1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <xemul@openvz.org>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/page_counter.h>
18 #include <linux/vmpressure.h>
19 #include <linux/eventfd.h>
20 #include <linux/mm.h>
21 #include <linux/vmstat.h>
22 #include <linux/writeback.h>
23 #include <linux/page-flags.h>
24 
25 struct mem_cgroup;
26 struct obj_cgroup;
27 struct page;
28 struct mm_struct;
29 struct kmem_cache;
30 
31 /* Cgroup-specific page state, on top of universal node page state */
32 enum memcg_stat_item {
33 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 	MEMCG_SOCK,
35 	MEMCG_PERCPU_B,
36 	MEMCG_NR_STAT,
37 };
38 
39 enum memcg_memory_event {
40 	MEMCG_LOW,
41 	MEMCG_HIGH,
42 	MEMCG_MAX,
43 	MEMCG_OOM,
44 	MEMCG_OOM_KILL,
45 	MEMCG_SWAP_HIGH,
46 	MEMCG_SWAP_MAX,
47 	MEMCG_SWAP_FAIL,
48 	MEMCG_NR_MEMORY_EVENTS,
49 };
50 
51 struct mem_cgroup_reclaim_cookie {
52 	pg_data_t *pgdat;
53 	unsigned int generation;
54 };
55 
56 #ifdef CONFIG_MEMCG
57 
58 #define MEM_CGROUP_ID_SHIFT	16
59 #define MEM_CGROUP_ID_MAX	USHRT_MAX
60 
61 struct mem_cgroup_id {
62 	int id;
63 	refcount_t ref;
64 };
65 
66 /*
67  * Per memcg event counter is incremented at every pagein/pageout. With THP,
68  * it will be incremented by the number of pages. This counter is used
69  * to trigger some periodic events. This is straightforward and better
70  * than using jiffies etc. to handle periodic memcg event.
71  */
72 enum mem_cgroup_events_target {
73 	MEM_CGROUP_TARGET_THRESH,
74 	MEM_CGROUP_TARGET_SOFTLIMIT,
75 	MEM_CGROUP_NTARGETS,
76 };
77 
78 struct memcg_vmstats_percpu {
79 	/* Local (CPU and cgroup) page state & events */
80 	long			state[MEMCG_NR_STAT];
81 	unsigned long		events[NR_VM_EVENT_ITEMS];
82 
83 	/* Delta calculation for lockless upward propagation */
84 	long			state_prev[MEMCG_NR_STAT];
85 	unsigned long		events_prev[NR_VM_EVENT_ITEMS];
86 
87 	/* Cgroup1: threshold notifications & softlimit tree updates */
88 	unsigned long		nr_page_events;
89 	unsigned long		targets[MEM_CGROUP_NTARGETS];
90 };
91 
92 struct memcg_vmstats {
93 	/* Aggregated (CPU and subtree) page state & events */
94 	long			state[MEMCG_NR_STAT];
95 	unsigned long		events[NR_VM_EVENT_ITEMS];
96 
97 	/* Pending child counts during tree propagation */
98 	long			state_pending[MEMCG_NR_STAT];
99 	unsigned long		events_pending[NR_VM_EVENT_ITEMS];
100 };
101 
102 struct mem_cgroup_reclaim_iter {
103 	struct mem_cgroup *position;
104 	/* scan generation, increased every round-trip */
105 	unsigned int generation;
106 };
107 
108 /*
109  * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
110  * shrinkers, which have elements charged to this memcg.
111  */
112 struct shrinker_info {
113 	struct rcu_head rcu;
114 	atomic_long_t *nr_deferred;
115 	unsigned long *map;
116 };
117 
118 struct lruvec_stats_percpu {
119 	/* Local (CPU and cgroup) state */
120 	long state[NR_VM_NODE_STAT_ITEMS];
121 
122 	/* Delta calculation for lockless upward propagation */
123 	long state_prev[NR_VM_NODE_STAT_ITEMS];
124 };
125 
126 struct lruvec_stats {
127 	/* Aggregated (CPU and subtree) state */
128 	long state[NR_VM_NODE_STAT_ITEMS];
129 
130 	/* Pending child counts during tree propagation */
131 	long state_pending[NR_VM_NODE_STAT_ITEMS];
132 };
133 
134 /*
135  * per-node information in memory controller.
136  */
137 struct mem_cgroup_per_node {
138 	struct lruvec		lruvec;
139 
140 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
141 	struct lruvec_stats			lruvec_stats;
142 
143 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
144 
145 	struct mem_cgroup_reclaim_iter	iter;
146 
147 	struct shrinker_info __rcu	*shrinker_info;
148 
149 	struct rb_node		tree_node;	/* RB tree node */
150 	unsigned long		usage_in_excess;/* Set to the value by which */
151 						/* the soft limit is exceeded*/
152 	bool			on_tree;
153 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
154 						/* use container_of	   */
155 };
156 
157 struct mem_cgroup_threshold {
158 	struct eventfd_ctx *eventfd;
159 	unsigned long threshold;
160 };
161 
162 /* For threshold */
163 struct mem_cgroup_threshold_ary {
164 	/* An array index points to threshold just below or equal to usage. */
165 	int current_threshold;
166 	/* Size of entries[] */
167 	unsigned int size;
168 	/* Array of thresholds */
169 	struct mem_cgroup_threshold entries[];
170 };
171 
172 struct mem_cgroup_thresholds {
173 	/* Primary thresholds array */
174 	struct mem_cgroup_threshold_ary *primary;
175 	/*
176 	 * Spare threshold array.
177 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
178 	 * It must be able to store at least primary->size - 1 entries.
179 	 */
180 	struct mem_cgroup_threshold_ary *spare;
181 };
182 
183 #if defined(CONFIG_SMP)
184 struct memcg_padding {
185 	char x[0];
186 } ____cacheline_internodealigned_in_smp;
187 #define MEMCG_PADDING(name)      struct memcg_padding name
188 #else
189 #define MEMCG_PADDING(name)
190 #endif
191 
192 /*
193  * Remember four most recent foreign writebacks with dirty pages in this
194  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
195  * one in a given round, we're likely to catch it later if it keeps
196  * foreign-dirtying, so a fairly low count should be enough.
197  *
198  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
199  */
200 #define MEMCG_CGWB_FRN_CNT	4
201 
202 struct memcg_cgwb_frn {
203 	u64 bdi_id;			/* bdi->id of the foreign inode */
204 	int memcg_id;			/* memcg->css.id of foreign inode */
205 	u64 at;				/* jiffies_64 at the time of dirtying */
206 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
207 };
208 
209 /*
210  * Bucket for arbitrarily byte-sized objects charged to a memory
211  * cgroup. The bucket can be reparented in one piece when the cgroup
212  * is destroyed, without having to round up the individual references
213  * of all live memory objects in the wild.
