1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2016-2018, The Linux Foundation. All rights reserved.
4 */
5
6 #define pr_fmt(fmt) "%s " fmt, KBUILD_MODNAME
7
8 #include <linux/atomic.h>
9 #include <linux/cpu_pm.h>
10 #include <linux/delay.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/iopoll.h>
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/of_irq.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/wait.h>
24
25 #include <soc/qcom/cmd-db.h>
26 #include <soc/qcom/tcs.h>
27 #include <dt-bindings/soc/qcom,rpmh-rsc.h>
28
29 #include "rpmh-internal.h"
30
31 #define CREATE_TRACE_POINTS
32 #include "trace-rpmh.h"
33
34 #define RSC_DRV_TCS_OFFSET 672
35 #define RSC_DRV_CMD_OFFSET 20
36
37 /* DRV HW Solver Configuration Information Register */
38 #define DRV_SOLVER_CONFIG 0x04
39 #define DRV_HW_SOLVER_MASK 1
40 #define DRV_HW_SOLVER_SHIFT 24
41
42 /* DRV TCS Configuration Information Register */
43 #define DRV_PRNT_CHLD_CONFIG 0x0C
44 #define DRV_NUM_TCS_MASK 0x3F
45 #define DRV_NUM_TCS_SHIFT 6
46 #define DRV_NCPT_MASK 0x1F
47 #define DRV_NCPT_SHIFT 27
48
49 /* Offsets for common TCS Registers, one bit per TCS */
50 #define RSC_DRV_IRQ_ENABLE 0x00
51 #define RSC_DRV_IRQ_STATUS 0x04
52 #define RSC_DRV_IRQ_CLEAR 0x08 /* w/o; write 1 to clear */
53
54 /*
55 * Offsets for per TCS Registers.
56 *
57 * TCSes start at 0x10 from tcs_base and are stored one after another.
58 * Multiply tcs_id by RSC_DRV_TCS_OFFSET to find a given TCS and add one
59 * of the below to find a register.
60 */
61 #define RSC_DRV_CMD_WAIT_FOR_CMPL 0x10 /* 1 bit per command */
62 #define RSC_DRV_CONTROL 0x14
63 #define RSC_DRV_STATUS 0x18 /* zero if tcs is busy */
64 #define RSC_DRV_CMD_ENABLE 0x1C /* 1 bit per command */
65
66 /*
67 * Offsets for per command in a TCS.
68 *
69 * Commands (up to 16) start at 0x30 in a TCS; multiply command index
70 * by RSC_DRV_CMD_OFFSET and add one of the below to find a register.
71 */
72 #define RSC_DRV_CMD_MSGID 0x30
73 #define RSC_DRV_CMD_ADDR 0x34
74 #define RSC_DRV_CMD_DATA 0x38
75 #define RSC_DRV_CMD_STATUS 0x3C
76 #define RSC_DRV_CMD_RESP_DATA 0x40
77
78 #define TCS_AMC_MODE_ENABLE BIT(16)
79 #define TCS_AMC_MODE_TRIGGER BIT(24)
80
81 /* TCS CMD register bit mask */
82 #define CMD_MSGID_LEN 8
83 #define CMD_MSGID_RESP_REQ BIT(8)
84 #define CMD_MSGID_WRITE BIT(16)
85 #define CMD_STATUS_ISSUED BIT(8)
86 #define CMD_STATUS_COMPL BIT(16)
87
88 /*
89 * Here's a high level overview of how all the registers in RPMH work
90 * together:
91 *
92 * - The main rpmh-rsc address is the base of a register space that can
93 * be used to find overall configuration of the hardware
94 * (DRV_PRNT_CHLD_CONFIG). Also found within the rpmh-rsc register
95 * space are all the TCS blocks. The offset of the TCS blocks is
96 * specified in the device tree by "qcom,tcs-offset" and used to
97 * compute tcs_base.
98 * - TCS blocks come one after another. Type, count, and order are
99 * specified by the device tree as "qcom,tcs-config".
100 * - Each TCS block has some registers, then space for up to 16 commands.
101 * Note that though address space is reserved for 16 commands, fewer
102 * might be present. See ncpt (num cmds per TCS).
