1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright (c) 2015, Sony Mobile Communications AB.
4  * Copyright (c) 2012-2013, The Linux Foundation. All rights reserved.
5  * Copyright (c) 2018, Ramon Fried <ramon.fried@gmail.com>
6  */
7 
8 #include <common.h>
9 #include <errno.h>
10 #include <dm.h>
11 #include <asm/global_data.h>
12 #include <dm/device_compat.h>
13 #include <dm/devres.h>
14 #include <dm/of_access.h>
15 #include <dm/of_addr.h>
16 #include <asm/io.h>
17 #include <linux/bug.h>
18 #include <linux/err.h>
19 #include <linux/ioport.h>
20 #include <linux/io.h>
21 #include <smem.h>
22 
23 DECLARE_GLOBAL_DATA_PTR;
24 
25 /*
26  * The Qualcomm shared memory system is an allocate-only heap structure that
27  * consists of one of more memory areas that can be accessed by the processors
28  * in the SoC.
29  *
30  * All systems contains a global heap, accessible by all processors in the SoC,
31  * with a table of contents data structure (@smem_header) at the beginning of
32  * the main shared memory block.
33  *
34  * The global header contains meta data for allocations as well as a fixed list
35  * of 512 entries (@smem_global_entry) that can be initialized to reference
36  * parts of the shared memory space.
37  *
38  *
39  * In addition to this global heap, a set of "private" heaps can be set up at
40  * boot time with access restrictions so that only certain processor pairs can
41  * access the data.
42  *
43  * These partitions are referenced from an optional partition table
44  * (@smem_ptable), that is found 4kB from the end of the main smem region. The
45  * partition table entries (@smem_ptable_entry) lists the involved processors
46  * (or hosts) and their location in the main shared memory region.
47  *
48  * Each partition starts with a header (@smem_partition_header) that identifies
49  * the partition and holds properties for the two internal memory regions. The
50  * two regions are cached and non-cached memory respectively. Each region
51  * contain a link list of allocation headers (@smem_private_entry) followed by
52  * their data.
53  *
54  * Items in the non-cached region are allocated from the start of the partition
55  * while items in the cached region are allocated from the end. The free area
56  * is hence the region between the cached and non-cached offsets. The header of
57  * cached items comes after the data.
58  *
59  * Version 12 (SMEM_GLOBAL_PART_VERSION) changes the item alloc/get procedure
60  * for the global heap. A new global partition is created from the global heap
61  * region with partition type (SMEM_GLOBAL_HOST) and the max smem item count is
62  * set by the bootloader.
63  *
64  */
65 
66 /*
67  * The version member of the smem header contains an array of versions for the
68  * various software components in the SoC. We verify that the boot loader
69  * version is a valid version as a sanity check.
70  */
71 #define SMEM_MASTER_SBL_VERSION_INDEX	7
72 #define SMEM_GLOBAL_HEAP_VERSION	11
73 #define SMEM_GLOBAL_PART_VERSION	12
74 
75 /*
76  * The first 8 items are only to be allocated by the boot loader while
77  * initializing the heap.
78  */
79 #define SMEM_ITEM_LAST_FIXED	8
80 
81 /* Highest accepted item number, for both global and private heaps */
82 #define SMEM_ITEM_COUNT		512
83 
84 /* Processor/host identifier for the application processor */
85 #define SMEM_HOST_APPS		0
86 
87 /* Processor/host identifier for the global partition */
88 #define SMEM_GLOBAL_HOST	0xfffe
89 
90 /* Max number of processors/hosts in a system */
91 #define SMEM_HOST_COUNT		10
92 
93 /**
94  * struct smem_proc_comm - proc_comm communication struct (legacy)
95  * @command:	current command to be executed
96  * @status:	status of the currently requested command
