1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_ENERGY_MODEL_H
3 #define _LINUX_ENERGY_MODEL_H
4 #include <linux/cpumask.h>
5 #include <linux/device.h>
6 #include <linux/jump_label.h>
7 #include <linux/kobject.h>
8 #include <linux/rcupdate.h>
9 #include <linux/sched/cpufreq.h>
10 #include <linux/sched/topology.h>
11 #include <linux/types.h>
12 
13 /**
14  * struct em_perf_state - Performance state of a performance domain
15  * @frequency:	The frequency in KHz, for consistency with CPUFreq
16  * @power:	The power consumed at this level (by 1 CPU or by a registered
17  *		device). It can be a total power: static and dynamic.
18  * @cost:	The cost coefficient associated with this level, used during
19  *		energy calculation. Equal to: power * max_frequency / frequency
20  * @flags:	see "em_perf_state flags" description below.
21  */
22 struct em_perf_state {
23 	unsigned long frequency;
24 	unsigned long power;
25 	unsigned long cost;
26 	unsigned long flags;
27 };
28 
29 /*
30  * em_perf_state flags:
31  *
32  * EM_PERF_STATE_INEFFICIENT: The performance state is inefficient. There is
33  * in this em_perf_domain, another performance state with a higher frequency
34  * but a lower or equal power cost. Such inefficient states are ignored when
35  * using em_pd_get_efficient_*() functions.
36  */
37 #define EM_PERF_STATE_INEFFICIENT BIT(0)
38 
39 /**
40  * struct em_perf_domain - Performance domain
41  * @table:		List of performance states, in ascending order
42  * @nr_perf_states:	Number of performance states
43  * @flags:		See "em_perf_domain flags"
44  * @cpus:		Cpumask covering the CPUs of the domain. It's here
45  *			for performance reasons to avoid potential cache
46  *			misses during energy calculations in the scheduler
47  *			and simplifies allocating/freeing that memory region.
48  *
49  * In case of CPU device, a "performance domain" represents a group of CPUs
50  * whose performance is scaled together. All CPUs of a performance domain
51  * must have the same micro-architecture. Performance domains often have
52  * a 1-to-1 mapping with CPUFreq policies. In case of other devices the @cpus
53  * field is unused.
54  */
55 struct em_perf_domain {
56 	struct em_perf_state *table;
57 	int nr_perf_states;
58 	unsigned long flags;
59 	unsigned long cpus[];
60 };
61 
62 /*
63  *  em_perf_domain flags:
64  *
65  *  EM_PERF_DOMAIN_MILLIWATTS: The power values are in milli-Watts or some
66  *  other scale.
67  *
68  *  EM_PERF_DOMAIN_SKIP_INEFFICIENCIES: Skip inefficient states when estimating
69  *  energy consumption.
70  */
71 #define EM_PERF_DOMAIN_MILLIWATTS BIT(0)
72 #define EM_PERF_DOMAIN_SKIP_INEFFICIENCIES BIT(1)
73 
74 #define em_span_cpus(em) (to_cpumask((em)->cpus))
75 
76 #ifdef CONFIG_ENERGY_MODEL
77 #define EM_MAX_POWER 0xFFFF
78 
79 /*
80  * Increase resolution of energy estimation calculations for 64-bit
81  * architectures. The extra resolution improves decision made by EAS for the
82  * task placement when two Performance Domains might provide similar energy
83  * estimation values (w/o better resolution the values could be equal).
84  *
85  * We increase resolution only if we have enough bits to allow this increased
86  * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
87  * are pretty high and the returns do not justify the increased costs.
88  */
89 #ifdef CONFIG_64BIT
90 #define em_scale_power(p) ((p) * 1000)
91 #else
92 #define em_scale_power(p) (p)
93 #endif
94 
95 struct em_data_callback {
96 	/**
97 	 * active_power() - Provide power at the next performance state of
98 	 *		a device
99 	 * @power	: Active power at the performance state
100 	 *		(modified)
101 	 * @freq	: Frequency at the performance state in kHz
102 	 *		(modified)
103 	 * @dev		: Device for which we do this operation (can be a CPU)
104 	 *
105 	 * active_power() must find the lowest performance state of 'dev' above
106 	 * 'freq' and update 'power' and 'freq' to the matching active power
107 	 * and frequency.