103 *
104 * Here's a picture:
105 *
106 * +---------------------------------------------------+
107 * |RSC |
108 * | ctrl |
109 * | |
110 * | Drvs: |
111 * | +-----------------------------------------------+ |
112 * | |DRV0 | |
113 * | | ctrl/config | |
114 * | | IRQ | |
115 * | | | |
116 * | | TCSes: | |
117 * | | +------------------------------------------+ | |
118 * | | |TCS0 | | | | | | | | | | | | | | |
119 * | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | |
120 * | | | | | | | | | | | | | | | | | |
121 * | | +------------------------------------------+ | |
122 * | | +------------------------------------------+ | |
123 * | | |TCS1 | | | | | | | | | | | | | | |
124 * | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | |
125 * | | | | | | | | | | | | | | | | | |
126 * | | +------------------------------------------+ | |
127 * | | +------------------------------------------+ | |
128 * | | |TCS2 | | | | | | | | | | | | | | |
129 * | | | ctrl | 0| 1| 2| 3| 4| 5| .| .| .| .|14|15| | |
130 * | | | | | | | | | | | | | | | | | |
131 * | | +------------------------------------------+ | |
132 * | | ...... | |
133 * | +-----------------------------------------------+ |
134 * | +-----------------------------------------------+ |
135 * | |DRV1 | |
136 * | | (same as DRV0) | |
137 * | +-----------------------------------------------+ |
138 * | ...... |
139 * +---------------------------------------------------+
140 */
141
142 static inline void __iomem *
tcs_reg_addr(const struct rsc_drv * drv,int reg,int tcs_id)143 tcs_reg_addr(const struct rsc_drv *drv, int reg, int tcs_id)
144 {
145 return drv->tcs_base + RSC_DRV_TCS_OFFSET * tcs_id + reg;
146 }
147
148 static inline void __iomem *
tcs_cmd_addr(const struct rsc_drv * drv,int reg,int tcs_id,int cmd_id)149 tcs_cmd_addr(const struct rsc_drv *drv, int reg, int tcs_id, int cmd_id)
150 {
151 return tcs_reg_addr(drv, reg, tcs_id) + RSC_DRV_CMD_OFFSET * cmd_id;
152 }
153
read_tcs_cmd(const struct rsc_drv * drv,int reg,int tcs_id,int cmd_id)154 static u32 read_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
155 int cmd_id)
156 {
157 return readl_relaxed(tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
158 }
159
read_tcs_reg(const struct rsc_drv * drv,int reg,int tcs_id)160 static u32 read_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id)
161 {
162 return readl_relaxed(tcs_reg_addr(drv, reg, tcs_id));
163 }
164
write_tcs_cmd(const struct rsc_drv * drv,int reg,int tcs_id,int cmd_id,u32 data)165 static void write_tcs_cmd(const struct rsc_drv *drv, int reg, int tcs_id,
166 int cmd_id, u32 data)
167 {
168 writel_relaxed(data, tcs_cmd_addr(drv, reg, tcs_id, cmd_id));
169 }
170
write_tcs_reg(const struct rsc_drv * drv,int reg,int tcs_id,u32 data)171 static void write_tcs_reg(const struct rsc_drv *drv, int reg, int tcs_id,
172 u32 data)
173 {
174 writel_relaxed(data, tcs_reg_addr(drv, reg, tcs_id));
175 }
176
write_tcs_reg_sync(const struct rsc_drv * drv,int reg,int tcs_id,u32 data)177 static void write_tcs_reg_sync(const struct rsc_drv *drv, int reg, int tcs_id,
178 u32 data)
179 {
180 int i;
181
182 writel(data, tcs_reg_addr(drv, reg, tcs_id));
183
184 /*
185 * Wait until we read back the same value. Use a counter rather than
186 * ktime for timeout since this may be called after timekeeping stops.
187 */
188 for (i = 0; i < USEC_PER_SEC; i++) {
189 if (readl(tcs_reg_addr(drv, reg, tcs_id)) == data)
190 return;
191 udelay(1);
192 }
193 pr_err("%s: error writing %#x to %d:%#x\n", drv->name,
194 data, tcs_id, reg);
195 }
196
197 /**
198 * tcs_invalidate() - Invalidate all TCSes of the given type (sleep or wake).
199 * @drv: The RSC controller.
200 * @type: SLEEP_TCS or WAKE_TCS
201 *
202 * This will clear the "slots" variable of the given tcs_group and also
203 * tell the hardware to forget about all entries.
204 *
205 * The caller must ensure that no other RPMH actions are happening when this
206 * function is called, since otherwise the device may immediately become
207 * used again even before this function exits.
208 */
tcs_invalidate(struct rsc_drv * drv,int type)209 static void tcs_invalidate(struct rsc_drv *drv, int type)
210 {
211 int m;
212 struct tcs_group *tcs = &drv->tcs[type];
213
214 /* Caller ensures nobody else is running so no lock */
215 if (bitmap_empty(tcs->slots, MAX_TCS_SLOTS))
216 return;
217
218 for (m = tcs->offset; m < tcs->offset + tcs->num_tcs; m++)
219 write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, m, 0);
220
221 bitmap_zero(tcs->slots, MAX_TCS_SLOTS);
222 }
223
224 /**
225 * rpmh_rsc_invalidate() - Invalidate sleep and wake TCSes.
226 * @drv: The RSC controller.
227 *
228 * The caller must ensure that no other RPMH actions are happening when this
229 * function is called, since otherwise the device may immediately become
230 * used again even before this function exits.
231 */
rpmh_rsc_invalidate(struct rsc_drv * drv)232 void rpmh_rsc_invalidate(struct rsc_drv *drv)
233 {
234 tcs_invalidate(drv, SLEEP_TCS);
235 tcs_invalidate(drv, WAKE_TCS);
236 }
237
238 /**
239 * get_tcs_for_msg() - Get the tcs_group used to send the given message.
240 * @drv: The RSC controller.
241 * @msg: The message we want to send.
242 *
243 * This is normally pretty straightforward except if we are trying to send
244 * an ACTIVE_ONLY message but don't have any active_only TCSes.
245 *
246 * Return: A pointer to a tcs_group or an ERR_PTR.
