1 // SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
2 /*
3  * Copyright (C) 2019, STMicroelectronics - All Rights Reserved
4  */
5 
6 #define LOG_CATEGORY UCLASS_RTC
7 
8 #include <common.h>
9 #include <clk.h>
10 #include <dm.h>
11 #include <malloc.h>
12 #include <rtc.h>
13 #include <asm/io.h>
14 #include <dm/device_compat.h>
15 #include <linux/bitops.h>
16 #include <linux/iopoll.h>
17 
18 #define STM32_RTC_TR		0x00
19 #define STM32_RTC_DR		0x04
20 #define STM32_RTC_ISR		0x0C
21 #define STM32_RTC_PRER		0x10
22 #define STM32_RTC_CR		0x18
23 #define STM32_RTC_WPR		0x24
24 
25 /* STM32_RTC_TR bit fields  */
26 #define STM32_RTC_SEC_SHIFT	0
27 #define STM32_RTC_SEC		GENMASK(6, 0)
28 #define STM32_RTC_MIN_SHIFT	8
29 #define STM32_RTC_MIN		GENMASK(14, 8)
30 #define STM32_RTC_HOUR_SHIFT	16
31 #define STM32_RTC_HOUR		GENMASK(21, 16)
32 
33 /* STM32_RTC_DR bit fields */
34 #define STM32_RTC_DATE_SHIFT	0
35 #define STM32_RTC_DATE		GENMASK(5, 0)
36 #define STM32_RTC_MONTH_SHIFT	8
37 #define STM32_RTC_MONTH		GENMASK(12, 8)
38 #define STM32_RTC_WDAY_SHIFT	13
39 #define STM32_RTC_WDAY		GENMASK(15, 13)
40 #define STM32_RTC_YEAR_SHIFT	16
41 #define STM32_RTC_YEAR		GENMASK(23, 16)
42 
43 /* STM32_RTC_CR bit fields */
44 #define STM32_RTC_CR_FMT	BIT(6)
45 
46 /* STM32_RTC_ISR/STM32_RTC_ICSR bit fields */
47 #define STM32_RTC_ISR_INITS	BIT(4)
48 #define STM32_RTC_ISR_RSF	BIT(5)
49 #define STM32_RTC_ISR_INITF	BIT(6)
50 #define STM32_RTC_ISR_INIT	BIT(7)
51 
52 /* STM32_RTC_PRER bit fields */
53 #define STM32_RTC_PRER_PRED_S_SHIFT	0
54 #define STM32_RTC_PRER_PRED_S		GENMASK(14, 0)
55 #define STM32_RTC_PRER_PRED_A_SHIFT	16
56 #define STM32_RTC_PRER_PRED_A		GENMASK(22, 16)
57 
58 /* STM32_RTC_WPR key constants */
59 #define RTC_WPR_1ST_KEY		0xCA
60 #define RTC_WPR_2ND_KEY		0x53
61 #define RTC_WPR_WRONG_KEY	0xFF
62 
63 struct stm32_rtc_priv {
64 	fdt_addr_t base;
65 };
66 
stm32_rtc_get(struct udevice * dev,struct rtc_time * tm)67 static int stm32_rtc_get(struct udevice *dev, struct rtc_time *tm)
68 {
69 	struct stm32_rtc_priv *priv = dev_get_priv(dev);
70 	u32 tr, dr;
71 
72 	tr = readl(priv->base + STM32_RTC_TR);
73 	dr = readl(priv->base + STM32_RTC_DR);
74 
75 	tm->tm_sec = bcd2bin((tr & STM32_RTC_SEC) >> STM32_RTC_SEC_SHIFT);
76 	tm->tm_min = bcd2bin((tr & STM32_RTC_MIN) >> STM32_RTC_MIN_SHIFT);
77 	tm->tm_hour = bcd2bin((tr & STM32_RTC_HOUR) >> STM32_RTC_HOUR_SHIFT);
78 
79 	tm->tm_mday = bcd2bin((dr & STM32_RTC_DATE) >> STM32_RTC_DATE_SHIFT);
80 	tm->tm_mon = bcd2bin((dr & STM32_RTC_MONTH) >> STM32_RTC_MONTH_SHIFT);
81 	tm->tm_year = 2000 +
82 		      bcd2bin((dr & STM32_RTC_YEAR) >> STM32_RTC_YEAR_SHIFT);
83 	tm->tm_wday = bcd2bin((dr & STM32_RTC_WDAY) >> STM32_RTC_WDAY_SHIFT);
84 	tm->tm_yday = 0;
85 	tm->tm_isdst = 0;
86 
87 	dev_dbg(dev, "Get DATE: %4d-%02d-%02d (wday=%d)  TIME: %2d:%02d:%02d\n",
88 		tm->tm_year, tm->tm_mon, tm->tm_mday, tm->tm_wday,
89 		tm->tm_hour, tm->tm_min, tm->tm_sec);
90 
91 	return 0;
92 }
93 
stm32_rtc_unlock(struct udevice * dev)94 static void stm32_rtc_unlock(struct udevice *dev)
95 {
96 	struct stm32_rtc_priv *priv = dev_get_priv(dev);
97 
98 	writel(RTC_WPR_1ST_KEY, priv->base + STM32_RTC_WPR);
99 	writel(RTC_WPR_2ND_KEY, priv->base + STM32_RTC_WPR);
100 }
101 
stm32_rtc_lock(struct udevice * dev)102 static void stm32_rtc_lock(struct udevice *dev)