97  * @params:	parameters to the command
98  */
99 struct smem_proc_comm {
100 	__le32 command;
101 	__le32 status;
102 	__le32 params[2];
103 };
104 
105 /**
106  * struct smem_global_entry - entry to reference smem items on the heap
107  * @allocated:	boolean to indicate if this entry is used
108  * @offset:	offset to the allocated space
109  * @size:	size of the allocated space, 8 byte aligned
110  * @aux_base:	base address for the memory region used by this unit, or 0 for
111  *		the default region. bits 0,1 are reserved
112  */
113 struct smem_global_entry {
114 	__le32 allocated;
115 	__le32 offset;
116 	__le32 size;
117 	__le32 aux_base; /* bits 1:0 reserved */
118 };
119 #define AUX_BASE_MASK		0xfffffffc
120 
121 /**
122  * struct smem_header - header found in beginning of primary smem region
123  * @proc_comm:		proc_comm communication interface (legacy)
124  * @version:		array of versions for the various subsystems
125  * @initialized:	boolean to indicate that smem is initialized
126  * @free_offset:	index of the first unallocated byte in smem
127  * @available:		number of bytes available for allocation
128  * @reserved:		reserved field, must be 0
129  * toc:			array of references to items
130  */
131 struct smem_header {
132 	struct smem_proc_comm proc_comm[4];
133 	__le32 version[32];
134 	__le32 initialized;
135 	__le32 free_offset;
136 	__le32 available;
137 	__le32 reserved;
138 	struct smem_global_entry toc[SMEM_ITEM_COUNT];
139 };
140 
141 /**
142  * struct smem_ptable_entry - one entry in the @smem_ptable list
143  * @offset:	offset, within the main shared memory region, of the partition
144  * @size:	size of the partition
145  * @flags:	flags for the partition (currently unused)
146  * @host0:	first processor/host with access to this partition
147  * @host1:	second processor/host with access to this partition
148  * @cacheline:	alignment for "cached" entries
149  * @reserved:	reserved entries for later use
150  */
151 struct smem_ptable_entry {
152 	__le32 offset;
153 	__le32 size;
154 	__le32 flags;
155 	__le16 host0;
156 	__le16 host1;
157 	__le32 cacheline;
158 	__le32 reserved[7];
159 };
160 
161 /**
162  * struct smem_ptable - partition table for the private partitions
163  * @magic:	magic number, must be SMEM_PTABLE_MAGIC
164  * @version:	version of the partition table
165  * @num_entries: number of partitions in the table
166  * @reserved:	for now reserved entries
167  * @entry:	list of @smem_ptable_entry for the @num_entries partitions
168  */
169 struct smem_ptable {
170 	u8 magic[4];
171 	__le32 version;
172 	__le32 num_entries;
173 	__le32 reserved[5];
174 	struct smem_ptable_entry entry[];
175 };
176 
177 static const u8 SMEM_PTABLE_MAGIC[] = { 0x24, 0x54, 0x4f, 0x43 }; /* "$TOC" */
178 
179 /**
180  * struct smem_partition_header - header of the partitions
181  * @magic:	magic number, must be SMEM_PART_MAGIC
182  * @host0:	first processor/host with access to this partition
183  * @host1:	second processor/host with access to this partition
184  * @size:	size of the partition
185  * @offset_free_uncached: offset to the first free byte of uncached memory in
186  *		this partition
187  * @offset_free_cached: offset to the first free byte of cached memory in this
188  *		partition
189  * @reserved:	for now reserved entries
190  */
191 struct smem_partition_header {
192 	u8 magic[4];
193 	__le16 host0;
194 	__le16 host1;
195 	__le32 size;
196 	__le32 offset_free_uncached;
197 	__le32 offset_free_cached;
198 	__le32 reserved[3];
199 };
200 
201 static const u8 SMEM_PART_MAGIC[] = { 0x24, 0x50, 0x52, 0x54 };
202 
203 /**
204  * struct smem_private_entry - header of each item in the private partition
205  * @canary:	magic number, must be SMEM_PRIVATE_CANARY