247 */
get_tcs_for_msg(struct rsc_drv * drv,const struct tcs_request * msg)248 static struct tcs_group *get_tcs_for_msg(struct rsc_drv *drv,
249 const struct tcs_request *msg)
250 {
251 int type;
252 struct tcs_group *tcs;
253
254 switch (msg->state) {
255 case RPMH_ACTIVE_ONLY_STATE:
256 type = ACTIVE_TCS;
257 break;
258 case RPMH_WAKE_ONLY_STATE:
259 type = WAKE_TCS;
260 break;
261 case RPMH_SLEEP_STATE:
262 type = SLEEP_TCS;
263 break;
264 default:
265 return ERR_PTR(-EINVAL);
266 }
267
268 /*
269 * If we are making an active request on a RSC that does not have a
270 * dedicated TCS for active state use, then re-purpose a wake TCS to
271 * send active votes. This is safe because we ensure any active-only
272 * transfers have finished before we use it (maybe by running from
273 * the last CPU in PM code).
274 */
275 tcs = &drv->tcs[type];
276 if (msg->state == RPMH_ACTIVE_ONLY_STATE && !tcs->num_tcs)
277 tcs = &drv->tcs[WAKE_TCS];
278
279 return tcs;
280 }
281
282 /**
283 * get_req_from_tcs() - Get a stashed request that was xfering on the given TCS.
284 * @drv: The RSC controller.
285 * @tcs_id: The global ID of this TCS.
286 *
287 * For ACTIVE_ONLY transfers we want to call back into the client when the
288 * transfer finishes. To do this we need the "request" that the client
289 * originally provided us. This function grabs the request that we stashed
290 * when we started the transfer.
291 *
292 * This only makes sense for ACTIVE_ONLY transfers since those are the only
293 * ones we track sending (the only ones we enable interrupts for and the only
294 * ones we call back to the client for).
295 *
296 * Return: The stashed request.
297 */
get_req_from_tcs(struct rsc_drv * drv,int tcs_id)298 static const struct tcs_request *get_req_from_tcs(struct rsc_drv *drv,
299 int tcs_id)
300 {
301 struct tcs_group *tcs;
302 int i;
303
304 for (i = 0; i < TCS_TYPE_NR; i++) {
305 tcs = &drv->tcs[i];
306 if (tcs->mask & BIT(tcs_id))
307 return tcs->req[tcs_id - tcs->offset];
308 }
309
310 return NULL;
311 }
312
313 /**
314 * __tcs_set_trigger() - Start xfer on a TCS or unset trigger on a borrowed TCS
315 * @drv: The controller.
316 * @tcs_id: The global ID of this TCS.
317 * @trigger: If true then untrigger/retrigger. If false then just untrigger.
318 *
319 * In the normal case we only ever call with "trigger=true" to start a
320 * transfer. That will un-trigger/disable the TCS from the last transfer
321 * then trigger/enable for this transfer.
322 *
323 * If we borrowed a wake TCS for an active-only transfer we'll also call
324 * this function with "trigger=false" to just do the un-trigger/disable
325 * before using the TCS for wake purposes again.
326 *
327 * Note that the AP is only in charge of triggering active-only transfers.
328 * The AP never triggers sleep/wake values using this function.
329 */
__tcs_set_trigger(struct rsc_drv * drv,int tcs_id,bool trigger)330 static void __tcs_set_trigger(struct rsc_drv *drv, int tcs_id, bool trigger)
331 {
332 u32 enable;
333
334 /*
335 * HW req: Clear the DRV_CONTROL and enable TCS again
336 * While clearing ensure that the AMC mode trigger is cleared
337 * and then the mode enable is cleared.
338 */
339 enable = read_tcs_reg(drv, RSC_DRV_CONTROL, tcs_id);
340 enable &= ~TCS_AMC_MODE_TRIGGER;
341 write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
342 enable &= ~TCS_AMC_MODE_ENABLE;
343 write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
344
345 if (trigger) {
346 /* Enable the AMC mode on the TCS and then trigger the TCS */
347 enable = TCS_AMC_MODE_ENABLE;
348 write_tcs_reg_sync(drv, RSC_DRV_CONTROL, tcs_id, enable);
349 enable |= TCS_AMC_MODE_TRIGGER;
350 write_tcs_reg(drv, RSC_DRV_CONTROL, tcs_id, enable);
351 }
352 }
353
354 /**
355 * enable_tcs_irq() - Enable or disable interrupts on the given TCS.
356 * @drv: The controller.
357 * @tcs_id: The global ID of this TCS.
358 * @enable: If true then enable; if false then disable
359 *
360 * We only ever call this when we borrow a wake TCS for an active-only
361 * transfer. For active-only TCSes interrupts are always left enabled.
362 */
enable_tcs_irq(struct rsc_drv * drv,int tcs_id,bool enable)363 static void enable_tcs_irq(struct rsc_drv *drv, int tcs_id, bool enable)
364 {
365 u32 data;
366
367 data = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_ENABLE);
368 if (enable)
369 data |= BIT(tcs_id);
370 else
371 data &= ~BIT(tcs_id);
372 writel_relaxed(data, drv->tcs_base + RSC_DRV_IRQ_ENABLE);
373 }
374
375 /**
376 * tcs_tx_done() - TX Done interrupt handler.
377 * @irq: The IRQ number (ignored).
378 * @p: Pointer to "struct rsc_drv".
379 *
380 * Called for ACTIVE_ONLY transfers (those are the only ones we enable the
381 * IRQ for) when a transfer is done.