214  */
215 struct obj_cgroup {
216 	struct percpu_ref refcnt;
217 	struct mem_cgroup *memcg;
218 	atomic_t nr_charged_bytes;
219 	union {
220 		struct list_head list;
221 		struct rcu_head rcu;
222 	};
223 };
224 
225 /*
226  * The memory controller data structure. The memory controller controls both
227  * page cache and RSS per cgroup. We would eventually like to provide
228  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
229  * to help the administrator determine what knobs to tune.
230  */
231 struct mem_cgroup {
232 	struct cgroup_subsys_state css;
233 
234 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
235 	struct mem_cgroup_id id;
236 
237 	/* Accounted resources */
238 	struct page_counter memory;		/* Both v1 & v2 */
239 
240 	union {
241 		struct page_counter swap;	/* v2 only */
242 		struct page_counter memsw;	/* v1 only */
243 	};
244 
245 	/* Legacy consumer-oriented counters */
246 	struct page_counter kmem;		/* v1 only */
247 	struct page_counter tcpmem;		/* v1 only */
248 
249 	/* Range enforcement for interrupt charges */
250 	struct work_struct high_work;
251 
252 	unsigned long soft_limit;
253 
254 	/* vmpressure notifications */
255 	struct vmpressure vmpressure;
256 
257 	/*
258 	 * Should the OOM killer kill all belonging tasks, had it kill one?
259 	 */
260 	bool oom_group;
261 
262 	/* protected by memcg_oom_lock */
263 	bool		oom_lock;
264 	int		under_oom;
265 
266 	int	swappiness;
267 	/* OOM-Killer disable */
268 	int		oom_kill_disable;
269 
270 	/* memory.events and memory.events.local */
271 	struct cgroup_file events_file;
272 	struct cgroup_file events_local_file;
273 
274 	/* handle for "memory.swap.events" */
275 	struct cgroup_file swap_events_file;
276 
277 	/* protect arrays of thresholds */
278 	struct mutex thresholds_lock;
279 
280 	/* thresholds for memory usage. RCU-protected */
281 	struct mem_cgroup_thresholds thresholds;
282 
283 	/* thresholds for mem+swap usage. RCU-protected */
284 	struct mem_cgroup_thresholds memsw_thresholds;
285 
286 	/* For oom notifier event fd */
287 	struct list_head oom_notify;
288 
289 	/*
290 	 * Should we move charges of a task when a task is moved into this
291 	 * mem_cgroup ? And what type of charges should we move ?
292 	 */
293 	unsigned long move_charge_at_immigrate;
294 	/* taken only while moving_account > 0 */
295 	spinlock_t		move_lock;
296 	unsigned long		move_lock_flags;
297 
298 	MEMCG_PADDING(_pad1_);
299 
300 	/* memory.stat */
301 	struct memcg_vmstats	vmstats;
302 
303 	/* memory.events */
304 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
305 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
306 
307 	unsigned long		socket_pressure;
308 
309 	/* Legacy tcp memory accounting */
310 	bool			tcpmem_active;
311 	int			tcpmem_pressure;
312 
313 #ifdef CONFIG_MEMCG_KMEM
314 	int kmemcg_id;
315 	struct obj_cgroup __rcu *objcg;
316 	struct list_head objcg_list; /* list of inherited objcgs */
317 #endif
318 
319 	MEMCG_PADDING(_pad2_);
320 
321 	/*
322 	 * set > 0 if pages under this cgroup are moving to other cgroup.
323 	 */
324 	atomic_t		moving_account;
325 	struct task_struct	*move_lock_task;
326 
327 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
328 
329 #ifdef CONFIG_CGROUP_WRITEBACK
330 	struct list_head cgwb_list;
331 	struct wb_domain cgwb_domain;
332 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
333 #endif
334 
335 	/* List of events which userspace want to receive */
336 	struct list_head event_list;
337 	spinlock_t event_list_lock;
338 
339 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
340 	struct deferred_split deferred_split_queue;
341 #endif
342 
343 	struct mem_cgroup_per_node *nodeinfo[];
344 };
345 
346 /*
347  * size of first charge trial. "32" comes from vmscan.c's magic value.
348  * TODO: maybe necessary to use big numbers in big irons.
349  */
350 #define MEMCG_CHARGE_BATCH 32U
351 
352 extern struct mem_cgroup *root_mem_cgroup;
353 
354 enum page_memcg_data_flags {
355 	/* page->memcg_data is a pointer to an objcgs vector */
356 	MEMCG_DATA_OBJCGS = (1UL << 0),
357 	/* page has been accounted as a non-slab kernel page */
358 	MEMCG_DATA_KMEM = (1UL << 1),
359 	/* the next bit after the last actual flag */
360 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
361 };
362 
363 #define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
364 
365 static inline bool folio_memcg_kmem(struct folio *folio);
366 
367 /*
368  * After the initialization objcg->memcg is always pointing at
369  * a valid memcg, but can be atomically swapped to the parent memcg.
370  *
371  * The caller must ensure that the returned memcg won't be released:
372  * e.g. acquire the rcu_read_lock or css_set_lock.
373  */
obj_cgroup_memcg(struct obj_cgroup * objcg)374 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
375 {
376 	return READ_ONCE(objcg->memcg);
377 }
378 
379 /*
380  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
381  * @folio: Pointer to the folio.
382  *
383  * Returns a pointer to the memory cgroup associated with the folio,
384  * or NULL. This function assumes that the folio is known to have a
385  * proper memory cgroup pointer. It's not safe to call this function
386  * against some type of folios, e.g. slab folios or ex-slab folios or
387  * kmem folios.
388  */
__folio_memcg(struct folio * folio)389 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
390 {
391 	unsigned long memcg_data = folio->memcg_data;
392 
393 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
394 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
395 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
396 
397 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
398 }
399 
400 /*
401  * __folio_objcg - get the object cgroup associated with a kmem folio.
402  * @folio: Pointer to the folio.
403  *
404  * Returns a pointer to the object cgroup associated with the folio,
405  * or NULL. This function assumes that the folio is known to have a
406  * proper object cgroup pointer. It's not safe to call this function
407  * against some type of folios, e.g. slab folios or ex-slab folios or
408  * LRU folios.
409  */
__folio_objcg(struct folio * folio)410 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
411 {
412 	unsigned long memcg_data = folio->memcg_data;
413 
414 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
415 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
416 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
417 
418 	return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
419 }
420 
421 /*
422  * folio_memcg - Get the memory cgroup associated with a folio.
423  * @folio: Pointer to the folio.
424  *
425  * Returns a pointer to the memory cgroup associated with the folio,
426  * or NULL. This function assumes that the folio is known to have a
427  * proper memory cgroup pointer. It's not safe to call this function
428  * against some type of folios, e.g. slab folios or ex-slab folios.