206  * @item:	identifying number of the smem item
207  * @size:	size of the data, including padding bytes
208  * @padding_data: number of bytes of padding of data
209  * @padding_hdr: number of bytes of padding between the header and the data
210  * @reserved:	for now reserved entry
211  */
212 struct smem_private_entry {
213 	u16 canary; /* bytes are the same so no swapping needed */
214 	__le16 item;
215 	__le32 size; /* includes padding bytes */
216 	__le16 padding_data;
217 	__le16 padding_hdr;
218 	__le32 reserved;
219 };
220 #define SMEM_PRIVATE_CANARY	0xa5a5
221 
222 /**
223  * struct smem_info - smem region info located after the table of contents
224  * @magic:	magic number, must be SMEM_INFO_MAGIC
225  * @size:	size of the smem region
226  * @base_addr:	base address of the smem region
227  * @reserved:	for now reserved entry
228  * @num_items:	highest accepted item number
229  */
230 struct smem_info {
231 	u8 magic[4];
232 	__le32 size;
233 	__le32 base_addr;
234 	__le32 reserved;
235 	__le16 num_items;
236 };
237 
238 static const u8 SMEM_INFO_MAGIC[] = { 0x53, 0x49, 0x49, 0x49 }; /* SIII */
239 
240 /**
241  * struct smem_region - representation of a chunk of memory used for smem
242  * @aux_base:	identifier of aux_mem base
243  * @virt_base:	virtual base address of memory with this aux_mem identifier
244  * @size:	size of the memory region
245  */
246 struct smem_region {
247 	u32 aux_base;
248 	void __iomem *virt_base;
249 	size_t size;
250 };
251 
252 /**
253  * struct qcom_smem - device data for the smem device
254  * @dev:	device pointer
255  * @global_partition:	pointer to global partition when in use
256  * @global_cacheline:	cacheline size for global partition
257  * @partitions:	list of pointers to partitions affecting the current
258  *		processor/host
259  * @cacheline:	list of cacheline sizes for each host
260  * @item_count: max accepted item number
261  * @num_regions: number of @regions
262  * @regions:	list of the memory regions defining the shared memory
263  */
264 struct qcom_smem {
265 	struct udevice *dev;
266 
267 	struct smem_partition_header *global_partition;
268 	size_t global_cacheline;
269 	struct smem_partition_header *partitions[SMEM_HOST_COUNT];
270 	size_t cacheline[SMEM_HOST_COUNT];
271 	u32 item_count;
272 
273 	unsigned int num_regions;
274 	struct smem_region regions[0];
275 };
276 
277 static struct smem_private_entry *
phdr_to_last_uncached_entry(struct smem_partition_header * phdr)278 phdr_to_last_uncached_entry(struct smem_partition_header *phdr)
279 {
280 	void *p = phdr;
281 
282 	return p + le32_to_cpu(phdr->offset_free_uncached);
283 }
284 
phdr_to_first_cached_entry(struct smem_partition_header * phdr,size_t cacheline)285 static void *phdr_to_first_cached_entry(struct smem_partition_header *phdr,
286 					size_t cacheline)
287 {
288 	void *p = phdr;
289 
290 	return p + le32_to_cpu(phdr->size) - ALIGN(sizeof(*phdr), cacheline);
291 }
292 
phdr_to_last_cached_entry(struct smem_partition_header * phdr)293 static void *phdr_to_last_cached_entry(struct smem_partition_header *phdr)
294 {
295 	void *p = phdr;
296 
297 	return p + le32_to_cpu(phdr->offset_free_cached);
298 }
299 
300 static struct smem_private_entry *
phdr_to_first_uncached_entry(struct smem_partition_header * phdr)301 phdr_to_first_uncached_entry(struct smem_partition_header *phdr)
302 {
303 	void *p = phdr;
304 
305 	return p + sizeof(*phdr);
306 }
307 
308 static struct smem_private_entry *
uncached_entry_next(struct smem_private_entry * e)309 uncached_entry_next(struct smem_private_entry *e)
310 {
311 	void *p = e;
312 
313 	return p + sizeof(*e) + le16_to_cpu(e->padding_hdr) +
314 	       le32_to_cpu(e->size);
315 }
316 