108 	 *
109 	 * In case of CPUs, the power is the one of a single CPU in the domain,
110 	 * expressed in milli-Watts or an abstract scale. It is expected to
111 	 * fit in the [0, EM_MAX_POWER] range.
112 	 *
113 	 * Return 0 on success.
114 	 */
115 	int (*active_power)(unsigned long *power, unsigned long *freq,
116 			    struct device *dev);
117 };
118 #define EM_DATA_CB(_active_power_cb) { .active_power = &_active_power_cb }
119 
120 struct em_perf_domain *em_cpu_get(int cpu);
121 struct em_perf_domain *em_pd_get(struct device *dev);
122 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
123 				struct em_data_callback *cb, cpumask_t *span,
124 				bool milliwatts);
125 void em_dev_unregister_perf_domain(struct device *dev);
126 
127 /**
128  * em_pd_get_efficient_state() - Get an efficient performance state from the EM
129  * @pd   : Performance domain for which we want an efficient frequency
130  * @freq : Frequency to map with the EM
131  *
132  * It is called from the scheduler code quite frequently and as a consequence
133  * doesn't implement any check.
134  *
135  * Return: An efficient performance state, high enough to meet @freq
136  * requirement.
137  */
138 static inline
em_pd_get_efficient_state(struct em_perf_domain * pd,unsigned long freq)139 struct em_perf_state *em_pd_get_efficient_state(struct em_perf_domain *pd,
140 						unsigned long freq)
141 {
142 	struct em_perf_state *ps;
143 	int i;
144 
145 	for (i = 0; i < pd->nr_perf_states; i++) {
146 		ps = &pd->table[i];
147 		if (ps->frequency >= freq) {
148 			if (pd->flags & EM_PERF_DOMAIN_SKIP_INEFFICIENCIES &&
149 			    ps->flags & EM_PERF_STATE_INEFFICIENT)
150 				continue;
151 			break;
152 		}
153 	}
154 
155 	return ps;
156 }
157 
158 /**
159  * em_cpu_energy() - Estimates the energy consumed by the CPUs of a
160  *		performance domain
161  * @pd		: performance domain for which energy has to be estimated
162  * @max_util	: highest utilization among CPUs of the domain
163  * @sum_util	: sum of the utilization of all CPUs in the domain
164  * @allowed_cpu_cap	: maximum allowed CPU capacity for the @pd, which
165  *			  might reflect reduced frequency (due to thermal)
166  *
167  * This function must be used only for CPU devices. There is no validation,
168  * i.e. if the EM is a CPU type and has cpumask allocated. It is called from
169  * the scheduler code quite frequently and that is why there is not checks.
170  *
171  * Return: the sum of the energy consumed by the CPUs of the domain assuming
172  * a capacity state satisfying the max utilization of the domain.
173  */
em_cpu_energy(struct em_perf_domain * pd,unsigned long max_util,unsigned long sum_util,unsigned long allowed_cpu_cap)174 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
175 				unsigned long max_util, unsigned long sum_util,
176 				unsigned long allowed_cpu_cap)
177 {
178 	unsigned long freq, scale_cpu;
179 	struct em_perf_state *ps;
180 	int cpu;
181 
182 	if (!sum_util)
183 		return 0;
184 
185 	/*
186 	 * In order to predict the performance state, map the utilization of
187 	 * the most utilized CPU of the performance domain to a requested
188 	 * frequency, like schedutil. Take also into account that the real
189 	 * frequency might be set lower (due to thermal capping). Thus, clamp
190 	 * max utilization to the allowed CPU capacity before calculating
191 	 * effective frequency.
192 	 */
193 	cpu = cpumask_first(to_cpumask(pd->cpus));
194 	scale_cpu = arch_scale_cpu_capacity(cpu);
195 	ps = &pd->table[pd->nr_perf_states - 1];
196 
197 	max_util = map_util_perf(max_util);
198 	max_util = min(max_util, allowed_cpu_cap);
199 	freq = map_util_freq(max_util, ps->frequency, scale_cpu);
200 
201 	/*
202 	 * Find the lowest performance state of the Energy Model above the
203 	 * requested frequency.
