1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright 2018  Cisco Systems, Inc.
4  *
5  * Author: Thomas Fitzsimmons <fitzsim@fitzsim.org>
6  */
7 
8 #include <asm/global_data.h>
9 #include <asm/io.h>
10 #include <command.h>
11 #include <config.h>
12 #include <dm.h>
13 #include <errno.h>
14 #include <fdtdec.h>
15 #include <linux/bitops.h>
16 #include <linux/delay.h>
17 #include <log.h>
18 #include <malloc.h>
19 #include <spi.h>
20 #include <time.h>
21 
22 DECLARE_GLOBAL_DATA_PTR;
23 
24 #define SPBR_MIN		8
25 #define BITS_PER_WORD		8
26 
27 #define NUM_TXRAM		32
28 #define NUM_RXRAM		32
29 #define NUM_CDRAM		16
30 
31 /* hif_mspi register structure. */
32 struct bcmstb_hif_mspi_regs {
33 	u32 spcr0_lsb;		/* 0x000 */
34 	u32 spcr0_msb;		/* 0x004 */
35 	u32 spcr1_lsb;		/* 0x008 */
36 	u32 spcr1_msb;		/* 0x00c */
37 	u32 newqp;		/* 0x010 */
38 	u32 endqp;		/* 0x014 */
39 	u32 spcr2;		/* 0x018 */
40 	u32 reserved0;		/* 0x01c */
41 	u32 mspi_status;	/* 0x020 */
42 	u32 cptqp;		/* 0x024 */
43 	u32 spcr3;		/* 0x028 */
44 	u32 revision;		/* 0x02c */
45 	u32 reserved1[4];	/* 0x030 */
46 	u32 txram[NUM_TXRAM];	/* 0x040 */
47 	u32 rxram[NUM_RXRAM];	/* 0x0c0 */
48 	u32 cdram[NUM_CDRAM];	/* 0x140 */
49 	u32 write_lock;		/* 0x180 */
50 };
51 
52 /* hif_mspi masks. */
53 #define HIF_MSPI_SPCR2_CONT_AFTER_CMD_MASK	0x00000080
54 #define HIF_MSPI_SPCR2_SPE_MASK			0x00000040
55 #define HIF_MSPI_SPCR2_SPIFIE_MASK		0x00000020
56 #define HIF_MSPI_WRITE_LOCK_WRITE_LOCK_MASK	0x00000001
57 
58 /* bspi offsets. */
59 #define BSPI_MAST_N_BOOT_CTRL			0x008
60 
61 /* bspi_raf is not used in this driver. */
62 
63 /* hif_spi_intr2 offsets and masks. */
64 #define HIF_SPI_INTR2_CPU_CLEAR			0x08
65 #define HIF_SPI_INTR2_CPU_MASK_SET		0x10
66 #define HIF_SPI_INTR2_CPU_MASK_CLEAR		0x14
67 #define HIF_SPI_INTR2_CPU_SET_MSPI_DONE_MASK	0x00000020
68 
69 /* SPI transfer timeout in milliseconds. */
70 #define HIF_MSPI_WAIT				10
71 
72 enum bcmstb_base_type {
73 	HIF_MSPI,
74 	BSPI,
75 	HIF_SPI_INTR2,
76 	CS_REG,
77 	BASE_LAST,
78 };
79 
80 struct bcmstb_spi_plat {
81 	void *base[4];
82 };
83 
84 struct bcmstb_spi_priv {
85 	struct bcmstb_hif_mspi_regs *regs;
86 	void *bspi;
87 	void *hif_spi_intr2;
88 	void *cs_reg;
89 	int default_cs;
90 	int curr_cs;
91 	uint tx_slot;
92 	uint rx_slot;
93 	u8 saved_cmd[NUM_CDRAM];
94 	uint saved_cmd_len;
95 	void *saved_din_addr;
96 };
97 
bcmstb_spi_of_to_plat(struct udevice * bus)98 static int bcmstb_spi_of_to_plat(struct udevice *bus)
99 {
100 	struct bcmstb_spi_plat *plat = dev_get_plat(bus);
101 	const void *fdt = gd->fdt_blob;