317 static struct smem_private_entry *
cached_entry_next(struct smem_private_entry * e,size_t cacheline)318 cached_entry_next(struct smem_private_entry *e, size_t cacheline)
319 {
320 	void *p = e;
321 
322 	return p - le32_to_cpu(e->size) - ALIGN(sizeof(*e), cacheline);
323 }
324 
uncached_entry_to_item(struct smem_private_entry * e)325 static void *uncached_entry_to_item(struct smem_private_entry *e)
326 {
327 	void *p = e;
328 
329 	return p + sizeof(*e) + le16_to_cpu(e->padding_hdr);
330 }
331 
cached_entry_to_item(struct smem_private_entry * e)332 static void *cached_entry_to_item(struct smem_private_entry *e)
333 {
334 	void *p = e;
335 
336 	return p - le32_to_cpu(e->size);
337 }
338 
339 /* Pointer to the one and only smem handle */
340 static struct qcom_smem *__smem;
341 
qcom_smem_alloc_private(struct qcom_smem * smem,struct smem_partition_header * phdr,unsigned int item,size_t size)342 static int qcom_smem_alloc_private(struct qcom_smem *smem,
343 				   struct smem_partition_header *phdr,
344 				   unsigned int item,
345 				   size_t size)
346 {
347 	struct smem_private_entry *hdr, *end;
348 	size_t alloc_size;
349 	void *cached;
350 
351 	hdr = phdr_to_first_uncached_entry(phdr);
352 	end = phdr_to_last_uncached_entry(phdr);
353 	cached = phdr_to_last_cached_entry(phdr);
354 
355 	while (hdr < end) {
356 		if (hdr->canary != SMEM_PRIVATE_CANARY) {
357 			dev_err(smem->dev,
358 				"Found invalid canary in hosts %d:%d partition\n",
359 				phdr->host0, phdr->host1);
360 			return -EINVAL;
361 		}
362 
363 		if (le16_to_cpu(hdr->item) == item)
364 			return -EEXIST;
365 
366 		hdr = uncached_entry_next(hdr);
367 	}
368 
369 	/* Check that we don't grow into the cached region */
370 	alloc_size = sizeof(*hdr) + ALIGN(size, 8);
371 	if ((void *)hdr + alloc_size >= cached) {
372 		dev_err(smem->dev, "Out of memory\n");
373 		return -ENOSPC;
374 	}
375 
376 	hdr->canary = SMEM_PRIVATE_CANARY;
377 	hdr->item = cpu_to_le16(item);
378 	hdr->size = cpu_to_le32(ALIGN(size, 8));
379 	hdr->padding_data = cpu_to_le16(le32_to_cpu(hdr->size) - size);
380 	hdr->padding_hdr = 0;
381 
382 	/*
383 	 * Ensure the header is written before we advance the free offset, so
384 	 * that remote processors that does not take the remote spinlock still
385 	 * gets a consistent view of the linked list.
386 	 */
387 	dmb();
388 	le32_add_cpu(&phdr->offset_free_uncached, alloc_size);
389 
390 	return 0;
391 }
392 
qcom_smem_alloc_global(struct qcom_smem * smem,unsigned int item,size_t size)393 static int qcom_smem_alloc_global(struct qcom_smem *smem,
394 				  unsigned int item,
395 				  size_t size)
396 {
397 	struct smem_global_entry *entry;
398 	struct smem_header *header;
399 
400 	header = smem->regions[0].virt_base;
401 	entry = &header->toc[item];
402 	if (entry->allocated)
403 		return -EEXIST;
404 
405 	size = ALIGN(size, 8);
406 	if (WARN_ON(size > le32_to_cpu(header->available)))
407 		return -ENOMEM;
408 
409 	entry->offset = header->free_offset;
410 	entry->size = cpu_to_le32(size);
411 
412 	/*
413 	 * Ensure the header is consistent before we mark the item allocated,
414 	 * so that remote processors will get a consistent view of the item
415 	 * even though they do not take the spinlock on read.
416 	 */
417 	dmb();
418 	entry->allocated = cpu_to_le32(1);
419 
420 	le32_add_cpu(&header->free_offset, size);
421 	le32_add_cpu(&header->available, -size);
422 
423 	return 0;
424 }
425 
426 /**
427  * qcom_smem_alloc() - allocate space for a smem item
428  * @host:	remote processor id, or -1
429  * @item:	smem item handle
430  * @size:	number of bytes to be allocated
431  *
432  * Allocate space for a given smem item of size @size, given that the item is
433  * not yet allocated.
