1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* auditsc.c -- System-call auditing support
3 * Handles all system-call specific auditing features.
4 *
5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
7 * Copyright (C) 2005, 2006 IBM Corporation
8 * All Rights Reserved.
9 *
10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
11 *
12 * Many of the ideas implemented here are from Stephen C. Tweedie,
13 * especially the idea of avoiding a copy by using getname.
14 *
15 * The method for actual interception of syscall entry and exit (not in
16 * this file -- see entry.S) is based on a GPL'd patch written by
17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
18 *
19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
20 * 2006.
21 *
22 * The support of additional filter rules compares (>, <, >=, <=) was
23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
24 *
25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
26 * filesystem information.
27 *
28 * Subject and object context labeling support added by <danjones@us.ibm.com>
29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
30 */
31
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34 #include <linux/init.h>
35 #include <asm/types.h>
36 #include <linux/atomic.h>
37 #include <linux/fs.h>
38 #include <linux/namei.h>
39 #include <linux/mm.h>
40 #include <linux/export.h>
41 #include <linux/slab.h>
42 #include <linux/mount.h>
43 #include <linux/socket.h>
44 #include <linux/mqueue.h>
45 #include <linux/audit.h>
46 #include <linux/personality.h>
47 #include <linux/time.h>
48 #include <linux/netlink.h>
49 #include <linux/compiler.h>
50 #include <asm/unistd.h>
51 #include <linux/security.h>
52 #include <linux/list.h>
53 #include <linux/binfmts.h>
54 #include <linux/highmem.h>
55 #include <linux/syscalls.h>
56 #include <asm/syscall.h>
57 #include <linux/capability.h>
58 #include <linux/fs_struct.h>
59 #include <linux/compat.h>
60 #include <linux/ctype.h>
61 #include <linux/string.h>
62 #include <linux/uaccess.h>
63 #include <linux/fsnotify_backend.h>
64 #include <uapi/linux/limits.h>
65 #include <uapi/linux/netfilter/nf_tables.h>
66 #include <uapi/linux/openat2.h> // struct open_how
67
68 #include "audit.h"
69
70 /* flags stating the success for a syscall */
71 #define AUDITSC_INVALID 0
72 #define AUDITSC_SUCCESS 1
73 #define AUDITSC_FAILURE 2
74
75 /* no execve audit message should be longer than this (userspace limits),
76 * see the note near the top of audit_log_execve_info() about this value */
77 #define MAX_EXECVE_AUDIT_LEN 7500
78
79 /* max length to print of cmdline/proctitle value during audit */
80 #define MAX_PROCTITLE_AUDIT_LEN 128
81
82 /* number of audit rules */
83 int audit_n_rules;
84
85 /* determines whether we collect data for signals sent */
86 int audit_signals;
87
88 struct audit_aux_data {
89 struct audit_aux_data *next;
90 int type;
91 };
92
93 /* Number of target pids per aux struct. */
94 #define AUDIT_AUX_PIDS 16
95
96 struct audit_aux_data_pids {
97 struct audit_aux_data d;
98 pid_t target_pid[AUDIT_AUX_PIDS];
99 kuid_t target_auid[AUDIT_AUX_PIDS];
100 kuid_t target_uid[AUDIT_AUX_PIDS];
101 unsigned int target_sessionid[AUDIT_AUX_PIDS];
102 u32 target_sid[AUDIT_AUX_PIDS];
103 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
104 int pid_count;
105 };
106
107 struct audit_aux_data_bprm_fcaps {
108 struct audit_aux_data d;
109 struct audit_cap_data fcap;
110 unsigned int fcap_ver;
111 struct audit_cap_data old_pcap;
112 struct audit_cap_data new_pcap;
113 };
114
115 struct audit_tree_refs {
116 struct audit_tree_refs *next;
117 struct audit_chunk *c[31];
118 };
119
120 struct audit_nfcfgop_tab {
121 enum audit_nfcfgop op;
122 const char *s;
123 };
124
125 static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
126 { AUDIT_XT_OP_REGISTER, "xt_register" },
127 { AUDIT_XT_OP_REPLACE, "xt_replace" },
128 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
129 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
130 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
131 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
132 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
133 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
134 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
135 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
136 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
137 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
138 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
139 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
140 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
141 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
142 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
143 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