102 	int node = dev_of_offset(bus);
103 	int ret = 0;
104 	int i = 0;
105 	struct fdt_resource resource = { 0 };
106 	char *names[BASE_LAST] = { "hif_mspi", "bspi", "hif_spi_intr2",
107 				   "cs_reg" };
108 	const phys_addr_t defaults[BASE_LAST] = { BCMSTB_HIF_MSPI_BASE,
109 						  BCMSTB_BSPI_BASE,
110 						  BCMSTB_HIF_SPI_INTR2,
111 						  BCMSTB_CS_REG };
112 
113 	for (i = 0; i < BASE_LAST; i++) {
114 		plat->base[i] = (void *)defaults[i];
115 
116 		ret = fdt_get_named_resource(fdt, node, "reg", "reg-names",
117 					     names[i], &resource);
118 		if (ret) {
119 			printf("%s: Assuming BCMSTB SPI %s address 0x0x%p\n",
120 			       __func__, names[i], (void *)defaults[i]);
121 		} else {
122 			plat->base[i] = (void *)resource.start;
123 			debug("BCMSTB SPI %s address: 0x0x%p\n",
124 			      names[i], (void *)plat->base[i]);
125 		}
126 	}
127 
128 	return 0;
129 }
130 
bcmstb_spi_hw_set_parms(struct bcmstb_spi_priv * priv)131 static void bcmstb_spi_hw_set_parms(struct bcmstb_spi_priv *priv)
132 {
133 	writel(SPBR_MIN, &priv->regs->spcr0_lsb);
134 	writel(BITS_PER_WORD << 2 | SPI_MODE_3, &priv->regs->spcr0_msb);
135 }
136 
bcmstb_spi_enable_interrupt(void * base,u32 mask)137 static void bcmstb_spi_enable_interrupt(void *base, u32 mask)
138 {
139 	void *reg = base + HIF_SPI_INTR2_CPU_MASK_CLEAR;
140 
141 	writel(readl(reg) | mask, reg);
142 	readl(reg);
143 }
144 
bcmstb_spi_disable_interrupt(void * base,u32 mask)145 static void bcmstb_spi_disable_interrupt(void *base, u32 mask)
146 {
147 	void *reg = base + HIF_SPI_INTR2_CPU_MASK_SET;
148 
149 	writel(readl(reg) | mask, reg);
150 	readl(reg);
151 }
152 
bcmstb_spi_clear_interrupt(void * base,u32 mask)153 static void bcmstb_spi_clear_interrupt(void *base, u32 mask)
154 {
155 	void *reg = base + HIF_SPI_INTR2_CPU_CLEAR;
156 
157 	writel(readl(reg) | mask, reg);
158 	readl(reg);
159 }
160 
bcmstb_spi_probe(struct udevice * bus)161 static int bcmstb_spi_probe(struct udevice *bus)
162 {
163 	struct bcmstb_spi_plat *plat = dev_get_plat(bus);
164 	struct bcmstb_spi_priv *priv = dev_get_priv(bus);
165 
166 	priv->regs = plat->base[HIF_MSPI];
167 	priv->bspi = plat->base[BSPI];
168 	priv->hif_spi_intr2 = plat->base[HIF_SPI_INTR2];
169 	priv->cs_reg = plat->base[CS_REG];
170 	priv->default_cs = 0;
171 	priv->curr_cs = -1;
172 	priv->tx_slot = 0;
173 	priv->rx_slot = 0;
174 	memset(priv->saved_cmd, 0, NUM_CDRAM);
175 	priv->saved_cmd_len = 0;
176 	priv->saved_din_addr = NULL;
177 
178 	debug("spi_xfer: tx regs: 0x%p\n", &priv->regs->txram[0]);
179 	debug("spi_xfer: rx regs: 0x%p\n", &priv->regs->rxram[0]);