434  */
qcom_smem_alloc(unsigned int host,unsigned int item,size_t size)435 static int qcom_smem_alloc(unsigned int host, unsigned int item, size_t size)
436 {
437 	struct smem_partition_header *phdr;
438 	int ret;
439 
440 	if (!__smem)
441 		return -ENOMEM;
442 
443 	if (item < SMEM_ITEM_LAST_FIXED) {
444 		dev_err(__smem->dev,
445 			"Rejecting allocation of static entry %d\n", item);
446 		return -EINVAL;
447 	}
448 
449 	if (WARN_ON(item >= __smem->item_count))
450 		return -EINVAL;
451 
452 	if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
453 		phdr = __smem->partitions[host];
454 		ret = qcom_smem_alloc_private(__smem, phdr, item, size);
455 	} else if (__smem->global_partition) {
456 		phdr = __smem->global_partition;
457 		ret = qcom_smem_alloc_private(__smem, phdr, item, size);
458 	} else {
459 		ret = qcom_smem_alloc_global(__smem, item, size);
460 	}
461 
462 	return ret;
463 }
464 
qcom_smem_get_global(struct qcom_smem * smem,unsigned int item,size_t * size)465 static void *qcom_smem_get_global(struct qcom_smem *smem,
466 				  unsigned int item,
467 				  size_t *size)
468 {
469 	struct smem_header *header;
470 	struct smem_region *area;
471 	struct smem_global_entry *entry;
472 	u32 aux_base;
473 	unsigned int i;
474 
475 	header = smem->regions[0].virt_base;
476 	entry = &header->toc[item];
477 	if (!entry->allocated)
478 		return ERR_PTR(-ENXIO);
479 
480 	aux_base = le32_to_cpu(entry->aux_base) & AUX_BASE_MASK;
481 
482 	for (i = 0; i < smem->num_regions; i++) {
483 		area = &smem->regions[i];
484 
485 		if (area->aux_base == aux_base || !aux_base) {
486 			if (size != NULL)
487 				*size = le32_to_cpu(entry->size);
488 			return area->virt_base + le32_to_cpu(entry->offset);
489 		}
490 	}
491 
492 	return ERR_PTR(-ENOENT);
493 }
494 
qcom_smem_get_private(struct qcom_smem * smem,struct smem_partition_header * phdr,size_t cacheline,unsigned int item,size_t * size)495 static void *qcom_smem_get_private(struct qcom_smem *smem,
496 				   struct smem_partition_header *phdr,
497 				   size_t cacheline,
498 				   unsigned int item,
499 				   size_t *size)
500 {
501 	struct smem_private_entry *e, *end;
502 
503 	e = phdr_to_first_uncached_entry(phdr);
504 	end = phdr_to_last_uncached_entry(phdr);
505 
506 	while (e < end) {
507 		if (e->canary != SMEM_PRIVATE_CANARY)
508 			goto invalid_canary;
509 
510 		if (le16_to_cpu(e->item) == item) {
511 			if (size != NULL)
512 				*size = le32_to_cpu(e->size) -
513 					le16_to_cpu(e->padding_data);
514 
515 			return uncached_entry_to_item(e);
516 		}
517 
518 		e = uncached_entry_next(e);
519 	}
520 
521 	/* Item was not found in the uncached list, search the cached list */
522 
523 	e = phdr_to_first_cached_entry(phdr, cacheline);
524 	end = phdr_to_last_cached_entry(phdr);
525 
526 	while (e > end) {
527 		if (e->canary != SMEM_PRIVATE_CANARY)
528 			goto invalid_canary;
529 
530 		if (le16_to_cpu(e->item) == item) {
531 			if (size != NULL)
532 				*size = le32_to_cpu(e->size) -
533 					le16_to_cpu(e->padding_data);
534 
535 			return cached_entry_to_item(e);
536 		}
537 
538 		e = cached_entry_next(e, cacheline);
539 	}
540 
541 	return ERR_PTR(-ENOENT);
542 
543 invalid_canary:
544 	dev_err(smem->dev, "Found invalid canary in hosts %d:%d partition\n",
545 			phdr->host0, phdr->host1);
546 
547 	return ERR_PTR(-EINVAL);
548 }
549 
550 /**
551  * qcom_smem_get() - resolve ptr of size of a smem item
552  * @host:	the remote processor, or -1
553  * @item:	smem item handle
554  * @size:	pointer to be filled out with size of the item
555  *
556  * Looks up smem item and returns pointer to it. Size of smem
557  * item is returned in @size.
558  */
qcom_smem_get(unsigned int host,unsigned int item,size_t * size)559 static void *qcom_smem_get(unsigned int host, unsigned int item, size_t *size)
560 {
561 	struct smem_partition_header *phdr;
562 	size_t cacheln;
563 	void *ptr = ERR_PTR(-ENOMEM);
564 
565 	if (!__smem)
566 		return ptr;
567 
568 	if (WARN_ON(item >= __smem->item_count))
569 		return ERR_PTR(-EINVAL);
570 
571 	if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
572 		phdr = __smem->partitions[host];
573 		cacheln = __smem->cacheline[host];
574 		ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
575 	} else if (__smem->global_partition) {
576 		phdr = __smem->global_partition;
577 		cacheln = __smem->global_cacheline;
578 		ptr = qcom_smem_get_private(__smem, phdr, cacheln, item, size);
579 	} else {
580 		ptr = qcom_smem_get_global(__smem, item, size);
581 	}
582 
583 	return ptr;
584 
585 }
586 
587 /**
588  * qcom_smem_get_free_space() - retrieve amount of free space in a partition
589  * @host:	the remote processor identifying a partition, or -1
590  *
591  * To be used by smem clients as a quick way to determine if any new
592  * allocations has been made.