382 *
383 * Return: IRQ_HANDLED
384 */
tcs_tx_done(int irq,void * p)385 static irqreturn_t tcs_tx_done(int irq, void *p)
386 {
387 struct rsc_drv *drv = p;
388 int i, j, err = 0;
389 unsigned long irq_status;
390 const struct tcs_request *req;
391 struct tcs_cmd *cmd;
392
393 irq_status = readl_relaxed(drv->tcs_base + RSC_DRV_IRQ_STATUS);
394
395 for_each_set_bit(i, &irq_status, BITS_PER_TYPE(u32)) {
396 req = get_req_from_tcs(drv, i);
397 if (WARN_ON(!req))
398 goto skip;
399
400 err = 0;
401 for (j = 0; j < req->num_cmds; j++) {
402 u32 sts;
403
404 cmd = &req->cmds[j];
405 sts = read_tcs_cmd(drv, RSC_DRV_CMD_STATUS, i, j);
406 if (!(sts & CMD_STATUS_ISSUED) ||
407 ((req->wait_for_compl || cmd->wait) &&
408 !(sts & CMD_STATUS_COMPL))) {
409 pr_err("Incomplete request: %s: addr=%#x data=%#x",
410 drv->name, cmd->addr, cmd->data);
411 err = -EIO;
412 }
413 }
414
415 trace_rpmh_tx_done(drv, i, req, err);
416
417 /*
418 * If wake tcs was re-purposed for sending active
419 * votes, clear AMC trigger & enable modes and
420 * disable interrupt for this TCS
421 */
422 if (!drv->tcs[ACTIVE_TCS].num_tcs)
423 __tcs_set_trigger(drv, i, false);
424 skip:
425 /* Reclaim the TCS */
426 write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, i, 0);
427 writel_relaxed(BIT(i), drv->tcs_base + RSC_DRV_IRQ_CLEAR);
428 spin_lock(&drv->lock);
429 clear_bit(i, drv->tcs_in_use);
430 /*
431 * Disable interrupt for WAKE TCS to avoid being
432 * spammed with interrupts coming when the solver
433 * sends its wake votes.
434 */
435 if (!drv->tcs[ACTIVE_TCS].num_tcs)
436 enable_tcs_irq(drv, i, false);
437 spin_unlock(&drv->lock);
438 wake_up(&drv->tcs_wait);
439 if (req)
440 rpmh_tx_done(req, err);
441 }
442
443 return IRQ_HANDLED;
444 }
445
446 /**
447 * __tcs_buffer_write() - Write to TCS hardware from a request; don't trigger.
448 * @drv: The controller.
449 * @tcs_id: The global ID of this TCS.
450 * @cmd_id: The index within the TCS to start writing.
451 * @msg: The message we want to send, which will contain several addr/data
452 * pairs to program (but few enough that they all fit in one TCS).
453 *
454 * This is used for all types of transfers (active, sleep, and wake).
455 */
__tcs_buffer_write(struct rsc_drv * drv,int tcs_id,int cmd_id,const struct tcs_request * msg)456 static void __tcs_buffer_write(struct rsc_drv *drv, int tcs_id, int cmd_id,
457 const struct tcs_request *msg)
458 {
459 u32 msgid;
460 u32 cmd_msgid = CMD_MSGID_LEN | CMD_MSGID_WRITE;
461 u32 cmd_enable = 0;
462 struct tcs_cmd *cmd;
463 int i, j;
464
465 /* Convert all commands to RR when the request has wait_for_compl set */
466 cmd_msgid |= msg->wait_for_compl ? CMD_MSGID_RESP_REQ : 0;
467
468 for (i = 0, j = cmd_id; i < msg->num_cmds; i++, j++) {
469 cmd = &msg->cmds[i];
470 cmd_enable |= BIT(j);
471 msgid = cmd_msgid;
472 /*
473 * Additionally, if the cmd->wait is set, make the command
474 * response reqd even if the overall request was fire-n-forget.
475 */
476 msgid |= cmd->wait ? CMD_MSGID_RESP_REQ : 0;
477
478 write_tcs_cmd(drv, RSC_DRV_CMD_MSGID, tcs_id, j, msgid);
479 write_tcs_cmd(drv, RSC_DRV_CMD_ADDR, tcs_id, j, cmd->addr);
480 write_tcs_cmd(drv, RSC_DRV_CMD_DATA, tcs_id, j, cmd->data);
481 trace_rpmh_send_msg(drv, tcs_id, j, msgid, cmd);
482 }
483
484 cmd_enable |= read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id);
485 write_tcs_reg(drv, RSC_DRV_CMD_ENABLE, tcs_id, cmd_enable);
486 }
487
488 /**
489 * check_for_req_inflight() - Look to see if conflicting cmds are in flight.
490 * @drv: The controller.
491 * @tcs: A pointer to the tcs_group used for ACTIVE_ONLY transfers.
492 * @msg: The message we want to send, which will contain several addr/data
493 * pairs to program (but few enough that they all fit in one TCS).
494 *
495 * This will walk through the TCSes in the group and check if any of them
496 * appear to be sending to addresses referenced in the message. If it finds
497 * one it'll return -EBUSY.
498 *
499 * Only for use for active-only transfers.
500 *
501 * Must be called with the drv->lock held since that protects tcs_in_use.
502 *
503 * Return: 0 if nothing in flight or -EBUSY if we should try again later.