429  *
430  * For a non-kmem folio any of the following ensures folio and memcg binding
431  * stability:
432  *
433  * - the folio lock
434  * - LRU isolation
435  * - lock_page_memcg()
436  * - exclusive reference
437  *
438  * For a kmem folio a caller should hold an rcu read lock to protect memcg
439  * associated with a kmem folio from being released.
440  */
folio_memcg(struct folio * folio)441 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
442 {
443 	if (folio_memcg_kmem(folio))
444 		return obj_cgroup_memcg(__folio_objcg(folio));
445 	return __folio_memcg(folio);
446 }
447 
page_memcg(struct page * page)448 static inline struct mem_cgroup *page_memcg(struct page *page)
449 {
450 	return folio_memcg(page_folio(page));
451 }
452 
453 /**
454  * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
455  * @folio: Pointer to the folio.
456  *
457  * This function assumes that the folio is known to have a
458  * proper memory cgroup pointer. It's not safe to call this function
459  * against some type of folios, e.g. slab folios or ex-slab folios.
460  *
461  * Return: A pointer to the memory cgroup associated with the folio,
462  * or NULL.
463  */
folio_memcg_rcu(struct folio * folio)464 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
465 {
466 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
467 
468 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
469 	WARN_ON_ONCE(!rcu_read_lock_held());
470 
471 	if (memcg_data & MEMCG_DATA_KMEM) {
472 		struct obj_cgroup *objcg;
473 
474 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
475 		return obj_cgroup_memcg(objcg);
476 	}
477 
478 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
479 }
480 
481 /*
482  * page_memcg_check - get the memory cgroup associated with a page
483  * @page: a pointer to the page struct
484  *
485  * Returns a pointer to the memory cgroup associated with the page,
486  * or NULL. This function unlike page_memcg() can take any page
487  * as an argument. It has to be used in cases when it's not known if a page
488  * has an associated memory cgroup pointer or an object cgroups vector or
489  * an object cgroup.
490  *
491  * For a non-kmem page any of the following ensures page and memcg binding
492  * stability:
493  *
494  * - the page lock
495  * - LRU isolation
496  * - lock_page_memcg()
497  * - exclusive reference
498  *
499  * For a kmem page a caller should hold an rcu read lock to protect memcg
500  * associated with a kmem page from being released.
501  */
page_memcg_check(struct page * page)502 static inline struct mem_cgroup *page_memcg_check(struct page *page)
503 {
504 	/*
505 	 * Because page->memcg_data might be changed asynchronously
506 	 * for slab pages, READ_ONCE() should be used here.
507 	 */
508 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
509 
510 	if (memcg_data & MEMCG_DATA_OBJCGS)
511 		return NULL;
512 
513 	if (memcg_data & MEMCG_DATA_KMEM) {
514 		struct obj_cgroup *objcg;
515 
516 		objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
517 		return obj_cgroup_memcg(objcg);
518 	}
519 
520 	return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
521 }
522 
523 #ifdef CONFIG_MEMCG_KMEM
524 /*
525  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
526  * @folio: Pointer to the folio.
527  *
528  * Checks if the folio has MemcgKmem flag set. The caller must ensure
529  * that the folio has an associated memory cgroup. It's not safe to call
530  * this function against some types of folios, e.g. slab folios.
531  */
folio_memcg_kmem(struct folio * folio)532 static inline bool folio_memcg_kmem(struct folio *folio)
533 {
534 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
535 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
536 	return folio->memcg_data & MEMCG_DATA_KMEM;
537 }
538 
539 /*
540  * page_objcgs - get the object cgroups vector associated with a page
541  * @page: a pointer to the page struct
542  *
543  * Returns a pointer to the object cgroups vector associated with the page,
544  * or NULL. This function assumes that the page is known to have an
545  * associated object cgroups vector. It's not safe to call this function
546  * against pages, which might have an associated memory cgroup: e.g.
547  * kernel stack pages.
548  */
page_objcgs(struct page * page)549 static inline struct obj_cgroup **page_objcgs(struct page *page)
550 {
551 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
552 
553 	VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
554 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
555 
556 	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
557 }
558 
559 /*
560  * page_objcgs_check - get the object cgroups vector associated with a page
561  * @page: a pointer to the page struct
562  *
563  * Returns a pointer to the object cgroups vector associated with the page,
564  * or NULL. This function is safe to use if the page can be directly associated
565  * with a memory cgroup.
566  */
page_objcgs_check(struct page * page)567 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
568 {
569 	unsigned long memcg_data = READ_ONCE(page->memcg_data);
570 
571 	if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
572 		return NULL;
573 
574 	VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
575 
576 	return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
577 }
578 
579 #else
folio_memcg_kmem(struct folio * folio)580 static inline bool folio_memcg_kmem(struct folio *folio)
581 {
582 	return false;
583 }
584 
page_objcgs(struct page * page)585 static inline struct obj_cgroup **page_objcgs(struct page *page)
586 {
587 	return NULL;
588 }
589 
page_objcgs_check(struct page * page)590 static inline struct obj_cgroup **page_objcgs_check(struct page *page)
591 {
592 	return NULL;
593 }
594 #endif
595 
PageMemcgKmem(struct page * page)596 static inline bool PageMemcgKmem(struct page *page)
597 {
598 	return folio_memcg_kmem(page_folio(page));
599 }
600 
mem_cgroup_is_root(struct mem_cgroup * memcg)601 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
602 {
603 	return (memcg == root_mem_cgroup);
604 }
605 
mem_cgroup_disabled(void)606 static inline bool mem_cgroup_disabled(void)
607 {
608 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
609 }
610 
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)611 static inline void mem_cgroup_protection(struct mem_cgroup *root,
612 					 struct mem_cgroup *memcg,
613 					 unsigned long *min,
614 					 unsigned long *low)
615 {
616 	*min = *low = 0;
617 
618 	if (mem_cgroup_disabled())
619 		return;
620 
621 	/*
622 	 * There is no reclaim protection applied to a targeted reclaim.
623 	 * We are special casing this specific case here because
624 	 * mem_cgroup_protected calculation is not robust enough to keep
625 	 * the protection invariant for calculated effective values for
626 	 * parallel reclaimers with different reclaim target. This is
627 	 * especially a problem for tail memcgs (as they have pages on LRU)
628 	 * which would want to have effective values 0 for targeted reclaim
629 	 * but a different value for external reclaim.
