1 /**
2  *  \brief HAVEGE: HArdware Volatile Entropy Gathering and Expansion
3  *
4  *  Copyright The Mbed TLS Contributors
5  *  SPDX-License-Identifier: Apache-2.0
6  *
7  *  Licensed under the Apache License, Version 2.0 (the "License"); you may
8  *  not use this file except in compliance with the License.
9  *  You may obtain a copy of the License at
10  *
11  *  http://www.apache.org/licenses/LICENSE-2.0
12  *
13  *  Unless required by applicable law or agreed to in writing, software
14  *  distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
15  *  WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
16  *  See the License for the specific language governing permissions and
17  *  limitations under the License.
18  */
19 /*
20  *  The HAVEGE RNG was designed by Andre Seznec in 2002.
21  *
22  *  http://www.irisa.fr/caps/projects/hipsor/publi.php
23  *
24  *  Contact: seznec(at)irisa_dot_fr - orocheco(at)irisa_dot_fr
25  */
26 
27 #include "common.h"
28 
29 #if defined(MBEDTLS_HAVEGE_C)
30 
31 #include "mbedtls/havege.h"
32 #include "mbedtls/timing.h"
33 #include "mbedtls/platform_util.h"
34 
35 #include <stdint.h>
36 #include <string.h>
37 
38 /* ------------------------------------------------------------------------
39  * On average, one iteration accesses two 8-word blocks in the havege WALK
40  * table, and generates 16 words in the RES array.
41  *
42  * The data read in the WALK table is updated and permuted after each use.
43  * The result of the hardware clock counter read is used  for this update.
44  *
45  * 25 conditional tests are present.  The conditional tests are grouped in
46  * two nested  groups of 12 conditional tests and 1 test that controls the
47  * permutation; on average, there should be 6 tests executed and 3 of them
48  * should be mispredicted.
49  * ------------------------------------------------------------------------
50  */
51 
52 #define SWAP(X,Y) { uint32_t *T = (X); (X) = (Y); (Y) = T; }
53 
54 #define TST1_ENTER if( PTEST & 1 ) { PTEST ^= 3; PTEST >>= 1;
55 #define TST2_ENTER if( PTEST & 1 ) { PTEST ^= 3; PTEST >>= 1;
56 
57 #define TST1_LEAVE U1++; }
58 #define TST2_LEAVE U2++; }
59 
60 #define ONE_ITERATION                                   \
61                                                         \
62     PTEST = PT1 >> 20;                                  \
63                                                         \
64     TST1_ENTER  TST1_ENTER  TST1_ENTER  TST1_ENTER      \
65     TST1_ENTER  TST1_ENTER  TST1_ENTER  TST1_ENTER      \
66     TST1_ENTER  TST1_ENTER  TST1_ENTER  TST1_ENTER      \
67                                                         \
68     TST1_LEAVE  TST1_LEAVE  TST1_LEAVE  TST1_LEAVE      \
69     TST1_LEAVE  TST1_LEAVE  TST1_LEAVE  TST1_LEAVE      \
70     TST1_LEAVE  TST1_LEAVE  TST1_LEAVE  TST1_LEAVE      \
71                                                         \
72     PTX = (PT1 >> 18) & 7;                              \
73     PT1 &= 0x1FFF;                                      \
74     PT2 &= 0x1FFF;                                      \
75     CLK = (uint32_t) mbedtls_timing_hardclock();        \
76                                                         \
77     i = 0;                                              \
78     A = &WALK[PT1    ]; RES[i++] ^= *A;                 \
79     B = &WALK[PT2    ]; RES[i++] ^= *B;                 \
80     C = &WALK[PT1 ^ 1]; RES[i++] ^= *C;                 \
81     D = &WALK[PT2 ^ 4]; RES[i++] ^= *D;                 \
82                                                         \
83     IN = (*A >> (1)) ^ (*A << (31)) ^ CLK;              \
84     *A = (*B >> (2)) ^ (*B << (30)) ^ CLK;              \
85     *B = IN ^ U1;                                       \
86     *C = (*C >> (3)) ^ (*C << (29)) ^ CLK;              \
87     *D = (*D >> (4)) ^ (*D << (28)) ^ CLK;              \
88                                                         \
89     A = &WALK[PT1 ^ 2]; RES[i++] ^= *A;                 \
90     B = &WALK[PT2 ^ 2]; RES[i++] ^= *B;                 \
91     C = &WALK[PT1 ^ 3]; RES[i++] ^= *C;                 \
92     D = &WALK[PT2 ^ 6]; RES[i++] ^= *D;                 \
93                                                         \
94     if( PTEST & 1 ) SWAP( A, C );                       \
95                                                         \
96     IN = (*A >> (5)) ^ (*A << (27)) ^ CLK;              \
97     *A = (*B >> (6)) ^ (*B << (26)) ^ CLK;              \
98     *B = IN; CLK = (uint32_t) mbedtls_timing_hardclock();       \
99     *C = (*C >> (7)) ^ (*C << (25)) ^ CLK;              \
100     *D = (*D >> (8)) ^ (*D << (24)) ^ CLK;              \
101                                                         \
102     A = &WALK[PT1 ^ 4];                                 \
103     B = &WALK[PT2 ^ 1];                                 \
104                                                         \
105     PTEST = PT2 >> 1;                                   \