180 
181 	/* Disable BSPI. */
182 	writel(1, priv->bspi + BSPI_MAST_N_BOOT_CTRL);
183 	readl(priv->bspi + BSPI_MAST_N_BOOT_CTRL);
184 
185 	/* Set up interrupts. */
186 	bcmstb_spi_disable_interrupt(priv->hif_spi_intr2, 0xffffffff);
187 	bcmstb_spi_clear_interrupt(priv->hif_spi_intr2, 0xffffffff);
188 	bcmstb_spi_enable_interrupt(priv->hif_spi_intr2,
189 				    HIF_SPI_INTR2_CPU_SET_MSPI_DONE_MASK);
190 
191 	/* Set up control registers. */
192 	writel(0, &priv->regs->spcr1_lsb);
193 	writel(0, &priv->regs->spcr1_msb);
194 	writel(0, &priv->regs->newqp);
195 	writel(0, &priv->regs->endqp);
196 	writel(HIF_MSPI_SPCR2_SPIFIE_MASK, &priv->regs->spcr2);
197 	writel(0, &priv->regs->spcr3);
198 
199 	bcmstb_spi_hw_set_parms(priv);
200 
201 	return 0;
202 }
203 
bcmstb_spi_submit(struct bcmstb_spi_priv * priv,bool done)204 static void bcmstb_spi_submit(struct bcmstb_spi_priv *priv, bool done)
205 {
206 	debug("WR NEWQP: %d\n", 0);
207 	writel(0, &priv->regs->newqp);
208 
209 	debug("WR ENDQP: %d\n", priv->tx_slot - 1);
210 	writel(priv->tx_slot - 1, &priv->regs->endqp);
211 
212 	if (done) {
213 		debug("WR CDRAM[%d]: %02x\n", priv->tx_slot - 1,
214 		      readl(&priv->regs->cdram[priv->tx_slot - 1]) & ~0x80);
215 		writel(readl(&priv->regs->cdram[priv->tx_slot - 1]) & ~0x80,
216 		       &priv->regs->cdram[priv->tx_slot - 1]);
217 	}
218 
219 	/* Force chip select first time. */
220 	if (priv->curr_cs != priv->default_cs) {
221 		debug("spi_xfer: switching chip select to %d\n",
222 		      priv->default_cs);
223 		writel((readl(priv->cs_reg) & ~0xff) | (1 << priv->default_cs),
224 		       priv->cs_reg);
225 		readl(priv->cs_reg);
226 		udelay(10);
227 		priv->curr_cs = priv->default_cs;
228 	}
229 
230 	debug("WR WRITE_LOCK: %02x\n", 1);
231 	writel((readl(&priv->regs->write_lock) &
232 		~HIF_MSPI_WRITE_LOCK_WRITE_LOCK_MASK) | 1,
233 	       &priv->regs->write_lock);
234 	readl(&priv->regs->write_lock);
235 
236 	debug("WR SPCR2: %02x\n",
237 	      HIF_MSPI_SPCR2_SPIFIE_MASK |
238 	      HIF_MSPI_SPCR2_SPE_MASK |
239 	      HIF_MSPI_SPCR2_CONT_AFTER_CMD_MASK);
240 	writel(HIF_MSPI_SPCR2_SPIFIE_MASK |
241 	       HIF_MSPI_SPCR2_SPE_MASK |
242 	       HIF_MSPI_SPCR2_CONT_AFTER_CMD_MASK,
243 	       &priv->regs->spcr2);
244 }
245 
bcmstb_spi_wait(struct bcmstb_spi_priv * priv)246 static int bcmstb_spi_wait(struct bcmstb_spi_priv *priv)
247 {
248 	u32 start_time = get_timer(0);
249 	u32 status = readl(&priv->regs->mspi_status);
250 
251 	while (!(status & 1)) {
252 		if (get_timer(start_time) > HIF_MSPI_WAIT)
253 			return -ETIMEDOUT;