630 	 *
631 	 * Example
632 	 * Let's have global and A's reclaim in parallel:
633 	 *  |
634 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
635 	 *  |\
636 	 *  | C (low = 1G, usage = 2.5G)
637 	 *  B (low = 1G, usage = 0.5G)
638 	 *
639 	 * For the global reclaim
640 	 * A.elow = A.low
641 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
642 	 * C.elow = min(C.usage, C.low)
643 	 *
644 	 * With the effective values resetting we have A reclaim
645 	 * A.elow = 0
646 	 * B.elow = B.low
647 	 * C.elow = C.low
648 	 *
649 	 * If the global reclaim races with A's reclaim then
650 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
651 	 * is possible and reclaiming B would be violating the protection.
652 	 *
653 	 */
654 	if (root == memcg)
655 		return;
656 
657 	*min = READ_ONCE(memcg->memory.emin);
658 	*low = READ_ONCE(memcg->memory.elow);
659 }
660 
661 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
662 				     struct mem_cgroup *memcg);
663 
mem_cgroup_supports_protection(struct mem_cgroup * memcg)664 static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
665 {
666 	/*
667 	 * The root memcg doesn't account charges, and doesn't support
668 	 * protection.
669 	 */
670 	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
671 
672 }
673 
mem_cgroup_below_low(struct mem_cgroup * memcg)674 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
675 {
676 	if (!mem_cgroup_supports_protection(memcg))
677 		return false;
678 
679 	return READ_ONCE(memcg->memory.elow) >=
680 		page_counter_read(&memcg->memory);
681 }
682 
mem_cgroup_below_min(struct mem_cgroup * memcg)683 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
684 {
685 	if (!mem_cgroup_supports_protection(memcg))
686 		return false;
687 
688 	return READ_ONCE(memcg->memory.emin) >=
689 		page_counter_read(&memcg->memory);
690 }
691 
692 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
693 
694 /**
695  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
696  * @folio: Folio to charge.
697  * @mm: mm context of the allocating task.
698  * @gfp: Reclaim mode.
699  *
700  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
701  * pages according to @gfp if necessary.  If @mm is NULL, try to
702  * charge to the active memcg.
703  *
704  * Do not use this for folios allocated for swapin.
705  *
706  * Return: 0 on success. Otherwise, an error code is returned.
707  */
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)708 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
709 				    gfp_t gfp)
710 {
711 	if (mem_cgroup_disabled())
712 		return 0;
713 	return __mem_cgroup_charge(folio, mm, gfp);
714 }
715 
716 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
717 				  gfp_t gfp, swp_entry_t entry);
718 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
719 
720 void __mem_cgroup_uncharge(struct folio *folio);
721 
722 /**
723  * mem_cgroup_uncharge - Uncharge a folio.
724  * @folio: Folio to uncharge.
725  *
726  * Uncharge a folio previously charged with mem_cgroup_charge().
727  */
mem_cgroup_uncharge(struct folio * folio)728 static inline void mem_cgroup_uncharge(struct folio *folio)
729 {
730 	if (mem_cgroup_disabled())
731 		return;
732 	__mem_cgroup_uncharge(folio);
733 }
734 
735 void __mem_cgroup_uncharge_list(struct list_head *page_list);
mem_cgroup_uncharge_list(struct list_head * page_list)736 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
737 {
738 	if (mem_cgroup_disabled())
739 		return;
740 	__mem_cgroup_uncharge_list(page_list);
741 }
742 
743 void mem_cgroup_migrate(struct folio *old, struct folio *new);
744 
745 /**
746  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
747  * @memcg: memcg of the wanted lruvec
748  * @pgdat: pglist_data
749  *
750  * Returns the lru list vector holding pages for a given @memcg &
751  * @pgdat combination. This can be the node lruvec, if the memory
752  * controller is disabled.
753  */
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)754 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
755 					       struct pglist_data *pgdat)
756 {
757 	struct mem_cgroup_per_node *mz;
758 	struct lruvec *lruvec;
759 
760 	if (mem_cgroup_disabled()) {
761 		lruvec = &pgdat->__lruvec;
762 		goto out;
763 	}
764 
765 	if (!memcg)
766 		memcg = root_mem_cgroup;
767 
768 	mz = memcg->nodeinfo[pgdat->node_id];
769 	lruvec = &mz->lruvec;
770 out:
771 	/*
772 	 * Since a node can be onlined after the mem_cgroup was created,
773 	 * we have to be prepared to initialize lruvec->pgdat here;
774 	 * and if offlined then reonlined, we need to reinitialize it.
775 	 */
776 	if (unlikely(lruvec->pgdat != pgdat))
777 		lruvec->pgdat = pgdat;
778 	return lruvec;
779 }
780 
781 /**
782  * folio_lruvec - return lruvec for isolating/putting an LRU folio
783  * @folio: Pointer to the folio.
784  *
785  * This function relies on folio->mem_cgroup being stable.
786  */
folio_lruvec(struct folio * folio)787 static inline struct lruvec *folio_lruvec(struct folio *folio)
788 {
789 	struct mem_cgroup *memcg = folio_memcg(folio);
790 
791 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
792 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
793 }
794 
795 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
796 
797 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
798 
799 struct lruvec *folio_lruvec_lock(struct folio *folio);
800 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
801 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
802 						unsigned long *flags);
803 
804 #ifdef CONFIG_DEBUG_VM
805 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
806 #else
807 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)808 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
809 {
810 }
811 #endif
812 
813 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)814 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
815 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
816 }
817 
obj_cgroup_tryget(struct obj_cgroup * objcg)818 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
819 {
820 	return percpu_ref_tryget(&objcg->refcnt);
821 }
822 
obj_cgroup_get(struct obj_cgroup * objcg)823 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
824 {
825 	percpu_ref_get(&objcg->refcnt);
826 }
827 
obj_cgroup_get_many(struct obj_cgroup * objcg,unsigned long nr)828 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
829 				       unsigned long nr)
830 {
831 	percpu_ref_get_many(&objcg->refcnt, nr);
832 }
833 
obj_cgroup_put(struct obj_cgroup * objcg)834 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
835 {
836 	percpu_ref_put(&objcg->refcnt);
837 }
838 
mem_cgroup_put(struct mem_cgroup * memcg)839 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
840 {
841 	if (memcg)
842 		css_put(&memcg->css);
843 }
844 
845 #define mem_cgroup_from_counter(counter, member)	\
846 	container_of(counter, struct mem_cgroup, member)
847 
848 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
849 				   struct mem_cgroup *,
850 				   struct mem_cgroup_reclaim_cookie *);
851 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
852 int mem_cgroup_scan_tasks(struct mem_cgroup *,
853 			  int (*)(struct task_struct *, void *), void *);
854 
mem_cgroup_id(struct mem_cgroup * memcg)855 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
856 {
857 	if (mem_cgroup_disabled())
858 		return 0;
859 
860 	return memcg->id.id;
861 }
862 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
863 
mem_cgroup_from_seq(struct seq_file * m)864 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
865 {
866 	return mem_cgroup_from_css(seq_css(m));
867 }
868 
lruvec_memcg(struct lruvec * lruvec)869 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
870 {
871 	struct mem_cgroup_per_node *mz;
872 
873 	if (mem_cgroup_disabled())
874 		return NULL;
875 
876 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
877 	return mz->memcg;
878 }
879 
880 /**
881  * parent_mem_cgroup - find the accounting parent of a memcg
882  * @memcg: memcg whose parent to find
883  *
884  * Returns the parent memcg, or NULL if this is the root or the memory
885  * controller is in legacy no-hierarchy mode.
