1 /**
2 * \brief HAVEGE: HArdware Volatile Entropy Gathering and Expansion
3 *
4 * Copyright The Mbed TLS Contributors
5 * SPDX-License-Identifier: Apache-2.0
6 *
7 * Licensed under the Apache License, Version 2.0 (the "License"); you may
8 * not use this file except in compliance with the License.
9 * You may obtain a copy of the License at
10 *
11 * http://www.apache.org/licenses/LICENSE-2.0
12 *
13 * Unless required by applicable law or agreed to in writing, software
14 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16 * See the License for the specific language governing permissions and
17 * limitations under the License.
18 */
19 /*
20 * The HAVEGE RNG was designed by Andre Seznec in 2002.
21 *
22 * http://www.irisa.fr/caps/projects/hipsor/publi.php
23 *
24 * Contact: seznec(at)irisa_dot_fr - orocheco(at)irisa_dot_fr
25 */
26
27 #include "common.h"
28
29 #if defined(MBEDTLS_HAVEGE_C)
30
31 #include "mbedtls/havege.h"
32 #include "mbedtls/timing.h"
33 #include "mbedtls/platform_util.h"
34
35 #include <stdint.h>
36 #include <string.h>
37
38 /* ------------------------------------------------------------------------
39 * On average, one iteration accesses two 8-word blocks in the havege WALK
40 * table, and generates 16 words in the RES array.
41 *
42 * The data read in the WALK table is updated and permuted after each use.
43 * The result of the hardware clock counter read is used for this update.
44 *
45 * 25 conditional tests are present. The conditional tests are grouped in
46 * two nested groups of 12 conditional tests and 1 test that controls the
47 * permutation; on average, there should be 6 tests executed and 3 of them
48 * should be mispredicted.
49 * ------------------------------------------------------------------------
50 */
51
52 #define SWAP(X,Y) { uint32_t *T = (X); (X) = (Y); (Y) = T; }
53
54 #define TST1_ENTER if( PTEST & 1 ) { PTEST ^= 3; PTEST >>= 1;
55 #define TST2_ENTER if( PTEST & 1 ) { PTEST ^= 3; PTEST >>= 1;
56
57 #define TST1_LEAVE U1++; }
58 #define TST2_LEAVE U2++; }
59
60 #define ONE_ITERATION \
61 \
62 PTEST = PT1 >> 20; \
63 \
64 TST1_ENTER TST1_ENTER TST1_ENTER TST1_ENTER \
65 TST1_ENTER TST1_ENTER TST1_ENTER TST1_ENTER \
66 TST1_ENTER TST1_ENTER TST1_ENTER TST1_ENTER \
67 \
68 TST1_LEAVE TST1_LEAVE TST1_LEAVE TST1_LEAVE \
69 TST1_LEAVE TST1_LEAVE TST1_LEAVE TST1_LEAVE \
70 TST1_LEAVE TST1_LEAVE TST1_LEAVE TST1_LEAVE \
71 \
72 PTX = (PT1 >> 18) & 7; \
73 PT1 &= 0x1FFF; \
74 PT2 &= 0x1FFF; \
75 CLK = (uint32_t) mbedtls_timing_hardclock(); \
76 \
77 i = 0; \
78 A = &WALK[PT1 ]; RES[i++] ^= *A; \
79 B = &WALK[PT2 ]; RES[i++] ^= *B; \
80 C = &WALK[PT1 ^ 1]; RES[i++] ^= *C; \
81 D = &WALK[PT2 ^ 4]; RES[i++] ^= *D; \
82 \
83 IN = (*A >> (1)) ^ (*A << (31)) ^ CLK; \
84 *A = (*B >> (2)) ^ (*B << (30)) ^ CLK; \
85 *B = IN ^ U1; \
86 *C = (*C >> (3)) ^ (*C << (29)) ^ CLK; \
87 *D = (*D >> (4)) ^ (*D << (28)) ^ CLK; \
88 \
89 A = &WALK[PT1 ^ 2]; RES[i++] ^= *A; \
90 B = &WALK[PT2 ^ 2]; RES[i++] ^= *B; \
91 C = &WALK[PT1 ^ 3]; RES[i++] ^= *C; \
92 D = &WALK[PT2 ^ 6]; RES[i++] ^= *D; \
93 \
94 if( PTEST & 1 ) SWAP( A, C ); \
95 \
96 IN = (*A >> (5)) ^ (*A << (27)) ^ CLK; \
97 *A = (*B >> (6)) ^ (*B << (26)) ^ CLK; \
98 *B = IN; CLK = (uint32_t) mbedtls_timing_hardclock(); \
99 *C = (*C >> (7)) ^ (*C << (25)) ^ CLK; \
100 *D = (*D >> (8)) ^ (*D << (24)) ^ CLK; \
101 \
102 A = &WALK[PT1 ^ 4]; \
103 B = &WALK[PT2 ^ 1]; \
