cfg->f_min, MMC_CLK_ENABLE);
290
291 #ifdef CONFIG_MMC_PWRSEQ
292 /* Enable power if needed */
293 ret = mmc_pwrseq_get_power(dev, cfg);
294 if (!ret) {
295 ret = pwrseq_set_power(cfg->pwr_dev, true);
296 if (ret)
297 return ret;
298 }
299 #endif
300
301 /* reset all status bits */
302 meson_write(mmc, STATUS_MASK, MESON_SD_EMMC_STATUS);
303
304 /* disable interrupts */
305 meson_write(mmc, 0, MESON_SD_EMMC_IRQ_EN);
306
307 /* enable auto clock mode */
308 val = meson_read(mmc, MESON_SD_EMMC_CFG);
309 val &= ~CFG_SDCLK_ALWAYS_ON;
310 val |= CFG_AUTO_CLK;
311 meson_write(mmc, val, MESON_SD_EMMC_CFG);
312
313 return 0;
314 }
315
meson_mmc_bind(struct udevice * dev)316 int meson_mmc_bind(struct udevice *dev)
317 {
318 struct meson_mmc_plat *pdata = dev_get_plat(dev);
319
320 return mmc_bind(dev, &pdata->mmc, &pdata->cfg);
321 }
322
323 static const struct udevice_id meson_mmc_match[] = {
324 { .compatible = "amlogic,meson-gx-mmc", .data = MMC_COMPATIBLE_GX },
325 { .compatible = "amlogic,meson-axg-mmc", .data = MMC_COMPATIBLE_GX },
326 { .compatible = "amlogic,meson-sm1-mmc", .data = MMC_COMPATIBLE_SM1 },
327 { /* sentinel */ }
328 };
329
330 U_BOOT_DRIVER(meson_mmc) = {
331 .name = "meson_gx_mmc",
332 .id = UCLASS_MMC,
333 .of_match = meson_mmc_match,
334 .ops = &meson_dm_mmc_ops,
335 .probe = meson_mmc_probe,
336 .bind = meson_mmc_bind,
337 .of_to_plat = meson_mmc_of_to_plat,
338 .plat_auto = sizeof(struct meson_mmc_plat),
339 };
340