504 * The caller must re-enable interrupts between tries since that's
505 * the only way tcs_in_use will ever be updated and the only way
506 * RSC_DRV_CMD_ENABLE will ever be cleared.
507 */
check_for_req_inflight(struct rsc_drv * drv,struct tcs_group * tcs,const struct tcs_request * msg)508 static int check_for_req_inflight(struct rsc_drv *drv, struct tcs_group *tcs,
509 const struct tcs_request *msg)
510 {
511 unsigned long curr_enabled;
512 u32 addr;
513 int j, k;
514 int i = tcs->offset;
515
516 for_each_set_bit_from(i, drv->tcs_in_use, tcs->offset + tcs->num_tcs) {
517 curr_enabled = read_tcs_reg(drv, RSC_DRV_CMD_ENABLE, i);
518
519 for_each_set_bit(j, &curr_enabled, MAX_CMDS_PER_TCS) {
520 addr = read_tcs_cmd(drv, RSC_DRV_CMD_ADDR, i, j);
521 for (k = 0; k < msg->num_cmds; k++) {
522 if (addr == msg->cmds[k].addr)
523 return -EBUSY;
524 }
525 }
526 }
527
528 return 0;
529 }
530
531 /**
532 * find_free_tcs() - Find free tcs in the given tcs_group; only for active.
533 * @tcs: A pointer to the active-only tcs_group (or the wake tcs_group if
534 * we borrowed it because there are zero active-only ones).
535 *
536 * Must be called with the drv->lock held since that protects tcs_in_use.
537 *
538 * Return: The first tcs that's free or -EBUSY if all in use.
539 */
find_free_tcs(struct tcs_group * tcs)540 static int find_free_tcs(struct tcs_group *tcs)
541 {
542 const struct rsc_drv *drv = tcs->drv;
543 unsigned long i;
544 unsigned long max = tcs->offset + tcs->num_tcs;
545
546 i = find_next_zero_bit(drv->tcs_in_use, max, tcs->offset);
547 if (i >= max)
548 return -EBUSY;
549
550 return i;
551 }
552
553 /**
554 * claim_tcs_for_req() - Claim a tcs in the given tcs_group; only for active.
555 * @drv: The controller.
556 * @tcs: The tcs_group used for ACTIVE_ONLY transfers.
557 * @msg: The data to be sent.
558 *
559 * Claims a tcs in the given tcs_group while making sure that no existing cmd
560 * is in flight that would conflict with the one in @msg.
561 *
562 * Context: Must be called with the drv->lock held since that protects
563 * tcs_in_use.
564 *
565 * Return: The id of the claimed tcs or -EBUSY if a matching msg is in flight
566 * or the tcs_group is full.
567 */
claim_tcs_for_req(struct rsc_drv * drv,struct tcs_group * tcs,const struct tcs_request * msg)568 static int claim_tcs_for_req(struct rsc_drv *drv, struct tcs_group *tcs,
569 const struct tcs_request *msg)
570 {
571 int ret;
572
573 /*
574 * The h/w does not like if we send a request to the same address,
575 * when one is already in-flight or being processed.
576 */
577 ret = check_for_req_inflight(drv, tcs, msg);
578 if (ret)
579 return ret;
580
581 return find_free_tcs(tcs);
582 }
583
584 /**
585 * rpmh_rsc_send_data() - Write / trigger active-only message.
586 * @drv: The controller.
587 * @msg: The data to be sent.
588 *
589 * NOTES:
590 * - This is only used for "ACTIVE_ONLY" since the limitations of this
591 * function don't make sense for sleep/wake cases.
592 * - To do the transfer, we will grab a whole TCS for ourselves--we don't
593 * try to share. If there are none available we'll wait indefinitely
594 * for a free one.
595 * - This function will not wait for the commands to be finished, only for
596 * data to be programmed into the RPMh. See rpmh_tx_done() which will
597 * be called when the transfer is fully complete.
598 * - This function must be called with interrupts enabled. If the hardware
599 * is busy doing someone else's transfer we need that transfer to fully
600 * finish so that we can have the hardware, and to fully finish it needs
601 * the interrupt handler to run. If the interrupts is set to run on the
602 * active CPU this can never happen if interrupts are disabled.
603 *
604 * Return: 0 on success, -EINVAL on error.
605 */
rpmh_rsc_send_data(struct rsc_drv * drv,const struct tcs_request * msg)606 int rpmh_rsc_send_data(struct rsc_drv *drv, const struct tcs_request *msg)
607 {
608 struct tcs_group *tcs;
609 int tcs_id;
610 unsigned long flags;
611
612 tcs = get_tcs_for_msg(drv, msg);
613 if (IS_ERR(tcs))
614 return PTR_ERR(tcs);
615
616 spin_lock_irqsave(&drv->lock, flags);
617
618 /* Wait forever for a free tcs. It better be there eventually! */
619 wait_event_lock_irq(drv->tcs_wait,
620 (tcs_id = claim_tcs_for_req(drv, tcs, msg)) >= 0,
621 drv->lock);
622
623 tcs->req[tcs_id - tcs->offset] = msg;
624 set_bit(tcs_id, drv->tcs_in_use);
625 if (msg->state == RPMH_ACTIVE_ONLY_STATE && tcs->type != ACTIVE_TCS) {
626 /*
627 * Clear previously programmed WAKE commands in selected
628 * repurposed TCS to avoid triggering them. tcs->slots will be
629 * cleaned from rpmh_flush() by invoking rpmh_rsc_invalidate()
630 */
631 write_tcs_reg_sync(drv, RSC_DRV_CMD_ENABLE, tcs_id, 0);
632 enable_tcs_irq(drv, tcs_id, true);
633 }
634 spin_unlock_irqrestore(&drv->lock, flags);
635
636 /*
637 * These two can be done after the lock is released because:
638 * - We marked "tcs_in_use" under lock.