593  */
qcom_smem_get_free_space(unsigned int host)594 static int qcom_smem_get_free_space(unsigned int host)
595 {
596 	struct smem_partition_header *phdr;
597 	struct smem_header *header;
598 	unsigned int ret;
599 
600 	if (!__smem)
601 		return -ENOMEM;
602 
603 	if (host < SMEM_HOST_COUNT && __smem->partitions[host]) {
604 		phdr = __smem->partitions[host];
605 		ret = le32_to_cpu(phdr->offset_free_cached) -
606 		      le32_to_cpu(phdr->offset_free_uncached);
607 	} else if (__smem->global_partition) {
608 		phdr = __smem->global_partition;
609 		ret = le32_to_cpu(phdr->offset_free_cached) -
610 		      le32_to_cpu(phdr->offset_free_uncached);
611 	} else {
612 		header = __smem->regions[0].virt_base;
613 		ret = le32_to_cpu(header->available);
614 	}
615 
616 	return ret;
617 }
618 
qcom_smem_get_sbl_version(struct qcom_smem * smem)619 static int qcom_smem_get_sbl_version(struct qcom_smem *smem)
620 {
621 	struct smem_header *header;
622 	__le32 *versions;
623 
624 	header = smem->regions[0].virt_base;
625 	versions = header->version;
626 
627 	return le32_to_cpu(versions[SMEM_MASTER_SBL_VERSION_INDEX]);
628 }
629 
qcom_smem_get_ptable(struct qcom_smem * smem)630 static struct smem_ptable *qcom_smem_get_ptable(struct qcom_smem *smem)
631 {
632 	struct smem_ptable *ptable;
633 	u32 version;
634 
635 	ptable = smem->regions[0].virt_base + smem->regions[0].size - SZ_4K;
636 	if (memcmp(ptable->magic, SMEM_PTABLE_MAGIC, sizeof(ptable->magic)))
637 		return ERR_PTR(-ENOENT);
638 
639 	version = le32_to_cpu(ptable->version);
640 	if (version != 1) {
641 		dev_err(smem->dev,
642 			"Unsupported partition header version %d\n", version);
643 		return ERR_PTR(-EINVAL);
644 	}
645 	return ptable;
646 }
647 
qcom_smem_get_item_count(struct qcom_smem * smem)648 static u32 qcom_smem_get_item_count(struct qcom_smem *smem)
649 {
650 	struct smem_ptable *ptable;
651 	struct smem_info *info;
652 
653 	ptable = qcom_smem_get_ptable(smem);
654 	if (IS_ERR_OR_NULL(ptable))
655 		return SMEM_ITEM_COUNT;
656 
657 	info = (struct smem_info *)&ptable->entry[ptable->num_entries];
658 	if (memcmp(info->magic, SMEM_INFO_MAGIC, sizeof(info->magic)))
659 		return SMEM_ITEM_COUNT;
660 
661 	return le16_to_cpu(info->num_items);
662 }
663 
qcom_smem_set_global_partition(struct qcom_smem * smem)664 static int qcom_smem_set_global_partition(struct qcom_smem *smem)
665 {
666 	struct smem_partition_header *header;
667 	struct smem_ptable_entry *entry = NULL;
668 	struct smem_ptable *ptable;
669 	u32 host0, host1, size;
670 	int i;
671 
672 	ptable = qcom_smem_get_ptable(smem);
673 	if (IS_ERR(ptable))
674 		return PTR_ERR(ptable);
675 
676 	for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
677 		entry = &ptable->entry[i];
678 		host0 = le16_to_cpu(entry->host0);
679 		host1 = le16_to_cpu(entry->host1);
680 
681 		if (host0 == SMEM_GLOBAL_HOST && host0 == host1)
682 			break;
683 	}
684 
685 	if (!entry) {
686 		dev_err(smem->dev, "Missing entry for global partition\n");
687 		return -EINVAL;
688 	}
689 
690 	if (!le32_to_cpu(entry->offset) || !le32_to_cpu(entry->size)) {
691 		dev_err(smem->dev, "Invalid entry for global partition\n");
692 		return -EINVAL;
693 	}
694 
695 	if (smem->global_partition) {
696 		dev_err(smem->dev, "Already found the global partition\n");
697 		return -EINVAL;
698 	}
699 