254 		status = readl(&priv->regs->mspi_status);
255 	}
256 
257 	writel(readl(&priv->regs->mspi_status) & ~1, &priv->regs->mspi_status);
258 	bcmstb_spi_clear_interrupt(priv->hif_spi_intr2,
259 				   HIF_SPI_INTR2_CPU_SET_MSPI_DONE_MASK);
260 
261 	return 0;
262 }
263 
bcmstb_spi_xfer(struct udevice * dev,unsigned int bitlen,const void * dout,void * din,unsigned long flags)264 static int bcmstb_spi_xfer(struct udevice *dev, unsigned int bitlen,
265 			   const void *dout, void *din, unsigned long flags)
266 {
267 	uint len = bitlen / 8;
268 	uint tx_len = len;
269 	uint rx_len = len;
270 	const u8 *out_bytes = (u8 *)dout;
271 	u8 *in_bytes = (u8 *)din;
272 	struct udevice *bus = dev_get_parent(dev);
273 	struct bcmstb_spi_priv *priv = dev_get_priv(bus);
274 	struct bcmstb_hif_mspi_regs *regs = priv->regs;
275 
276 	debug("spi_xfer: %d, t: 0x%p, r: 0x%p, f: %lx\n",
277 	      len, dout, din, flags);
278 	debug("spi_xfer: chip select: %x\n", readl(priv->cs_reg) & 0xff);
279 	debug("spi_xfer: tx addr: 0x%p\n", &regs->txram[0]);
280 	debug("spi_xfer: rx addr: 0x%p\n", &regs->rxram[0]);
281 	debug("spi_xfer: cd addr: 0x%p\n", &regs->cdram[0]);
282 
283 	if (flags & SPI_XFER_END) {
284 		debug("spi_xfer: clearing saved din address: 0x%p\n",
285 		      priv->saved_din_addr);
286 		priv->saved_din_addr = NULL;
287 		priv->saved_cmd_len = 0;
288 		memset(priv->saved_cmd, 0, NUM_CDRAM);
289 	}
290 
291 	if (bitlen == 0)
292 		return 0;
293 
294 	if (bitlen % 8) {
295 		printf("%s: Non-byte-aligned transfer\n", __func__);
296 		return -EOPNOTSUPP;
297 	}
298 
299 	if (flags & ~(SPI_XFER_BEGIN | SPI_XFER_END)) {
300 		printf("%s: Unsupported flags: %lx\n", __func__, flags);
301 		return -EOPNOTSUPP;
302 	}
303 
304 	if (flags & SPI_XFER_BEGIN) {
305 		priv->tx_slot = 0;
306 		priv->rx_slot = 0;
307 
308 		if (out_bytes && len > NUM_CDRAM) {
309 			printf("%s: Unable to save transfer\n", __func__);
310 			return -EOPNOTSUPP;
311 		}
312 
313 		if (out_bytes && !(flags & SPI_XFER_END)) {
314 			/*
315 			 * This is the start of a transmit operation
316 			 * that will need repeating if the calling
317 			 * code polls for the result.  Save it for
318 			 * subsequent transmission.
319 			 */
320 			debug("spi_xfer: saving command: %x, %d\n",
321 			      out_bytes[0], len);
322 			priv->saved_cmd_len = len;
323 			memcpy(priv->saved_cmd, out_bytes, priv->saved_cmd_len);
324 		}
325 	}
326 
327 	if (!(flags & (SPI_XFER_BEGIN | SPI_XFER_END))) {
328 		if (priv->saved_din_addr == din) {
329 			/*
330 			 * The caller is polling for status.  Repeat
331 			 * the last transmission.