886  */
parent_mem_cgroup(struct mem_cgroup * memcg)887 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
888 {
889 	if (!memcg->memory.parent)
890 		return NULL;
891 	return mem_cgroup_from_counter(memcg->memory.parent, memory);
892 }
893 
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)894 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
895 			      struct mem_cgroup *root)
896 {
897 	if (root == memcg)
898 		return true;
899 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
900 }
901 
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)902 static inline bool mm_match_cgroup(struct mm_struct *mm,
903 				   struct mem_cgroup *memcg)
904 {
905 	struct mem_cgroup *task_memcg;
906 	bool match = false;
907 
908 	rcu_read_lock();
909 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
910 	if (task_memcg)
911 		match = mem_cgroup_is_descendant(task_memcg, memcg);
912 	rcu_read_unlock();
913 	return match;
914 }
915 
916 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
917 ino_t page_cgroup_ino(struct page *page);
918 
mem_cgroup_online(struct mem_cgroup * memcg)919 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
920 {
921 	if (mem_cgroup_disabled())
922 		return true;
923 	return !!(memcg->css.flags & CSS_ONLINE);
924 }
925 
926 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
927 		int zid, int nr_pages);
928 
929 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)930 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
931 		enum lru_list lru, int zone_idx)
932 {
933 	struct mem_cgroup_per_node *mz;
934 
935 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
936 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
937 }
938 
939 void mem_cgroup_handle_over_high(void);
940 
941 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
942 
943 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
944 
945 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
946 				struct task_struct *p);
947 
948 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
949 
mem_cgroup_enter_user_fault(void)950 static inline void mem_cgroup_enter_user_fault(void)
951 {
952 	WARN_ON(current->in_user_fault);
953 	current->in_user_fault = 1;
954 }
955 
mem_cgroup_exit_user_fault(void)956 static inline void mem_cgroup_exit_user_fault(void)
957 {
958 	WARN_ON(!current->in_user_fault);
959 	current->in_user_fault = 0;
960 }
961 
task_in_memcg_oom(struct task_struct * p)962 static inline bool task_in_memcg_oom(struct task_struct *p)
963 {
964 	return p->memcg_in_oom;
965 }
966 
967 bool mem_cgroup_oom_synchronize(bool wait);
968 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
969 					    struct mem_cgroup *oom_domain);
970 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
971 
972 #ifdef CONFIG_MEMCG_SWAP
973 extern bool cgroup_memory_noswap;
974 #endif
975 
976 void folio_memcg_lock(struct folio *folio);
977 void folio_memcg_unlock(struct folio *folio);
978 void lock_page_memcg(struct page *page);
979 void unlock_page_memcg(struct page *page);
980 
981 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
982 
983 /* idx can be of type enum memcg_stat_item or node_stat_item */
mod_memcg_state(struct mem_cgroup * memcg,int idx,int val)984 static inline void mod_memcg_state(struct mem_cgroup *memcg,
985 				   int idx, int val)
986 {
987 	unsigned long flags;
988 
989 	local_irq_save(flags);
990 	__mod_memcg_state(memcg, idx, val);
991 	local_irq_restore(flags);
992 }
993 
memcg_page_state(struct mem_cgroup * memcg,int idx)994 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
995 {
996 	return READ_ONCE(memcg->vmstats.state[idx]);
997 }
998 
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)999 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1000 					      enum node_stat_item idx)
1001 {
1002 	struct mem_cgroup_per_node *pn;
1003 
1004 	if (mem_cgroup_disabled())
1005 		return node_page_state(lruvec_pgdat(lruvec), idx);
1006 
1007 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1008 	return READ_ONCE(pn->lruvec_stats.state[idx]);
1009 }
1010 
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1011 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1012 						    enum node_stat_item idx)
1013 {
1014 	struct mem_cgroup_per_node *pn;
1015 	long x = 0;
1016 	int cpu;
1017 
1018 	if (mem_cgroup_disabled())
1019 		return node_page_state(lruvec_pgdat(lruvec), idx);
1020 
1021 	pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1022 	for_each_possible_cpu(cpu)
1023 		x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1024 #ifdef CONFIG_SMP
1025 	if (x < 0)
1026 		x = 0;
1027 #endif
1028 	return x;
1029 }
1030 
1031 void mem_cgroup_flush_stats(void);
1032 
1033 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1034 			      int val);
1035 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1036 
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1037 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1038 					 int val)
1039 {
1040 	unsigned long flags;
1041 
1042 	local_irq_save(flags);
1043 	__mod_lruvec_kmem_state(p, idx, val);
1044 	local_irq_restore(flags);
1045 }
1046 
mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1047 static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1048 					  enum node_stat_item idx, int val)
1049 {
1050 	unsigned long flags;
1051 
1052 	local_irq_save(flags);
1053 	__mod_memcg_lruvec_state(lruvec, idx, val);
1054 	local_irq_restore(flags);
1055 }
1056 
1057 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1058 			  unsigned long count);
1059 
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1060 static inline void count_memcg_events(struct mem_cgroup *memcg,
1061 				      enum vm_event_item idx,
1062 				      unsigned long count)
1063 {
1064 	unsigned long flags;
1065 
1066 	local_irq_save(flags);
1067 	__count_memcg_events(memcg, idx, count);
1068 	local_irq_restore(flags);
1069 }
1070 
count_memcg_page_event(struct page * page,enum vm_event_item idx)1071 static inline void count_memcg_page_event(struct page *page,
1072 					  enum vm_event_item idx)
1073 {
1074 	struct mem_cgroup *memcg = page_memcg(page);
1075 
1076 	if (memcg)
1077 		count_memcg_events(memcg, idx, 1);
1078 }
1079 
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1080 static inline void count_memcg_event_mm(struct mm_struct *mm,
1081 					enum vm_event_item idx)
1082 {
1083 	struct mem_cgroup *memcg;
1084 
1085 	if (mem_cgroup_disabled())
1086 		return;
1087 
1088 	rcu_read_lock();
1089 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1090 	if (likely(memcg))
1091 		count_memcg_events(memcg, idx, 1);
1092 	rcu_read_unlock();
1093 }
1094 
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1095 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1096 				      enum memcg_memory_event event)
1097 {
1098 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1099 			  event == MEMCG_SWAP_FAIL;
1100 
1101 	atomic_long_inc(&memcg->memory_events_local[event]);
1102 	if (!swap_event)
1103 		cgroup_file_notify(&memcg->events_local_file);
1104 
1105 	do {
1106 		atomic_long_inc(&memcg->memory_events[event]);
1107 		if (swap_event)
1108 			cgroup_file_notify(&memcg->swap_events_file);
1109 		else
1110 			cgroup_file_notify(&memcg->events_file);
1111 
1112 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1113 			break;