700 	header = smem->regions[0].virt_base + le32_to_cpu(entry->offset);
701 	host0 = le16_to_cpu(header->host0);
702 	host1 = le16_to_cpu(header->host1);
703 
704 	if (memcmp(header->magic, SMEM_PART_MAGIC, sizeof(header->magic))) {
705 		dev_err(smem->dev, "Global partition has invalid magic\n");
706 		return -EINVAL;
707 	}
708 
709 	if (host0 != SMEM_GLOBAL_HOST && host1 != SMEM_GLOBAL_HOST) {
710 		dev_err(smem->dev, "Global partition hosts are invalid\n");
711 		return -EINVAL;
712 	}
713 
714 	if (le32_to_cpu(header->size) != le32_to_cpu(entry->size)) {
715 		dev_err(smem->dev, "Global partition has invalid size\n");
716 		return -EINVAL;
717 	}
718 
719 	size = le32_to_cpu(header->offset_free_uncached);
720 	if (size > le32_to_cpu(header->size)) {
721 		dev_err(smem->dev,
722 			"Global partition has invalid free pointer\n");
723 		return -EINVAL;
724 	}
725 
726 	smem->global_partition = header;
727 	smem->global_cacheline = le32_to_cpu(entry->cacheline);
728 
729 	return 0;
730 }
731 
qcom_smem_enumerate_partitions(struct qcom_smem * smem,unsigned int local_host)732 static int qcom_smem_enumerate_partitions(struct qcom_smem *smem,
733 					  unsigned int local_host)
734 {
735 	struct smem_partition_header *header;
736 	struct smem_ptable_entry *entry;
737 	struct smem_ptable *ptable;
738 	unsigned int remote_host;
739 	u32 host0, host1;
740 	int i;
741 
742 	ptable = qcom_smem_get_ptable(smem);
743 	if (IS_ERR(ptable))
744 		return PTR_ERR(ptable);
745 
746 	for (i = 0; i < le32_to_cpu(ptable->num_entries); i++) {
747 		entry = &ptable->entry[i];
748 		host0 = le16_to_cpu(entry->host0);
749 		host1 = le16_to_cpu(entry->host1);
750 
751 		if (host0 != local_host && host1 != local_host)
752 			continue;
753 
754 		if (!le32_to_cpu(entry->offset))
755 			continue;
756 
757 		if (!le32_to_cpu(entry->size))
758 			continue;
759 
760 		if (host0 == local_host)
761 			remote_host = host1;
762 		else
763 			remote_host = host0;
764 
765 		if (remote_host >= SMEM_HOST_COUNT) {
766 			dev_err(smem->dev,
767 				"Invalid remote host %d\n",
768 				remote_host);
769 			return -EINVAL;
770 		}
771 
772 		if (smem->partitions[remote_host]) {
773 			dev_err(smem->dev,
774 				"Already found a partition for host %d\n",
775 				remote_host);
776 			return -EINVAL;
777 		}
778 
779 		header = smem->regions[0].virt_base + le32_to_cpu(entry->offset);
780 		host0 = le16_to_cpu(header->host0);
781 		host1 = le16_to_cpu(header->host1);
782 
783 		if (memcmp(header->magic, SMEM_PART_MAGIC,
784 			    sizeof(header->magic))) {
785 			dev_err(smem->dev,
786 				"Partition %d has invalid magic\n", i);
787 			return -EINVAL;
788 		}
789 
790 		if (host0 != local_host && host1 != local_host) {
791 			dev_err(smem->dev,
792 				"Partition %d hosts are invalid\n", i);
793 			return -EINVAL;
794 		}
795 
796 		if (host0 != remote_host && host1 != remote_host) {
797 			dev_err(smem->dev,
798 				"Partition %d hosts are invalid\n", i);
799 			return -EINVAL;
800 		}
801 
802 		if (le32_to_cpu(header->size) != le32_to_cpu(entry->size)) {
803 			dev_err(smem->dev,
804 				"Partition %d has invalid size\n", i);
805 			return -EINVAL;
806 		}
807 
808 		if (le32_to_cpu(header->offset_free_uncached) > le32_to_cpu(header->size)) {
809 			dev_err(smem->dev,
810 				"Partition %d has invalid free pointer\n", i);
811 			return -EINVAL;
812 		}
813 
814 		smem->partitions[remote_host] = header;