204 	 */
205 	ps = em_pd_get_efficient_state(pd, freq);
206 
207 	/*
208 	 * The capacity of a CPU in the domain at the performance state (ps)
209 	 * can be computed as:
210 	 *
211 	 *             ps->freq * scale_cpu
212 	 *   ps->cap = --------------------                          (1)
213 	 *                 cpu_max_freq
214 	 *
215 	 * So, ignoring the costs of idle states (which are not available in
216 	 * the EM), the energy consumed by this CPU at that performance state
217 	 * is estimated as:
218 	 *
219 	 *             ps->power * cpu_util
220 	 *   cpu_nrg = --------------------                          (2)
221 	 *                   ps->cap
222 	 *
223 	 * since 'cpu_util / ps->cap' represents its percentage of busy time.
224 	 *
225 	 *   NOTE: Although the result of this computation actually is in
226 	 *         units of power, it can be manipulated as an energy value
227 	 *         over a scheduling period, since it is assumed to be
228 	 *         constant during that interval.
229 	 *
230 	 * By injecting (1) in (2), 'cpu_nrg' can be re-expressed as a product
231 	 * of two terms:
232 	 *
233 	 *             ps->power * cpu_max_freq   cpu_util
234 	 *   cpu_nrg = ------------------------ * ---------          (3)
235 	 *                    ps->freq            scale_cpu
236 	 *
237 	 * The first term is static, and is stored in the em_perf_state struct
238 	 * as 'ps->cost'.
239 	 *
240 	 * Since all CPUs of the domain have the same micro-architecture, they
241 	 * share the same 'ps->cost', and the same CPU capacity. Hence, the
242 	 * total energy of the domain (which is the simple sum of the energy of
243 	 * all of its CPUs) can be factorized as:
244 	 *
245 	 *            ps->cost * \Sum cpu_util
246 	 *   pd_nrg = ------------------------                       (4)
247 	 *                  scale_cpu
248 	 */
249 	return ps->cost * sum_util / scale_cpu;
250 }
251 
252 /**
253  * em_pd_nr_perf_states() - Get the number of performance states of a perf.
254  *				domain
255  * @pd		: performance domain for which this must be done
256  *
257  * Return: the number of performance states in the performance domain table
258  */
em_pd_nr_perf_states(struct em_perf_domain * pd)259 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
260 {
261 	return pd->nr_perf_states;
262 }
263 
264 #else
265 struct em_data_callback {};
266 #define EM_DATA_CB(_active_power_cb) { }
267 
268 static inline
em_dev_register_perf_domain(struct device * dev,unsigned int nr_states,struct em_data_callback * cb,cpumask_t * span,bool milliwatts)269 int em_dev_register_perf_domain(struct device *dev, unsigned int nr_states,
270 				struct em_data_callback *cb, cpumask_t *span,
271 				bool milliwatts)
272 {
273 	return -EINVAL;
274 }
em_dev_unregister_perf_domain(struct device * dev)275 static inline void em_dev_unregister_perf_domain(struct device *dev)
276 {
277 }
em_cpu_get(int cpu)278 static inline struct em_perf_domain *em_cpu_get(int cpu)
279 {
280 	return NULL;
281 }
em_pd_get(struct device * dev)282 static inline struct em_perf_domain *em_pd_get(struct device *dev)
283 {
284 	return NULL;
285 }
em_cpu_energy(struct em_perf_domain * pd,unsigned long max_util,unsigned long sum_util,unsigned long allowed_cpu_cap)286 static inline unsigned long em_cpu_energy(struct em_perf_domain *pd,
287 			unsigned long max_util, unsigned long sum_util,
288 			unsigned long allowed_cpu_cap)
289 {
290 	return 0;
291 }
em_pd_nr_perf_states(struct em_perf_domain * pd)292 static inline int em_pd_nr_perf_states(struct em_perf_domain *pd)
293 {
294 	return 0;
295 }
296 #endif
297 
298 #endif
299