106                                                         \
107     PT2 = (RES[(i - 8) ^ PTY] ^ WALK[PT2 ^ PTY ^ 7]);   \
108     PT2 = ((PT2 & 0x1FFF) & (~8)) ^ ((PT1 ^ 8) & 0x8);  \
109     PTY = (PT2 >> 10) & 7;                              \
110                                                         \
111     TST2_ENTER  TST2_ENTER  TST2_ENTER  TST2_ENTER      \
112     TST2_ENTER  TST2_ENTER  TST2_ENTER  TST2_ENTER      \
113     TST2_ENTER  TST2_ENTER  TST2_ENTER  TST2_ENTER      \
114                                                         \
115     TST2_LEAVE  TST2_LEAVE  TST2_LEAVE  TST2_LEAVE      \
116     TST2_LEAVE  TST2_LEAVE  TST2_LEAVE  TST2_LEAVE      \
117     TST2_LEAVE  TST2_LEAVE  TST2_LEAVE  TST2_LEAVE      \
118                                                         \
119     C = &WALK[PT1 ^ 5];                                 \
120     D = &WALK[PT2 ^ 5];                                 \
121                                                         \
122     RES[i++] ^= *A;                                     \
123     RES[i++] ^= *B;                                     \
124     RES[i++] ^= *C;                                     \
125     RES[i++] ^= *D;                                     \
126                                                         \
127     IN = (*A >> ( 9)) ^ (*A << (23)) ^ CLK;             \
128     *A = (*B >> (10)) ^ (*B << (22)) ^ CLK;             \
129     *B = IN ^ U2;                                       \
130     *C = (*C >> (11)) ^ (*C << (21)) ^ CLK;             \
131     *D = (*D >> (12)) ^ (*D << (20)) ^ CLK;             \
132                                                         \
133     A = &WALK[PT1 ^ 6]; RES[i++] ^= *A;                 \
134     B = &WALK[PT2 ^ 3]; RES[i++] ^= *B;                 \
135     C = &WALK[PT1 ^ 7]; RES[i++] ^= *C;                 \
136     D = &WALK[PT2 ^ 7]; RES[i++] ^= *D;                 \
137                                                         \
138     IN = (*A >> (13)) ^ (*A << (19)) ^ CLK;             \
139     *A = (*B >> (14)) ^ (*B << (18)) ^ CLK;             \
140     *B = IN;                                            \
141     *C = (*C >> (15)) ^ (*C << (17)) ^ CLK;             \
142     *D = (*D >> (16)) ^ (*D << (16)) ^ CLK;             \
143                                                         \
144     PT1 = ( RES[( i - 8 ) ^ PTX] ^                      \
145             WALK[PT1 ^ PTX ^ 7] ) & (~1);               \
146     PT1 ^= (PT2 ^ 0x10) & 0x10;                         \
147                                                         \
148     for( n++, i = 0; i < 16; i++ )                      \
149         hs->pool[n % MBEDTLS_HAVEGE_COLLECT_SIZE] ^= RES[i];
150 
151 /*
152  * Entropy gathering function
153  */
havege_fill(mbedtls_havege_state * hs)154 static void havege_fill( mbedtls_havege_state *hs )
155 {
156     size_t n = 0;
157     size_t i;
158     uint32_t  U1,  U2, *A, *B, *C, *D;
159     uint32_t PT1, PT2, *WALK, RES[16];
160     uint32_t PTX, PTY, CLK, PTEST, IN;
161 
162     WALK = hs->WALK;
163     PT1  = hs->PT1;
164     PT2  = hs->PT2;
165 
166     PTX  = U1 = 0;
167     PTY  = U2 = 0;
168 
169     (void)PTX;
170 
171     memset( RES, 0, sizeof( RES ) );
172 
173     while( n < MBEDTLS_HAVEGE_COLLECT_SIZE * 4 )
174     {
175         ONE_ITERATION
176         ONE_ITERATION
177         ONE_ITERATION
178         ONE_ITERATION
179     }
180 
181     hs->PT1 = PT1;
182     hs->PT2 = PT2;
183 
184     hs->offset[0] = 0;
185     hs->offset[1] = MBEDTLS_HAVEGE_COLLECT_SIZE / 2;
186 }
187 
188 /*
189  * HAVEGE initialization
190  */
mbedtls_havege_init(mbedtls_havege_state * hs)191 void mbedtls_havege_init( mbedtls_havege_state *hs )
192 {
193     memset( hs, 0, sizeof( mbedtls_havege_state ) );
194 
195     havege_fill( hs );
196 }
197 
mbedtls_havege_free(mbedtls_havege_state * hs)198 void mbedtls_havege_free( mbedtls_havege_state *hs )
199 {
200     if( hs == NULL )
201         return;
202 
203     mbedtls_platform_zeroize( hs, sizeof( mbedtls_havege_state ) );
204 }
205 
206 /*
207  * HAVEGE rand function
208  */
mbedtls_havege_random(void * p_rng,unsigned char * buf,size_t len)209 int mbedtls_havege_random( void *p_rng, unsigned char *buf, size_t len )
210 {
211     uint32_t val;
212     size_t use_len;
213     mbedtls_havege_state *hs = (mbedtls_havege_state *) p_rng;
214     unsigned char *p = buf;
215 
216     while( len > 0 )
217     {
218         use_len = len;
219         if( use_len > sizeof( val ) )
220             use_len = sizeof( val );
221 
222         if( hs->offset[1] >= MBEDTLS_HAVEGE_COLLECT_SIZE )
223             havege_fill( hs );
224 
225         val  = hs->pool[hs->offset[0]++];
226         val ^= hs->pool[hs->offset[1]++];
227 
228         memcpy( p, &val, use_len );
229 
230         len -= use_len;
231         p += use_len;
232     }
233 
234     return( 0 );
235 }
236 
237 #endif /* MBEDTLS_HAVEGE_C */
238