1114 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1115 			break;
1116 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1117 		 !mem_cgroup_is_root(memcg));
1118 }
1119 
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1120 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1121 					 enum memcg_memory_event event)
1122 {
1123 	struct mem_cgroup *memcg;
1124 
1125 	if (mem_cgroup_disabled())
1126 		return;
1127 
1128 	rcu_read_lock();
1129 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1130 	if (likely(memcg))
1131 		memcg_memory_event(memcg, event);
1132 	rcu_read_unlock();
1133 }
1134 
1135 void split_page_memcg(struct page *head, unsigned int nr);
1136 
1137 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1138 						gfp_t gfp_mask,
1139 						unsigned long *total_scanned);
1140 
1141 #else /* CONFIG_MEMCG */
1142 
1143 #define MEM_CGROUP_ID_SHIFT	0
1144 #define MEM_CGROUP_ID_MAX	0
1145 
folio_memcg(struct folio * folio)1146 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1147 {
1148 	return NULL;
1149 }
1150 
page_memcg(struct page * page)1151 static inline struct mem_cgroup *page_memcg(struct page *page)
1152 {
1153 	return NULL;
1154 }
1155 
folio_memcg_rcu(struct folio * folio)1156 static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1157 {
1158 	WARN_ON_ONCE(!rcu_read_lock_held());
1159 	return NULL;
1160 }
1161 
page_memcg_check(struct page * page)1162 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1163 {
1164 	return NULL;
1165 }
1166 
folio_memcg_kmem(struct folio * folio)1167 static inline bool folio_memcg_kmem(struct folio *folio)
1168 {
1169 	return false;
1170 }
1171 
PageMemcgKmem(struct page * page)1172 static inline bool PageMemcgKmem(struct page *page)
1173 {
1174 	return false;
1175 }
1176 
mem_cgroup_is_root(struct mem_cgroup * memcg)1177 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1178 {
1179 	return true;
1180 }
1181 
mem_cgroup_disabled(void)1182 static inline bool mem_cgroup_disabled(void)
1183 {
1184 	return true;
1185 }
1186 
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1187 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1188 				      enum memcg_memory_event event)
1189 {
1190 }
1191 
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1192 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1193 					 enum memcg_memory_event event)
1194 {
1195 }
1196 
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)1197 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1198 					 struct mem_cgroup *memcg,
1199 					 unsigned long *min,
1200 					 unsigned long *low)
1201 {
1202 	*min = *low = 0;
1203 }
1204 
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)1205 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1206 						   struct mem_cgroup *memcg)
1207 {
1208 }
1209 
mem_cgroup_below_low(struct mem_cgroup * memcg)1210 static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1211 {
1212 	return false;
1213 }
1214 
mem_cgroup_below_min(struct mem_cgroup * memcg)1215 static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
1216 {
1217 	return false;
1218 }
1219 
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)1220 static inline int mem_cgroup_charge(struct folio *folio,
1221 		struct mm_struct *mm, gfp_t gfp)
1222 {
1223 	return 0;
1224 }
1225 
mem_cgroup_swapin_charge_page(struct page * page,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)1226 static inline int mem_cgroup_swapin_charge_page(struct page *page,
1227 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1228 {
1229 	return 0;
1230 }
1231 
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)1232 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1233 {
1234 }
1235 
mem_cgroup_uncharge(struct folio * folio)1236 static inline void mem_cgroup_uncharge(struct folio *folio)
1237 {
1238 }
1239 
mem_cgroup_uncharge_list(struct list_head * page_list)1240 static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1241 {
1242 }
1243 
mem_cgroup_migrate(struct folio * old,struct folio * new)1244 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1245 {
1246 }
1247 
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)1248 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1249 					       struct pglist_data *pgdat)
1250 {
1251 	return &pgdat->__lruvec;
1252 }
1253 
folio_lruvec(struct folio * folio)1254 static inline struct lruvec *folio_lruvec(struct folio *folio)
1255 {
1256 	struct pglist_data *pgdat = folio_pgdat(folio);
1257 	return &pgdat->__lruvec;
1258 }
1259 
1260 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1261 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1262 {
1263 }
1264 
parent_mem_cgroup(struct mem_cgroup * memcg)1265 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1266 {
1267 	return NULL;
1268 }
1269 
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)1270 static inline bool mm_match_cgroup(struct mm_struct *mm,
1271 		struct mem_cgroup *memcg)
1272 {
1273 	return true;
1274 }
1275 
get_mem_cgroup_from_mm(struct mm_struct * mm)1276 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1277 {
1278 	return NULL;
1279 }
1280 
1281 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)1282 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1283 {
1284 	return NULL;
1285 }
1286 
mem_cgroup_put(struct mem_cgroup * memcg)1287 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1288 {
1289 }
1290 
folio_lruvec_lock(struct folio * folio)1291 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1292 {
1293 	struct pglist_data *pgdat = folio_pgdat(folio);
1294 
1295 	spin_lock(&pgdat->__lruvec.lru_lock);
1296 	return &pgdat->__lruvec;
1297 }
1298 
folio_lruvec_lock_irq(struct folio * folio)1299 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1300 {
1301 	struct pglist_data *pgdat = folio_pgdat(folio);
1302 
1303 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1304 	return &pgdat->__lruvec;
1305 }
1306 
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flagsp)1307 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1308 		unsigned long *flagsp)
1309 {
1310 	struct pglist_data *pgdat = folio_pgdat(folio);
1311 
1312 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1313 	return &pgdat->__lruvec;
1314 }
1315 
1316 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1317 mem_cgroup_iter(struct mem_cgroup *root,
1318 		struct mem_cgroup *prev,
1319 		struct mem_cgroup_reclaim_cookie *reclaim)
1320 {
1321 	return NULL;
1322 }
1323 
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1324 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1325 					 struct mem_cgroup *prev)
1326 {
1327 }
1328 
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1329 static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1330 		int (*fn)(struct task_struct *, void *), void *arg)
1331 {
1332 	return 0;
1333 }
1334 
mem_cgroup_id(struct mem_cgroup * memcg)1335 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1336 {
1337 	return 0;
1338 }
1339 
mem_cgroup_from_id(unsigned short id)1340 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1341 {
1342 	WARN_ON_ONCE(id);
1343 	/* XXX: This should always return root_mem_cgroup */
1344 	return NULL;
1345 }
1346 
mem_cgroup_from_seq(struct seq_file * m)1347 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1348 {