144 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
145 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
146 };
147
audit_match_perm(struct audit_context * ctx,int mask)148 static int audit_match_perm(struct audit_context *ctx, int mask)
149 {
150 unsigned n;
151
152 if (unlikely(!ctx))
153 return 0;
154 n = ctx->major;
155
156 switch (audit_classify_syscall(ctx->arch, n)) {
157 case AUDITSC_NATIVE:
158 if ((mask & AUDIT_PERM_WRITE) &&
159 audit_match_class(AUDIT_CLASS_WRITE, n))
160 return 1;
161 if ((mask & AUDIT_PERM_READ) &&
162 audit_match_class(AUDIT_CLASS_READ, n))
163 return 1;
164 if ((mask & AUDIT_PERM_ATTR) &&
165 audit_match_class(AUDIT_CLASS_CHATTR, n))
166 return 1;
167 return 0;
168 case AUDITSC_COMPAT: /* 32bit on biarch */
169 if ((mask & AUDIT_PERM_WRITE) &&
170 audit_match_class(AUDIT_CLASS_WRITE_32, n))
171 return 1;
172 if ((mask & AUDIT_PERM_READ) &&
173 audit_match_class(AUDIT_CLASS_READ_32, n))
174 return 1;
175 if ((mask & AUDIT_PERM_ATTR) &&
176 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
177 return 1;
178 return 0;
179 case AUDITSC_OPEN:
180 return mask & ACC_MODE(ctx->argv[1]);
181 case AUDITSC_OPENAT:
182 return mask & ACC_MODE(ctx->argv[2]);
183 case AUDITSC_SOCKETCALL:
184 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
185 case AUDITSC_EXECVE:
186 return mask & AUDIT_PERM_EXEC;
187 case AUDITSC_OPENAT2:
188 return mask & ACC_MODE((u32)((struct open_how *)ctx->argv[2])->flags);
189 default:
190 return 0;
191 }
192 }
193
audit_match_filetype(struct audit_context * ctx,int val)194 static int audit_match_filetype(struct audit_context *ctx, int val)
195 {
196 struct audit_names *n;
197 umode_t mode = (umode_t)val;
198
199 if (unlikely(!ctx))
200 return 0;
201
202 list_for_each_entry(n, &ctx->names_list, list) {
203 if ((n->ino != AUDIT_INO_UNSET) &&
204 ((n->mode & S_IFMT) == mode))
205 return 1;
206 }
207
208 return 0;
209 }
210
211 /*
212 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
213 * ->first_trees points to its beginning, ->trees - to the current end of data.
214 * ->tree_count is the number of free entries in array pointed to by ->trees.
215 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
216 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
217 * it's going to remain 1-element for almost any setup) until we free context itself.
218 * References in it _are_ dropped - at the same time we free/drop aux stuff.
219 */
220
audit_set_auditable(struct audit_context * ctx)221 static void audit_set_auditable(struct audit_context *ctx)
222 {
223 if (!ctx->prio) {
224 ctx->prio = 1;
225 ctx->current_state = AUDIT_STATE_RECORD;
226 }
227 }
228
put_tree_ref(struct audit_context * ctx,struct audit_chunk * chunk)229 static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
230 {
231 struct audit_tree_refs *p = ctx->trees;
232 int left = ctx->tree_count;
233
234 if (likely(left)) {
235 p->c[--left] = chunk;
236 ctx->tree_count = left;
237 return 1;
238 }
239 if (!p)
240 return 0;
241 p = p->next;
242 if (p) {
243 p->c[30] = chunk;
244 ctx->trees = p;
245 ctx->tree_count = 30;
246 return 1;
247 }
248 return 0;
249 }
250
grow_tree_refs(struct audit_context * ctx)251 static int grow_tree_refs(struct audit_context *ctx)
252 {
253 struct audit_tree_refs *p = ctx->trees;
254
255 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
256 if (!ctx->trees) {
257 ctx->trees = p;
258 return 0;
259 }
260 if (p)
261 p->next = ctx->trees;
262 else
263 ctx->first_trees = ctx->trees;
264 ctx->tree_count = 31;
265 return 1;
266 }
267
unroll_tree_refs(struct audit_context * ctx,struct audit_tree_refs * p,int count)268 static void unroll_tree_refs(struct audit_context *ctx,
269 struct audit_tree_refs *p, int count)
270 {
271 struct audit_tree_refs *q;
272 int n;
273
274 if (!p) {
275 /* we started with empty chain */
276 p = ctx->first_trees;
277 count = 31;
278 /* if the very first allocation has failed, nothing to do */
279 if (!p)
280 return;
281 }
282 n = count;
283 for (q = p; q != ctx->trees; q = q->next, n = 31) {
284 while (n--) {
285 audit_put_chunk(q->c[n]);
286 q->c[n] = NULL;
287 }
288 }
289 while (n-- > ctx->tree_count) {
290 audit_put_chunk(q->c[n]);
291 q->c[n] = NULL;
292 }
293 ctx->trees = p;
294 ctx->tree_count = count;
295 }
296
free_tree_refs(struct audit_context * ctx)297 static void free_tree_refs(struct audit_context *ctx)
298 {
299 struct audit_tree_refs *p, *q;
300
301 for (p = ctx->first_trees; p; p = q) {
302 q = p->next;
303 kfree(p);
304 }
305 }
306
match_tree_refs(struct audit_context * ctx,struct audit_tree * tree)307 static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
308 {
309 struct audit_tree_refs *p;
310 int n;
311
312 if (!tree)
313 return 0;
314 /* full ones */
315 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
316 for (n = 0; n < 31; n++)