639 * - Once "tcs_in_use" has been marked nobody else could be writing
640 * to these registers until the interrupt goes off.
641 * - The interrupt can't go off until we trigger w/ the last line
642 * of __tcs_set_trigger() below.
643 */
644 __tcs_buffer_write(drv, tcs_id, 0, msg);
645 __tcs_set_trigger(drv, tcs_id, true);
646
647 return 0;
648 }
649
650 /**
651 * find_slots() - Find a place to write the given message.
652 * @tcs: The tcs group to search.
653 * @msg: The message we want to find room for.
654 * @tcs_id: If we return 0 from the function, we return the global ID of the
655 * TCS to write to here.
656 * @cmd_id: If we return 0 from the function, we return the index of
657 * the command array of the returned TCS where the client should
658 * start writing the message.
659 *
660 * Only for use on sleep/wake TCSes since those are the only ones we maintain
661 * tcs->slots for.
662 *
663 * Return: -ENOMEM if there was no room, else 0.
664 */
find_slots(struct tcs_group * tcs,const struct tcs_request * msg,int * tcs_id,int * cmd_id)665 static int find_slots(struct tcs_group *tcs, const struct tcs_request *msg,
666 int *tcs_id, int *cmd_id)
667 {
668 int slot, offset;
669 int i = 0;
670
671 /* Do over, until we can fit the full payload in a single TCS */
672 do {
673 slot = bitmap_find_next_zero_area(tcs->slots, MAX_TCS_SLOTS,
674 i, msg->num_cmds, 0);
675 if (slot >= tcs->num_tcs * tcs->ncpt)
676 return -ENOMEM;
677 i += tcs->ncpt;
678 } while (slot + msg->num_cmds - 1 >= i);
679
680 bitmap_set(tcs->slots, slot, msg->num_cmds);
681
682 offset = slot / tcs->ncpt;
683 *tcs_id = offset + tcs->offset;
684 *cmd_id = slot % tcs->ncpt;
685
686 return 0;
687 }
688
689 /**
690 * rpmh_rsc_write_ctrl_data() - Write request to controller but don't trigger.
691 * @drv: The controller.
692 * @msg: The data to be written to the controller.
693 *
694 * This should only be called for for sleep/wake state, never active-only
695 * state.
696 *
697 * The caller must ensure that no other RPMH actions are happening and the
698 * controller is idle when this function is called since it runs lockless.
699 *
700 * Return: 0 if no error; else -error.
701 */
rpmh_rsc_write_ctrl_data(struct rsc_drv * drv,const struct tcs_request * msg)702 int rpmh_rsc_write_ctrl_data(struct rsc_drv *drv, const struct tcs_request *msg)
703 {
704 struct tcs_group *tcs;
705 int tcs_id = 0, cmd_id = 0;
706 int ret;
707
708 tcs = get_tcs_for_msg(drv, msg);
709 if (IS_ERR(tcs))
710 return PTR_ERR(tcs);
711
712 /* find the TCS id and the command in the TCS to write to */
713 ret = find_slots(tcs, msg, &tcs_id, &cmd_id);
714 if (!ret)
715 __tcs_buffer_write(drv, tcs_id, cmd_id, msg);
716
717 return ret;
718 }
719
720 /**
721 * rpmh_rsc_ctrlr_is_busy() - Check if any of the AMCs are busy.
722 * @drv: The controller
723 *
724 * Checks if any of the AMCs are busy in handling ACTIVE sets.
725 * This is called from the last cpu powering down before flushing
726 * SLEEP and WAKE sets. If AMCs are busy, controller can not enter
727 * power collapse, so deny from the last cpu's pm notification.
728 *
729 * Context: Must be called with the drv->lock held.
730 *
731 * Return:
732 * * False - AMCs are idle
733 * * True - AMCs are busy
734 */
rpmh_rsc_ctrlr_is_busy(struct rsc_drv * drv)735 static bool rpmh_rsc_ctrlr_is_busy(struct rsc_drv *drv)
736 {
737 unsigned long set;
738 const struct tcs_group *tcs = &drv->tcs[ACTIVE_TCS];
739 unsigned long max;
740
741 /*
742 * If we made an active request on a RSC that does not have a
743 * dedicated TCS for active state use, then re-purposed wake TCSes
744 * should be checked for not busy, because we used wake TCSes for
745 * active requests in this case.
746 */
747 if (!tcs->num_tcs)
748 tcs = &drv->tcs[WAKE_TCS];
749
750 max = tcs->offset + tcs->num_tcs;
751 set = find_next_bit(drv->tcs_in_use, max, tcs->offset);
752
753 return set < max;
754 }
755
756 /**
757 * rpmh_rsc_cpu_pm_callback() - Check if any of the AMCs are busy.