104 \
105 PTEST = PT2 >> 1; \
106 \
107 PT2 = (RES[(i - 8) ^ PTY] ^ WALK[PT2 ^ PTY ^ 7]); \
108 PT2 = ((PT2 & 0x1FFF) & (~8)) ^ ((PT1 ^ 8) & 0x8); \
109 PTY = (PT2 >> 10) & 7; \
110 \
111 TST2_ENTER TST2_ENTER TST2_ENTER TST2_ENTER \
112 TST2_ENTER TST2_ENTER TST2_ENTER TST2_ENTER \
113 TST2_ENTER TST2_ENTER TST2_ENTER TST2_ENTER \
114 \
115 TST2_LEAVE TST2_LEAVE TST2_LEAVE TST2_LEAVE \
116 TST2_LEAVE TST2_LEAVE TST2_LEAVE TST2_LEAVE \
117 TST2_LEAVE TST2_LEAVE TST2_LEAVE TST2_LEAVE \
118 \
119 C = &WALK[PT1 ^ 5]; \
120 D = &WALK[PT2 ^ 5]; \
121 \
122 RES[i++] ^= *A; \
123 RES[i++] ^= *B; \
124 RES[i++] ^= *C; \
125 RES[i++] ^= *D; \
126 \
127 IN = (*A >> ( 9)) ^ (*A << (23)) ^ CLK; \
128 *A = (*B >> (10)) ^ (*B << (22)) ^ CLK; \
129 *B = IN ^ U2; \
130 *C = (*C >> (11)) ^ (*C << (21)) ^ CLK; \
131 *D = (*D >> (12)) ^ (*D << (20)) ^ CLK; \
132 \
133 A = &WALK[PT1 ^ 6]; RES[i++] ^= *A; \
134 B = &WALK[PT2 ^ 3]; RES[i++] ^= *B; \
135 C = &WALK[PT1 ^ 7]; RES[i++] ^= *C; \
136 D = &WALK[PT2 ^ 7]; RES[i++] ^= *D; \
137 \
138 IN = (*A >> (13)) ^ (*A << (19)) ^ CLK; \
139 *A = (*B >> (14)) ^ (*B << (18)) ^ CLK; \
140 *B = IN; \
141 *C = (*C >> (15)) ^ (*C << (17)) ^ CLK; \
142 *D = (*D >> (16)) ^ (*D << (16)) ^ CLK; \
143 \
144 PT1 = ( RES[( i - 8 ) ^ PTX] ^ \
145 WALK[PT1 ^ PTX ^ 7] ) & (~1); \
146 PT1 ^= (PT2 ^ 0x10) & 0x10; \
147 \
148 for( n++, i = 0; i < 16; i++ ) \
149 hs->pool[n % MBEDTLS_HAVEGE_COLLECT_SIZE] ^= RES[i];
150
151 /*
152 * Entropy gathering function
153 */
havege_fill(mbedtls_havege_state * hs)154 static void havege_fill( mbedtls_havege_state *hs )
155 {
156 size_t n = 0;
157 size_t i;
158 uint32_t U1, U2, *A, *B, *C, *D;
159 uint32_t PT1, PT2, *WALK, RES[16];
160 uint32_t PTX, PTY, CLK, PTEST, IN;
161
162 WALK = hs->WALK;
163 PT1 = hs->PT1;
164 PT2 = hs->PT2;
165
166 PTX = U1 = 0;
167 PTY = U2 = 0;
168
169 (void)PTX;
170
171 memset( RES, 0, sizeof( RES ) );
172
173 while( n < MBEDTLS_HAVEGE_COLLECT_SIZE * 4 )
174 {
175 ONE_ITERATION
176 ONE_ITERATION
177 ONE_ITERATION
178 ONE_ITERATION
179 }
180
181 hs->PT1 = PT1;
182 hs->PT2 = PT2;
183
184 hs->offset[0] = 0;
185 hs->offset[1] = MBEDTLS_HAVEGE_COLLECT_SIZE / 2;
186 }
187
188 /*
189 * HAVEGE initialization
190 */
mbedtls_havege_init(mbedtls_havege_state * hs)191 void mbedtls_havege_init( mbedtls_havege_state *hs )
192 {
193 memset( hs, 0, sizeof( mbedtls_havege_state ) );
194
195 havege_fill( hs );
196 }
197
mbedtls_havege_free(mbedtls_havege_state * hs)198 void mbedtls_havege_free( mbedtls_havege_state *hs )
199 {
200 if( hs == NULL )
201 return;
202
203 mbedtls_platform_zeroize( hs, sizeof( mbedtls_havege_state ) );
204 }
205
206 /*
207 * HAVEGE rand function
208 */
mbedtls_havege_random(void * p_rng,unsigned char * buf,size_t len)209 int mbedtls_havege_random( void *p_rng, unsigned char *buf, size_t len )
210 {
211 uint32_t val;
212 size_t use_len;
213 mbedtls_havege_state *hs = (mbedtls_havege_state *) p_rng;
214 unsigned char *p = buf;
215
216 while( len > 0 )
217 {
218 use_len = len;
219 if( use_len > sizeof( val ) )
220 use_len = sizeof( val );
221
222 if( hs->offset[1] >= MBEDTLS_HAVEGE_COLLECT_SIZE )
223 havege_fill( hs );
224
225 val = hs->pool[hs->offset[0]++];
226 val ^= hs->pool[hs->offset[1]++];
227
228 memcpy( p, &val, use_len );
229
230 len -= use_len;
231 p += use_len;
232 }
233
234 return( 0 );
235 }
236
237 #endif /* MBEDTLS_HAVEGE_C */
238