317 if (audit_tree_match(p->c[n], tree))
318 return 1;
319 }
320 /* partial */
321 if (p) {
322 for (n = ctx->tree_count; n < 31; n++)
323 if (audit_tree_match(p->c[n], tree))
324 return 1;
325 }
326 return 0;
327 }
328
audit_compare_uid(kuid_t uid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)329 static int audit_compare_uid(kuid_t uid,
330 struct audit_names *name,
331 struct audit_field *f,
332 struct audit_context *ctx)
333 {
334 struct audit_names *n;
335 int rc;
336
337 if (name) {
338 rc = audit_uid_comparator(uid, f->op, name->uid);
339 if (rc)
340 return rc;
341 }
342
343 if (ctx) {
344 list_for_each_entry(n, &ctx->names_list, list) {
345 rc = audit_uid_comparator(uid, f->op, n->uid);
346 if (rc)
347 return rc;
348 }
349 }
350 return 0;
351 }
352
audit_compare_gid(kgid_t gid,struct audit_names * name,struct audit_field * f,struct audit_context * ctx)353 static int audit_compare_gid(kgid_t gid,
354 struct audit_names *name,
355 struct audit_field *f,
356 struct audit_context *ctx)
357 {
358 struct audit_names *n;
359 int rc;
360
361 if (name) {
362 rc = audit_gid_comparator(gid, f->op, name->gid);
363 if (rc)
364 return rc;
365 }
366
367 if (ctx) {
368 list_for_each_entry(n, &ctx->names_list, list) {
369 rc = audit_gid_comparator(gid, f->op, n->gid);
370 if (rc)
371 return rc;
372 }
373 }
374 return 0;
375 }
376
audit_field_compare(struct task_struct * tsk,const struct cred * cred,struct audit_field * f,struct audit_context * ctx,struct audit_names * name)377 static int audit_field_compare(struct task_struct *tsk,
378 const struct cred *cred,
379 struct audit_field *f,
380 struct audit_context *ctx,
381 struct audit_names *name)
382 {
383 switch (f->val) {
384 /* process to file object comparisons */
385 case AUDIT_COMPARE_UID_TO_OBJ_UID:
386 return audit_compare_uid(cred->uid, name, f, ctx);
387 case AUDIT_COMPARE_GID_TO_OBJ_GID:
388 return audit_compare_gid(cred->gid, name, f, ctx);
389 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
390 return audit_compare_uid(cred->euid, name, f, ctx);
391 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
392 return audit_compare_gid(cred->egid, name, f, ctx);
393 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
394 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
395 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
396 return audit_compare_uid(cred->suid, name, f, ctx);
397 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
398 return audit_compare_gid(cred->sgid, name, f, ctx);
399 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
400 return audit_compare_uid(cred->fsuid, name, f, ctx);
401 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
402 return audit_compare_gid(cred->fsgid, name, f, ctx);
403 /* uid comparisons */
404 case AUDIT_COMPARE_UID_TO_AUID:
405 return audit_uid_comparator(cred->uid, f->op,
406 audit_get_loginuid(tsk));
407 case AUDIT_COMPARE_UID_TO_EUID:
408 return audit_uid_comparator(cred->uid, f->op, cred->euid);
409 case AUDIT_COMPARE_UID_TO_SUID:
410 return audit_uid_comparator(cred->uid, f->op, cred->suid);
411 case AUDIT_COMPARE_UID_TO_FSUID:
412 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
413 /* auid comparisons */
414 case AUDIT_COMPARE_AUID_TO_EUID:
415 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
416 cred->euid);
417 case AUDIT_COMPARE_AUID_TO_SUID:
418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
419 cred->suid);
420 case AUDIT_COMPARE_AUID_TO_FSUID:
421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
422 cred->fsuid);
423 /* euid comparisons */
424 case AUDIT_COMPARE_EUID_TO_SUID:
425 return audit_uid_comparator(cred->euid, f->op, cred->suid);
426 case AUDIT_COMPARE_EUID_TO_FSUID:
427 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
428 /* suid comparisons */
429 case AUDIT_COMPARE_SUID_TO_FSUID:
430 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
431 /* gid comparisons */
432 case AUDIT_COMPARE_GID_TO_EGID:
433 return audit_gid_comparator(cred->gid, f->op, cred->egid);
434 case AUDIT_COMPARE_GID_TO_SGID:
435 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
436 case AUDIT_COMPARE_GID_TO_FSGID:
437 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
438 /* egid comparisons */
439 case AUDIT_COMPARE_EGID_TO_SGID:
440 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
441 case AUDIT_COMPARE_EGID_TO_FSGID:
442 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
443 /* sgid comparison */
444 case AUDIT_COMPARE_SGID_TO_FSGID:
445 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
446 default:
447 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
448 return 0;
449 }
450 return 0;
451 }
452
453 /* Determine if any context name data matches a rule's watch data */
454 /* Compare a task_struct with an audit_rule. Return 1 on match, 0
455 * otherwise.