758 * @nfb: Pointer to the notifier block in struct rsc_drv.
759 * @action: CPU_PM_ENTER, CPU_PM_ENTER_FAILED, or CPU_PM_EXIT.
760 * @v: Unused
761 *
762 * This function is given to cpu_pm_register_notifier so we can be informed
763 * about when CPUs go down. When all CPUs go down we know no more active
764 * transfers will be started so we write sleep/wake sets. This function gets
765 * called from cpuidle code paths and also at system suspend time.
766 *
767 * If its last CPU going down and AMCs are not busy then writes cached sleep
768 * and wake messages to TCSes. The firmware then takes care of triggering
769 * them when entering deepest low power modes.
770 *
771 * Return: See cpu_pm_register_notifier()
772 */
rpmh_rsc_cpu_pm_callback(struct notifier_block * nfb,unsigned long action,void * v)773 static int rpmh_rsc_cpu_pm_callback(struct notifier_block *nfb,
774 unsigned long action, void *v)
775 {
776 struct rsc_drv *drv = container_of(nfb, struct rsc_drv, rsc_pm);
777 int ret = NOTIFY_OK;
778 int cpus_in_pm;
779
780 switch (action) {
781 case CPU_PM_ENTER:
782 cpus_in_pm = atomic_inc_return(&drv->cpus_in_pm);
783 /*
784 * NOTE: comments for num_online_cpus() point out that it's
785 * only a snapshot so we need to be careful. It should be OK
786 * for us to use, though. It's important for us not to miss
787 * if we're the last CPU going down so it would only be a
788 * problem if a CPU went offline right after we did the check
789 * AND that CPU was not idle AND that CPU was the last non-idle
790 * CPU. That can't happen. CPUs would have to come out of idle
791 * before the CPU could go offline.
792 */
793 if (cpus_in_pm < num_online_cpus())
794 return NOTIFY_OK;
795 break;
796 case CPU_PM_ENTER_FAILED:
797 case CPU_PM_EXIT:
798 atomic_dec(&drv->cpus_in_pm);
799 return NOTIFY_OK;
800 default:
801 return NOTIFY_DONE;
802 }
803
804 /*
805 * It's likely we're on the last CPU. Grab the drv->lock and write
806 * out the sleep/wake commands to RPMH hardware. Grabbing the lock
807 * means that if we race with another CPU coming up we are still
808 * guaranteed to be safe. If another CPU came up just after we checked
809 * and has grabbed the lock or started an active transfer then we'll
810 * notice we're busy and abort. If another CPU comes up after we start
811 * flushing it will be blocked from starting an active transfer until
812 * we're done flushing. If another CPU starts an active transfer after
813 * we release the lock we're still OK because we're no longer the last
814 * CPU.
815 */
816 if (spin_trylock(&drv->lock)) {
817 if (rpmh_rsc_ctrlr_is_busy(drv) || rpmh_flush(&drv->client))
818 ret = NOTIFY_BAD;
819 spin_unlock(&drv->lock);
820 } else {
821 /* Another CPU must be up */
822 return NOTIFY_OK;
823 }
824
825 if (ret == NOTIFY_BAD) {
826 /* Double-check if we're here because someone else is up */
827 if (cpus_in_pm < num_online_cpus())
828 ret = NOTIFY_OK;
829 else
830 /* We won't be called w/ CPU_PM_ENTER_FAILED */
831 atomic_dec(&drv->cpus_in_pm);
832 }
833
834 return ret;
835 }
836
rpmh_probe_tcs_config(struct platform_device * pdev,struct rsc_drv * drv,void __iomem * base)837 static int rpmh_probe_tcs_config(struct platform_device *pdev,
838 struct rsc_drv *drv, void __iomem *base)
839 {
840 struct tcs_type_config {
841 u32 type;
842 u32 n;
843 } tcs_cfg[TCS_TYPE_NR] = { { 0 } };
844 struct device_node *dn = pdev->dev.of_node;
845 u32 config, max_tcs, ncpt, offset;
846 int i, ret, n, st = 0;
847 struct tcs_group *tcs;
848
849 ret = of_property_read_u32(dn, "qcom,tcs-offset", &offset);
850 if (ret)
851 return ret;
852 drv->tcs_base = base + offset;
853
854 config = readl_relaxed(base + DRV_PRNT_CHLD_CONFIG);
855
856 max_tcs = config;
857 max_tcs &= DRV_NUM_TCS_MASK << (DRV_NUM_TCS_SHIFT * drv->id);
858 max_tcs = max_tcs >> (DRV_NUM_TCS_SHIFT * drv->id);
859
860 ncpt = config & (DRV_NCPT_MASK << DRV_NCPT_SHIFT);
861 ncpt = ncpt >> DRV_NCPT_SHIFT;
862
863 n = of_property_count_u32_elems(dn, "qcom,tcs-config");
864 if (n != 2 * TCS_TYPE_NR)
865 return -EINVAL;
866