103 {
104 	struct stm32_rtc_priv *priv = dev_get_priv(dev);
105 
106 	writel(RTC_WPR_WRONG_KEY, priv->base + STM32_RTC_WPR);
107 }
108 
stm32_rtc_enter_init_mode(struct udevice * dev)109 static int stm32_rtc_enter_init_mode(struct udevice *dev)
110 {
111 	struct stm32_rtc_priv *priv = dev_get_priv(dev);
112 	u32 isr = readl(priv->base + STM32_RTC_ISR);
113 
114 	if (!(isr & STM32_RTC_ISR_INITF)) {
115 		isr |= STM32_RTC_ISR_INIT;
116 		writel(isr, priv->base + STM32_RTC_ISR);
117 
118 		return readl_poll_timeout(priv->base + STM32_RTC_ISR,
119 					  isr,
120 					  (isr & STM32_RTC_ISR_INITF),
121 					  100000);
122 	}
123 
124 	return 0;
125 }
126 
stm32_rtc_wait_sync(struct udevice * dev)127 static int stm32_rtc_wait_sync(struct udevice *dev)
128 {
129 	struct stm32_rtc_priv *priv = dev_get_priv(dev);
130 	u32 isr = readl(priv->base + STM32_RTC_ISR);
131 
132 	isr &= ~STM32_RTC_ISR_RSF;
133 	writel(isr, priv->base + STM32_RTC_ISR);
134 
135 	/*
136 	 * Wait for RSF to be set to ensure the calendar registers are
137 	 * synchronised, it takes around 2 rtc_ck clock cycles
138 	 */
139 	return readl_poll_timeout(priv->base + STM32_RTC_ISR,
140 				  isr, (isr & STM32_RTC_ISR_RSF),
141 				  100000);
142 }
143 
stm32_rtc_exit_init_mode(struct udevice * dev)144 static void stm32_rtc_exit_init_mode(struct udevice *dev)
145 {
146 	struct stm32_rtc_priv *priv = dev_get_priv(dev);
147 	u32 isr = readl(priv->base + STM32_RTC_ISR);
148 
149 	isr &= ~STM32_RTC_ISR_INIT;
150 	writel(isr, priv->base + STM32_RTC_ISR);
151 }
152 
stm32_rtc_set_time(struct udevice * dev,u32 time,u32 date)153 static int stm32_rtc_set_time(struct udevice *dev, u32 time, u32 date)
154 {
155 	struct stm32_rtc_priv *priv = dev_get_priv(dev);
156 	int ret;
157 
158 	stm32_rtc_unlock(dev);
159 
160 	ret = stm32_rtc_enter_init_mode(dev);
161 	if (ret)
162 		goto lock;
163 
164 	writel(time, priv->base + STM32_RTC_TR);
165 	writel(date, priv->base + STM32_RTC_DR);
166 
167 	stm32_rtc_exit_init_mode(dev);
168 
169 	ret = stm32_rtc_wait_sync(dev);
170 
171 lock:
172 	stm32_rtc_lock(dev);
173 	return ret;
174 }
175 
stm32_rtc_set(struct udevice * dev,const struct rtc_time * tm)176 static int stm32_rtc_set(struct udevice *dev, const struct rtc_time *tm)
177 {
178 	u32 t, d;
179 
180 	dev_dbg(dev, "Set DATE: %4d-%02d-%02d (wday=%d)  TIME: %2d:%02d:%02d\n",
181 		tm->tm_year, tm->tm_mon, tm->tm_mday, tm->tm_wday,
182 		tm->tm_hour, tm->tm_min, tm->tm_sec);
183 
184 	if (tm->tm_year < 2000 || tm->tm_year > 2099)
185 		return -EINVAL;
186 
187 	/* Time in BCD format */
188 	t = (bin2bcd(tm->tm_sec) << STM32_RTC_SEC_SHIFT) & STM32_RTC_SEC;
189 	t |= (bin2bcd(tm->tm_min) << STM32_RTC_MIN_SHIFT) & STM32_RTC_MIN;
190 	t |= (bin2bcd(tm->tm_hour) << STM32_RTC_HOUR_SHIFT) & STM32_RTC_HOUR;
191 
192 	/* Date in BCD format */
193 	d = (bin2bcd(tm->tm_mday) << STM32_RTC_DATE_SHIFT) & STM32_RTC_DATE;
194 	d |= (bin2bcd(tm->tm_mon) << STM32_RTC_MONTH_SHIFT) & STM32_RTC_MONTH;
195 	d |= (bin2bcd(tm->tm_year - 2000) << STM32_RTC_YEAR_SHIFT) &
196 	      STM32_RTC_YEAR;
197 	d |= (bin2bcd(tm->tm_wday) << STM32_RTC_WDAY_SHIFT) & STM32_RTC_WDAY;
198 
199 	return stm32_rtc_set_time(dev, t, d);
200 }
201 
stm32_rtc_reset(struct udevice * dev)202 static int stm32_rtc_reset(struct udevice *dev)