456 *
457 * If task_creation is true, this is an explicit indication that we are
458 * filtering a task rule at task creation time. This and tsk == current are
459 * the only situations where tsk->cred may be accessed without an rcu read lock.
460 */
audit_filter_rules(struct task_struct * tsk,struct audit_krule * rule,struct audit_context * ctx,struct audit_names * name,enum audit_state * state,bool task_creation)461 static int audit_filter_rules(struct task_struct *tsk,
462 struct audit_krule *rule,
463 struct audit_context *ctx,
464 struct audit_names *name,
465 enum audit_state *state,
466 bool task_creation)
467 {
468 const struct cred *cred;
469 int i, need_sid = 1;
470 u32 sid;
471 unsigned int sessionid;
472
473 if (ctx && rule->prio <= ctx->prio)
474 return 0;
475
476 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
477
478 for (i = 0; i < rule->field_count; i++) {
479 struct audit_field *f = &rule->fields[i];
480 struct audit_names *n;
481 int result = 0;
482 pid_t pid;
483
484 switch (f->type) {
485 case AUDIT_PID:
486 pid = task_tgid_nr(tsk);
487 result = audit_comparator(pid, f->op, f->val);
488 break;
489 case AUDIT_PPID:
490 if (ctx) {
491 if (!ctx->ppid)
492 ctx->ppid = task_ppid_nr(tsk);
493 result = audit_comparator(ctx->ppid, f->op, f->val);
494 }
495 break;
496 case AUDIT_EXE:
497 result = audit_exe_compare(tsk, rule->exe);
498 if (f->op == Audit_not_equal)
499 result = !result;
500 break;
501 case AUDIT_UID:
502 result = audit_uid_comparator(cred->uid, f->op, f->uid);
503 break;
504 case AUDIT_EUID:
505 result = audit_uid_comparator(cred->euid, f->op, f->uid);
506 break;
507 case AUDIT_SUID:
508 result = audit_uid_comparator(cred->suid, f->op, f->uid);
509 break;
510 case AUDIT_FSUID:
511 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
512 break;
513 case AUDIT_GID:
514 result = audit_gid_comparator(cred->gid, f->op, f->gid);
515 if (f->op == Audit_equal) {
516 if (!result)
517 result = groups_search(cred->group_info, f->gid);
518 } else if (f->op == Audit_not_equal) {
519 if (result)
520 result = !groups_search(cred->group_info, f->gid);
521 }
522 break;
523 case AUDIT_EGID:
524 result = audit_gid_comparator(cred->egid, f->op, f->gid);
525 if (f->op == Audit_equal) {
526 if (!result)
527 result = groups_search(cred->group_info, f->gid);
528 } else if (f->op == Audit_not_equal) {
529 if (result)
530 result = !groups_search(cred->group_info, f->gid);
531 }
532 break;
533 case AUDIT_SGID:
534 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
535 break;
536 case AUDIT_FSGID:
537 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
538 break;
539 case AUDIT_SESSIONID:
540 sessionid = audit_get_sessionid(tsk);
541 result = audit_comparator(sessionid, f->op, f->val);
542 break;
543 case AUDIT_PERS:
544 result = audit_comparator(tsk->personality, f->op, f->val);
545 break;
546 case AUDIT_ARCH:
547 if (ctx)
548 result = audit_comparator(ctx->arch, f->op, f->val);
549 break;
550
551 case AUDIT_EXIT:
552 if (ctx && ctx->return_valid != AUDITSC_INVALID)
553 result = audit_comparator(ctx->return_code, f->op, f->val);
554 break;
555 case AUDIT_SUCCESS:
556 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
557 if (f->val)
558 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
559 else
560 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
561 }
562 break;
563 case AUDIT_DEVMAJOR:
564 if (name) {
565 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
566 audit_comparator(MAJOR(name->rdev), f->op, f->val))
567 ++result;
568 } else if (ctx) {