815 		smem->cacheline[remote_host] = le32_to_cpu(entry->cacheline);
816 	}
817 
818 	return 0;
819 }
820 
qcom_smem_map_memory(struct qcom_smem * smem,struct udevice * dev,const char * name,int i)821 static int qcom_smem_map_memory(struct qcom_smem *smem, struct udevice *dev,
822 				const char *name, int i)
823 {
824 	struct fdt_resource r;
825 	int ret;
826 	int node = dev_of_offset(dev);
827 
828 	ret = fdtdec_lookup_phandle(gd->fdt_blob, node, name);
829 	if (ret < 0) {
830 		dev_err(dev, "No %s specified\n", name);
831 		return -EINVAL;
832 	}
833 
834 	ret = fdt_get_resource(gd->fdt_blob, ret, "reg", 0, &r);
835 	if (ret)
836 		return ret;
837 
838 	smem->regions[i].aux_base = (u32)r.start;
839 	smem->regions[i].size = fdt_resource_size(&r);
840 	smem->regions[i].virt_base = devm_ioremap(dev, r.start, fdt_resource_size(&r));
841 	if (!smem->regions[i].virt_base)
842 		return -ENOMEM;
843 
844 	return 0;
845 }
846 
qcom_smem_probe(struct udevice * dev)847 static int qcom_smem_probe(struct udevice *dev)
848 {
849 	struct smem_header *header;
850 	struct qcom_smem *smem;
851 	size_t array_size;
852 	int num_regions;
853 	u32 version;
854 	int ret;
855 	int node = dev_of_offset(dev);
856 
857 	num_regions = 1;
858 	if (fdtdec_lookup_phandle(gd->fdt_blob, node, "qcomrpm-msg-ram") >= 0)
859 		num_regions++;
860 
861 	array_size = num_regions * sizeof(struct smem_region);
862 	smem = devm_kzalloc(dev, sizeof(*smem) + array_size, GFP_KERNEL);
863 	if (!smem)
864 		return -ENOMEM;
865 
866 	smem->dev = dev;
867 	smem->num_regions = num_regions;
868 
869 	ret = qcom_smem_map_memory(smem, dev, "memory-region", 0);
870 	if (ret)
871 		return ret;
872 
873 	if (num_regions > 1) {
874 		ret = qcom_smem_map_memory(smem, dev,
875 					"qcom,rpm-msg-ram", 1);
876 		if (ret)
877 			return ret;
878 	}
879 
880 	header = smem->regions[0].virt_base;
881 	if (le32_to_cpu(header->initialized) != 1 ||
882 	    le32_to_cpu(header->reserved)) {
883 		dev_err(dev, "SMEM is not initialized by SBL\n");
884 		return -EINVAL;
885 	}
886 
887 	version = qcom_smem_get_sbl_version(smem);
888 	switch (version >> 16) {
889 	case SMEM_GLOBAL_PART_VERSION:
890 		ret = qcom_smem_set_global_partition(smem);
891 		if (ret < 0)
892 			return ret;
893 		smem->item_count = qcom_smem_get_item_count(smem);
894 		break;
895 	case SMEM_GLOBAL_HEAP_VERSION:
896 		smem->item_count = SMEM_ITEM_COUNT;
897 		break;
898 	default:
899 		dev_err(dev, "Unsupported SMEM version 0x%x\n", version);
900 		return -EINVAL;
901 	}
902 
903 	ret = qcom_smem_enumerate_partitions(smem, SMEM_HOST_APPS);
904 	if (ret < 0 && ret != -ENOENT)
905 		return ret;
906 
907 	__smem = smem;
908 
909 	return 0;
910 }
911 
qcom_smem_remove(struct udevice * dev)912 static int qcom_smem_remove(struct udevice *dev)
913 {
914 	__smem = NULL;
915 
916 	return 0;
917 }
918 
919 const struct udevice_id qcom_smem_of_match[] = {
920 	{ .compatible = "qcom,smem" },
921 	{ }
922 };
923 
924 static const struct smem_ops msm_smem_ops = {
925 	.alloc = qcom_smem_alloc,
926 	.get = qcom_smem_get,
927 	.get_free_space = qcom_smem_get_free_space,
928 };
929 
930 U_BOOT_DRIVER(qcom_smem) = {
931 	.name	= "qcom_smem",
932 	.id	= UCLASS_SMEM,
933 	.of_match = qcom_smem_of_match,
934 	.ops = &msm_smem_ops,
935 	.probe = qcom_smem_probe,
936 	.remove = qcom_smem_remove,
937 };
938