203 {
204 	dev_dbg(dev, "Reset DATE\n");
205 
206 	return stm32_rtc_set_time(dev, 0, 0);
207 }
208 
stm32_rtc_init(struct udevice * dev)209 static int stm32_rtc_init(struct udevice *dev)
210 {
211 	struct stm32_rtc_priv *priv = dev_get_priv(dev);
212 	unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr;
213 	unsigned int rate;
214 	struct clk clk;
215 	int ret;
216 	u32 isr = readl(priv->base + STM32_RTC_ISR);
217 
218 	if (isr & STM32_RTC_ISR_INITS)
219 		return  0;
220 
221 	ret = clk_get_by_index(dev, 1, &clk);
222 	if (ret)
223 		return ret;
224 
225 	ret = clk_enable(&clk);
226 	if (ret) {
227 		clk_free(&clk);
228 		return ret;
229 	}
230 
231 	rate = clk_get_rate(&clk);
232 
233 	/* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */
234 	pred_a_max = STM32_RTC_PRER_PRED_A >> STM32_RTC_PRER_PRED_A_SHIFT;
235 	pred_s_max = STM32_RTC_PRER_PRED_S >> STM32_RTC_PRER_PRED_S_SHIFT;
236 
237 	for (pred_a = pred_a_max; pred_a + 1 > 0; pred_a--) {
238 		pred_s = (rate / (pred_a + 1)) - 1;
239 
240 		if (((pred_s + 1) * (pred_a + 1)) == rate)
241 			break;
242 	}
243 
244 	/*
245 	 * Can't find a 1Hz, so give priority to RTC power consumption
246 	 * by choosing the higher possible value for prediv_a
247 	 */
248 	if (pred_s > pred_s_max || pred_a > pred_a_max) {
249 		pred_a = pred_a_max;
250 		pred_s = (rate / (pred_a + 1)) - 1;
251 	}
252 
253 	stm32_rtc_unlock(dev);
254 
255 	ret = stm32_rtc_enter_init_mode(dev);
256 	if (ret) {
257 		dev_err(dev,
258 			"Can't enter in init mode. Prescaler config failed.\n");
259 		goto unlock;
260 	}
261 
262 	prer = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) & STM32_RTC_PRER_PRED_S;
263 	prer |= (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) & STM32_RTC_PRER_PRED_A;
264 	writel(prer, priv->base + STM32_RTC_PRER);
265 
266 	/* Force 24h time format */
267 	cr = readl(priv->base + STM32_RTC_CR);
268 	cr &= ~STM32_RTC_CR_FMT;
269 	writel(cr, priv->base + STM32_RTC_CR);
270 
271 	stm32_rtc_exit_init_mode(dev);
272 
273 	ret = stm32_rtc_wait_sync(dev);
274 
275 unlock:
276 	stm32_rtc_lock(dev);
277 
278 	if (ret) {
279 		clk_disable(&clk);
280 		clk_free(&clk);
281 	}
282 
283 	return ret;
284 }
285 
stm32_rtc_probe(struct udevice * dev)286 static int stm32_rtc_probe(struct udevice *dev)
287 {
288 	struct stm32_rtc_priv *priv = dev_get_priv(dev);
289 	struct clk clk;
290 	int ret;
291 
292 	priv->base = dev_read_addr(dev);
293 	if (priv->base == FDT_ADDR_T_NONE)
294 		return -EINVAL;
295 
296 	ret = clk_get_by_index(dev, 0, &clk);
297 	if (ret)
298 		return ret;
299 
300 	ret = clk_enable(&clk);
301 	if (ret) {
302 		clk_free(&clk);
303 		return ret;
304 	}
305 
306 	ret = stm32_rtc_init(dev);
307 
308 	if (ret) {
309 		clk_disable(&clk);
310 		clk_free(&clk);
311 	}
312 
313 	return ret;
314 }
315 
316 static const struct rtc_ops stm32_rtc_ops = {
317 	.get = stm32_rtc_get,
318 	.set = stm32_rtc_set,
319 	.reset = stm32_rtc_reset,
320 };
321 
322 static const struct udevice_id stm32_rtc_ids[] = {
323 	{ .compatible = "st,stm32mp1-rtc" },
324 	{ }
325 };
326 
327 U_BOOT_DRIVER(rtc_stm32) = {
328 	.name	= "rtc-stm32",
329 	.id	= UCLASS_RTC,
330 	.probe	= stm32_rtc_probe,
331 	.of_match = stm32_rtc_ids,
332 	.ops	= &stm32_rtc_ops,
333 	.priv_auto	= sizeof(struct stm32_rtc_priv),
334 };
335