1349 	return NULL;
1350 }
1351 
lruvec_memcg(struct lruvec * lruvec)1352 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1353 {
1354 	return NULL;
1355 }
1356 
mem_cgroup_online(struct mem_cgroup * memcg)1357 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1358 {
1359 	return true;
1360 }
1361 
1362 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)1363 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1364 		enum lru_list lru, int zone_idx)
1365 {
1366 	return 0;
1367 }
1368 
mem_cgroup_get_max(struct mem_cgroup * memcg)1369 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1370 {
1371 	return 0;
1372 }
1373 
mem_cgroup_size(struct mem_cgroup * memcg)1374 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1375 {
1376 	return 0;
1377 }
1378 
1379 static inline void
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1380 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1381 {
1382 }
1383 
1384 static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1385 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1386 {
1387 }
1388 
lock_page_memcg(struct page * page)1389 static inline void lock_page_memcg(struct page *page)
1390 {
1391 }
1392 
unlock_page_memcg(struct page * page)1393 static inline void unlock_page_memcg(struct page *page)
1394 {
1395 }
1396 
folio_memcg_lock(struct folio * folio)1397 static inline void folio_memcg_lock(struct folio *folio)
1398 {
1399 }
1400 
folio_memcg_unlock(struct folio * folio)1401 static inline void folio_memcg_unlock(struct folio *folio)
1402 {
1403 }
1404 
mem_cgroup_handle_over_high(void)1405 static inline void mem_cgroup_handle_over_high(void)
1406 {
1407 }
1408 
mem_cgroup_enter_user_fault(void)1409 static inline void mem_cgroup_enter_user_fault(void)
1410 {
1411 }
1412 
mem_cgroup_exit_user_fault(void)1413 static inline void mem_cgroup_exit_user_fault(void)
1414 {
1415 }
1416 
task_in_memcg_oom(struct task_struct * p)1417 static inline bool task_in_memcg_oom(struct task_struct *p)
1418 {
1419 	return false;
1420 }
1421 
mem_cgroup_oom_synchronize(bool wait)1422 static inline bool mem_cgroup_oom_synchronize(bool wait)
1423 {
1424 	return false;
1425 }
1426 
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1427 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1428 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1429 {
1430 	return NULL;
1431 }
1432 
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1433 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1434 {
1435 }
1436 
__mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1437 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1438 				     int idx,
1439 				     int nr)
1440 {
1441 }
1442 
mod_memcg_state(struct mem_cgroup * memcg,int idx,int nr)1443 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1444 				   int idx,
1445 				   int nr)
1446 {
1447 }
1448 
memcg_page_state(struct mem_cgroup * memcg,int idx)1449 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1450 {
1451 	return 0;
1452 }
1453 
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1454 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1455 					      enum node_stat_item idx)
1456 {
1457 	return node_page_state(lruvec_pgdat(lruvec), idx);
1458 }
1459 
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1460 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1461 						    enum node_stat_item idx)
1462 {
1463 	return node_page_state(lruvec_pgdat(lruvec), idx);
1464 }
1465 
mem_cgroup_flush_stats(void)1466 static inline void mem_cgroup_flush_stats(void)
1467 {
1468 }
1469 
__mod_memcg_lruvec_state(struct lruvec * lruvec,enum node_stat_item idx,int val)1470 static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1471 					    enum node_stat_item idx, int val)
1472 {
1473 }
1474 
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1475 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1476 					   int val)
1477 {
1478 	struct page *page = virt_to_head_page(p);
1479 
1480 	__mod_node_page_state(page_pgdat(page), idx, val);
1481 }
1482 
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1483 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1484 					 int val)
1485 {
1486 	struct page *page = virt_to_head_page(p);
1487 
1488 	mod_node_page_state(page_pgdat(page), idx, val);
1489 }
1490 
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1491 static inline void count_memcg_events(struct mem_cgroup *memcg,
1492 				      enum vm_event_item idx,
1493 				      unsigned long count)
1494 {
1495 }
1496 
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1497 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1498 					enum vm_event_item idx,
1499 					unsigned long count)
1500 {
1501 }
1502 
count_memcg_page_event(struct page * page,int idx)1503 static inline void count_memcg_page_event(struct page *page,
1504 					  int idx)
1505 {
1506 }
1507 
1508 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1509 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1510 {
1511 }
1512 
split_page_memcg(struct page * head,unsigned int nr)1513 static inline void split_page_memcg(struct page *head, unsigned int nr)
1514 {
1515 }
1516 
1517 static inline
mem_cgroup_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1518 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1519 					    gfp_t gfp_mask,
1520 					    unsigned long *total_scanned)
1521 {
1522 	return 0;
1523 }
1524 #endif /* CONFIG_MEMCG */
1525 
__inc_lruvec_kmem_state(void * p,enum node_stat_item idx)1526 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1527 {
1528 	__mod_lruvec_kmem_state(p, idx, 1);
1529 }
1530 
__dec_lruvec_kmem_state(void * p,enum node_stat_item idx)1531 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1532 {
1533 	__mod_lruvec_kmem_state(p, idx, -1);
1534 }
1535 
parent_lruvec(struct lruvec * lruvec)1536 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1537 {
1538 	struct mem_cgroup *memcg;
1539 
1540 	memcg = lruvec_memcg(lruvec);
1541 	if (!memcg)
1542 		return NULL;
1543 	memcg = parent_mem_cgroup(memcg);
1544 	if (!memcg)
1545 		return NULL;
1546 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1547 }
1548 
unlock_page_lruvec(struct lruvec * lruvec)1549 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1550 {
1551 	spin_unlock(&lruvec->lru_lock);
1552 }
1553 
unlock_page_lruvec_irq(struct lruvec * lruvec)1554 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1555 {
1556 	spin_unlock_irq(&lruvec->lru_lock);
1557 }
1558 
unlock_page_lruvec_irqrestore(struct lruvec * lruvec,unsigned long flags)1559 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1560 		unsigned long flags)
1561 {
1562 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1563 }
1564 
1565 /* Test requires a stable page->memcg binding, see page_memcg() */
folio_matches_lruvec(struct folio * folio,struct lruvec * lruvec)1566 static inline bool folio_matches_lruvec(struct folio *folio,
1567 		struct lruvec *lruvec)
1568 {
1569 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1570 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1571 }
1572 
1573 /* Don't lock again iff page's lruvec locked */
folio_lruvec_relock_irq(struct folio * folio,struct lruvec * locked_lruvec)1574 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1575 		struct lruvec *locked_lruvec)
1576 {
1577 	if (locked_lruvec) {