332 			 */
333 			int ret = 0;
334 
335 			debug("spi_xfer: Making recursive call\n");
336 			ret = bcmstb_spi_xfer(dev, priv->saved_cmd_len * 8,
337 					      priv->saved_cmd, NULL,
338 					      SPI_XFER_BEGIN);
339 			if (ret) {
340 				printf("%s: Recursive call failed\n", __func__);
341 				return ret;
342 			}
343 		} else {
344 			debug("spi_xfer: saving din address: 0x%p\n", din);
345 			priv->saved_din_addr = din;
346 		}
347 	}
348 
349 	while (rx_len > 0) {
350 		priv->rx_slot = priv->tx_slot;
351 
352 		while (priv->tx_slot < NUM_CDRAM && tx_len > 0) {
353 			bcmstb_spi_hw_set_parms(priv);
354 			debug("WR TXRAM[%d]: %02x\n", priv->tx_slot,
355 			      out_bytes ? out_bytes[len - tx_len] : 0xff);
356 			writel(out_bytes ? out_bytes[len - tx_len] : 0xff,
357 			       &regs->txram[priv->tx_slot << 1]);
358 			debug("WR CDRAM[%d]: %02x\n", priv->tx_slot, 0x8e);
359 			writel(0x8e, &regs->cdram[priv->tx_slot]);
360 			priv->tx_slot++;
361 			tx_len--;
362 			if (!in_bytes)
363 				rx_len--;
364 		}
365 
366 		debug("spi_xfer: early return clauses: %d, %d, %d\n",
367 		      len <= NUM_CDRAM,
368 		      !in_bytes,
369 		      (flags & (SPI_XFER_BEGIN |
370 				SPI_XFER_END)) == SPI_XFER_BEGIN);
371 		if (len <= NUM_CDRAM &&
372 		    !in_bytes &&
373 		    (flags & (SPI_XFER_BEGIN | SPI_XFER_END)) == SPI_XFER_BEGIN)
374 			return 0;
375 
376 		bcmstb_spi_submit(priv, tx_len == 0);
377 
378 		if (bcmstb_spi_wait(priv) == -ETIMEDOUT) {
379 			printf("%s: Timed out\n", __func__);
380 			return -ETIMEDOUT;
381 		}
382 
383 		priv->tx_slot %= NUM_CDRAM;
384 
385 		if (in_bytes) {
386 			while (priv->rx_slot < NUM_CDRAM && rx_len > 0) {
387 				in_bytes[len - rx_len] =
388 					readl(&regs->rxram[(priv->rx_slot << 1)
389 							   + 1])
390 					& 0xff;
391 				debug("RD RXRAM[%d]: %02x\n",
392 				      priv->rx_slot, in_bytes[len - rx_len]);
393 				priv->rx_slot++;
394 				rx_len--;
395 			}
396 		}
397 	}
398 
399 	if (flags & SPI_XFER_END) {
400 		debug("WR WRITE_LOCK: %02x\n", 0);
401 		writel((readl(&priv->regs->write_lock) &
402 			~HIF_MSPI_WRITE_LOCK_WRITE_LOCK_MASK) | 0,
403 		       &priv->regs->write_lock);
404 		readl(&priv->regs->write_lock);
405 	}
406 
407 	return 0;
408 }
409 
bcmstb_spi_set_speed(struct udevice * dev,uint speed)410 static int bcmstb_spi_set_speed(struct udevice *dev, uint speed)
411 {
412 	return 0;
413 }
414 
bcmstb_spi_set_mode(struct udevice * dev,uint mode)415 static int bcmstb_spi_set_mode(struct udevice *dev, uint mode)
416 {
417 	return 0;
418 }
419 
420 static const struct dm_spi_ops bcmstb_spi_ops = {
421 	.xfer		= bcmstb_spi_xfer,
422 	.set_speed	= bcmstb_spi_set_speed,
423 	.set_mode	= bcmstb_spi_set_mode,
424 };
425 
426 static const struct udevice_id bcmstb_spi_id[] = {
427 	{ .compatible = "brcm,spi-brcmstb" },
428 	{ }
429 };
430 
431 U_BOOT_DRIVER(bcmstb_spi) = {
432 	.name				= "bcmstb_spi",
433 	.id				= UCLASS_SPI,
434 	.of_match			= bcmstb_spi_id,
435 	.ops				= &bcmstb_spi_ops,
436 	.of_to_plat		= bcmstb_spi_of_to_plat,
437 	.probe				= bcmstb_spi_probe,
438 	.plat_auto	= sizeof(struct bcmstb_spi_plat),
439 	.priv_auto		= sizeof(struct bcmstb_spi_priv),
440 };
441