867 for (i = 0; i < TCS_TYPE_NR; i++) {
868 ret = of_property_read_u32_index(dn, "qcom,tcs-config",
869 i * 2, &tcs_cfg[i].type);
870 if (ret)
871 return ret;
872 if (tcs_cfg[i].type >= TCS_TYPE_NR)
873 return -EINVAL;
874
875 ret = of_property_read_u32_index(dn, "qcom,tcs-config",
876 i * 2 + 1, &tcs_cfg[i].n);
877 if (ret)
878 return ret;
879 if (tcs_cfg[i].n > MAX_TCS_PER_TYPE)
880 return -EINVAL;
881 }
882
883 for (i = 0; i < TCS_TYPE_NR; i++) {
884 tcs = &drv->tcs[tcs_cfg[i].type];
885 if (tcs->drv)
886 return -EINVAL;
887 tcs->drv = drv;
888 tcs->type = tcs_cfg[i].type;
889 tcs->num_tcs = tcs_cfg[i].n;
890 tcs->ncpt = ncpt;
891
892 if (!tcs->num_tcs || tcs->type == CONTROL_TCS)
893 continue;
894
895 if (st + tcs->num_tcs > max_tcs ||
896 st + tcs->num_tcs >= BITS_PER_BYTE * sizeof(tcs->mask))
897 return -EINVAL;
898
899 tcs->mask = ((1 << tcs->num_tcs) - 1) << st;
900 tcs->offset = st;
901 st += tcs->num_tcs;
902 }
903
904 drv->num_tcs = st;
905
906 return 0;
907 }
908
rpmh_rsc_probe(struct platform_device * pdev)909 static int rpmh_rsc_probe(struct platform_device *pdev)
910 {
911 struct device_node *dn = pdev->dev.of_node;
912 struct rsc_drv *drv;
913 char drv_id[10] = {0};
914 int ret, irq;
915 u32 solver_config;
916 void __iomem *base;
917
918 /*
919 * Even though RPMh doesn't directly use cmd-db, all of its children
920 * do. To avoid adding this check to our children we'll do it now.
921 */
922 ret = cmd_db_ready();
923 if (ret) {
924 if (ret != -EPROBE_DEFER)
925 dev_err(&pdev->dev, "Command DB not available (%d)\n",
926 ret);
927 return ret;
928 }
929
930 drv = devm_kzalloc(&pdev->dev, sizeof(*drv), GFP_KERNEL);
931 if (!drv)
932 return -ENOMEM;
933
934 ret = of_property_read_u32(dn, "qcom,drv-id", &drv->id);
935 if (ret)
936 return ret;
937
938 drv->name = of_get_property(dn, "label", NULL);
939 if (!drv->name)
940 drv->name = dev_name(&pdev->dev);
941
942 snprintf(drv_id, ARRAY_SIZE(drv_id), "drv-%d", drv->id);
943 base = devm_platform_ioremap_resource_byname(pdev, drv_id);
944 if (IS_ERR(base))
945 return PTR_ERR(base);
946
947 ret = rpmh_probe_tcs_config(pdev, drv, base);
948 if (ret)
949 return ret;
950
951 spin_lock_init(&drv->lock);
952 init_waitqueue_head(&drv->tcs_wait);
953 bitmap_zero(drv->tcs_in_use, MAX_TCS_NR);
954
955 irq = platform_get_irq(pdev, drv->id);
956 if (irq < 0)
957 return irq;
958
959 ret = devm_request_irq(&pdev->dev, irq, tcs_tx_done,
960 IRQF_TRIGGER_HIGH | IRQF_NO_SUSPEND,
961 drv->name, drv);
962 if (ret)
963 return ret;
964
965 /*
966 * CPU PM notification are not required for controllers that support
967 * 'HW solver' mode where they can be in autonomous mode executing low
968 * power mode to power down.
969 */
970 solver_config = readl_relaxed(base + DRV_SOLVER_CONFIG);
971 solver_config &= DRV_HW_SOLVER_MASK << DRV_HW_SOLVER_SHIFT;
972 solver_config = solver_config >> DRV_HW_SOLVER_SHIFT;
973 if (!solver_config) {
974 drv->rsc_pm.notifier_call = rpmh_rsc_cpu_pm_callback;
975 cpu_pm_register_notifier(&drv->rsc_pm);
976 }
977
978 /* Enable the active TCS to send requests immediately */
979 writel_relaxed(drv->tcs[ACTIVE_TCS].mask,
980 drv->tcs_base + RSC_DRV_IRQ_ENABLE);
981
982 spin_lock_init(&drv->client.cache_lock);
983 INIT_LIST_HEAD(&drv->client.cache);
984 INIT_LIST_HEAD(&drv->client.batch_cache);
985
986 dev_set_drvdata(&pdev->dev, drv);
987
988 return devm_of_platform_populate(&pdev->dev);
989 }
990
991 static const struct of_device_id rpmh_drv_match[] = {
992 { .compatible = "qcom,rpmh-rsc", },
993 { }
994 };
995 MODULE_DEVICE_TABLE(of, rpmh_drv_match);
996
997 static struct platform_driver rpmh_driver = {
998 .probe = rpmh_rsc_probe,
999 .driver = {
1000 .name = "rpmh",
1001 .of_match_table = rpmh_drv_match,
1002 .suppress_bind_attrs = true,
1003 },
1004 };
1005
rpmh_driver_init(void)1006 static int __init rpmh_driver_init(void)
1007 {
1008 return platform_driver_register(&rpmh_driver);
1009 }
1010 arch_initcall(rpmh_driver_init);
1011
1012 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. RPMh Driver");
1013 MODULE_LICENSE("GPL v2");
1014