1578 		if (folio_matches_lruvec(folio, locked_lruvec))
1579 			return locked_lruvec;
1580 
1581 		unlock_page_lruvec_irq(locked_lruvec);
1582 	}
1583 
1584 	return folio_lruvec_lock_irq(folio);
1585 }
1586 
1587 /* Don't lock again iff page's lruvec locked */
folio_lruvec_relock_irqsave(struct folio * folio,struct lruvec * locked_lruvec,unsigned long * flags)1588 static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1589 		struct lruvec *locked_lruvec, unsigned long *flags)
1590 {
1591 	if (locked_lruvec) {
1592 		if (folio_matches_lruvec(folio, locked_lruvec))
1593 			return locked_lruvec;
1594 
1595 		unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1596 	}
1597 
1598 	return folio_lruvec_lock_irqsave(folio, flags);
1599 }
1600 
1601 #ifdef CONFIG_CGROUP_WRITEBACK
1602 
1603 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1604 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1605 			 unsigned long *pheadroom, unsigned long *pdirty,
1606 			 unsigned long *pwriteback);
1607 
1608 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1609 					     struct bdi_writeback *wb);
1610 
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1611 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1612 						  struct bdi_writeback *wb)
1613 {
1614 	if (mem_cgroup_disabled())
1615 		return;
1616 
1617 	if (unlikely(&folio_memcg(folio)->css != wb->memcg_css))
1618 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1619 }
1620 
1621 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1622 
1623 #else	/* CONFIG_CGROUP_WRITEBACK */
1624 
mem_cgroup_wb_domain(struct bdi_writeback * wb)1625 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1626 {
1627 	return NULL;
1628 }
1629 
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1630 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1631 				       unsigned long *pfilepages,
1632 				       unsigned long *pheadroom,
1633 				       unsigned long *pdirty,
1634 				       unsigned long *pwriteback)
1635 {
1636 }
1637 
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1638 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1639 						  struct bdi_writeback *wb)
1640 {
1641 }
1642 
mem_cgroup_flush_foreign(struct bdi_writeback * wb)1643 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1644 {
1645 }
1646 
1647 #endif	/* CONFIG_CGROUP_WRITEBACK */
1648 
1649 struct sock;
1650 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1651 			     gfp_t gfp_mask);
1652 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1653 #ifdef CONFIG_MEMCG
1654 extern struct static_key_false memcg_sockets_enabled_key;
1655 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1656 void mem_cgroup_sk_alloc(struct sock *sk);
1657 void mem_cgroup_sk_free(struct sock *sk);
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1658 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1659 {
1660 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1661 		return true;
1662 	do {
1663 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1664 			return true;
1665 	} while ((memcg = parent_mem_cgroup(memcg)));
1666 	return false;
1667 }
1668 
1669 int alloc_shrinker_info(struct mem_cgroup *memcg);
1670 void free_shrinker_info(struct mem_cgroup *memcg);
1671 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1672 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1673 #else
1674 #define mem_cgroup_sockets_enabled 0
mem_cgroup_sk_alloc(struct sock * sk)1675 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
mem_cgroup_sk_free(struct sock * sk)1676 static inline void mem_cgroup_sk_free(struct sock *sk) { };
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1677 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1678 {
1679 	return false;
1680 }
1681 
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1682 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1683 				    int nid, int shrinker_id)
1684 {
1685 }
1686 #endif
1687 
1688 #ifdef CONFIG_MEMCG_KMEM
1689 bool mem_cgroup_kmem_disabled(void);
1690 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1691 void __memcg_kmem_uncharge_page(struct page *page, int order);
1692 
1693 struct obj_cgroup *get_obj_cgroup_from_current(void);
1694 
1695 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1696 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1697 
1698 extern struct static_key_false memcg_kmem_enabled_key;
1699 
1700 extern int memcg_nr_cache_ids;
1701 void memcg_get_cache_ids(void);
1702 void memcg_put_cache_ids(void);
1703 
1704 /*
1705  * Helper macro to loop through all memcg-specific caches. Callers must still
1706  * check if the cache is valid (it is either valid or NULL).
1707  * the slab_mutex must be held when looping through those caches
1708  */
1709 #define for_each_memcg_cache_index(_idx)	\
1710 	for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
1711 
memcg_kmem_enabled(void)1712 static inline bool memcg_kmem_enabled(void)
1713 {
1714 	return static_branch_likely(&memcg_kmem_enabled_key);
1715 }
1716 
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1717 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1718 					 int order)
1719 {
1720 	if (memcg_kmem_enabled())
1721 		return __memcg_kmem_charge_page(page, gfp, order);
1722 	return 0;
1723 }
1724 
memcg_kmem_uncharge_page(struct page * page,int order)1725 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1726 {
1727 	if (memcg_kmem_enabled())
1728 		__memcg_kmem_uncharge_page(page, order);
1729 }
1730 
1731 /*
1732  * A helper for accessing memcg's kmem_id, used for getting
1733  * corresponding LRU lists.
1734  */
memcg_cache_id(struct mem_cgroup * memcg)1735 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1736 {
1737 	return memcg ? memcg->kmemcg_id : -1;
1738 }
1739 
1740 struct mem_cgroup *mem_cgroup_from_obj(void *p);
1741 
1742 #else
mem_cgroup_kmem_disabled(void)1743 static inline bool mem_cgroup_kmem_disabled(void)
1744 {
1745 	return true;
1746 }
1747 
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1748 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1749 					 int order)
1750 {
1751 	return 0;
1752 }
1753 
memcg_kmem_uncharge_page(struct page * page,int order)1754 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1755 {
1756 }
1757 
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1758 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1759 					   int order)
1760 {
1761 	return 0;
1762 }
1763 
__memcg_kmem_uncharge_page(struct page * page,int order)1764 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1765 {
1766 }
1767 
1768 #define for_each_memcg_cache_index(_idx)	\
1769 	for (; NULL; )
1770 
memcg_kmem_enabled(void)1771 static inline bool memcg_kmem_enabled(void)
1772 {
1773 	return false;
1774 }
1775 
memcg_cache_id(struct mem_cgroup * memcg)1776 static inline int memcg_cache_id(struct mem_cgroup *memcg)
1777 {
1778 	return -1;
1779 }
1780 
memcg_get_cache_ids(void)1781 static inline void memcg_get_cache_ids(void)
1782 {
1783 }
1784 
memcg_put_cache_ids(void)1785 static inline void memcg_put_cache_ids(void)
1786 {
1787 }
1788 
mem_cgroup_from_obj(void * p)1789 static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1790 {
1791        return NULL;
1792 }
1793 
1794 #endif /* CONFIG_MEMCG_KMEM */
1795 
1796 #endif /* _LINUX_MEMCONTROL_H */
1797