569 list_for_each_entry(n, &ctx->names_list, list) {
570 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
571 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
572 ++result;
573 break;
574 }
575 }
576 }
577 break;
578 case AUDIT_DEVMINOR:
579 if (name) {
580 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
581 audit_comparator(MINOR(name->rdev), f->op, f->val))
582 ++result;
583 } else if (ctx) {
584 list_for_each_entry(n, &ctx->names_list, list) {
585 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
586 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
587 ++result;
588 break;
589 }
590 }
591 }
592 break;
593 case AUDIT_INODE:
594 if (name)
595 result = audit_comparator(name->ino, f->op, f->val);
596 else if (ctx) {
597 list_for_each_entry(n, &ctx->names_list, list) {
598 if (audit_comparator(n->ino, f->op, f->val)) {
599 ++result;
600 break;
601 }
602 }
603 }
604 break;
605 case AUDIT_OBJ_UID:
606 if (name) {
607 result = audit_uid_comparator(name->uid, f->op, f->uid);
608 } else if (ctx) {
609 list_for_each_entry(n, &ctx->names_list, list) {
610 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
611 ++result;
612 break;
613 }
614 }
615 }
616 break;
617 case AUDIT_OBJ_GID:
618 if (name) {
619 result = audit_gid_comparator(name->gid, f->op, f->gid);
620 } else if (ctx) {
621 list_for_each_entry(n, &ctx->names_list, list) {
622 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
623 ++result;
624 break;
625 }
626 }
627 }
628 break;
629 case AUDIT_WATCH:
630 if (name) {
631 result = audit_watch_compare(rule->watch,
632 name->ino,
633 name->dev);
634 if (f->op == Audit_not_equal)
635 result = !result;
636 }
637 break;
638 case AUDIT_DIR:
639 if (ctx) {
640 result = match_tree_refs(ctx, rule->tree);
641 if (f->op == Audit_not_equal)
642 result = !result;
643 }
644 break;
645 case AUDIT_LOGINUID:
646 result = audit_uid_comparator(audit_get_loginuid(tsk),
647 f->op, f->uid);
648 break;
649 case AUDIT_LOGINUID_SET:
650 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
651 break;
652 case AUDIT_SADDR_FAM:
653 if (ctx && ctx->sockaddr)
654 result = audit_comparator(ctx->sockaddr->ss_family,
655 f->op, f->val);
656 break;
657 case AUDIT_SUBJ_USER:
658 case AUDIT_SUBJ_ROLE:
659 case AUDIT_SUBJ_TYPE:
660 case AUDIT_SUBJ_SEN:
661 case AUDIT_SUBJ_CLR:
662 /* NOTE: this may return negative values indicating
663 a temporary error. We simply treat this as a
664 match for now to avoid losing information that
665 may be wanted. An error message will also be
666 logged upon error */
667 if (f->lsm_rule) {
668 if (need_sid) {
669 security_task_getsecid_subj(tsk, &sid);
670 need_sid = 0;
671 }
672 result = security_audit_rule_match(sid, f->type,
673 f->op,
674 f->lsm_rule);
675 }
676 break;
677 case AUDIT_OBJ_USER:
678 case AUDIT_OBJ_ROLE:
679 case AUDIT_OBJ_TYPE:
680 case AUDIT_OBJ_LEV_LOW:
681 case AUDIT_OBJ_LEV_HIGH:
682 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
683 also applies here */
684 if (f->lsm_rule) {
685 /* Find files that match */
686 if (name) {
687 result = security_audit_rule_match(
688 name->osid,
689 f->type,
690 f->op,
691 f->lsm_rule);
692 } else if (ctx) {
693 list_for_each_entry(n, &ctx->names_list, list) {
694 if (security_audit_rule_match(
695 n->osid,
696 f->type,
697 f->op,
698 f->lsm_rule)) {
699 ++result;
700 break;
701 }
702 }
703 }
704 /* Find ipc objects that match */
705 if (!ctx || ctx->type != AUDIT_IPC)
706 break;
707 if (security_audit_rule_match(ctx->ipc.osid,
708 f->type, f->op,
709 f->lsm_rule))
710 ++result;
711 }
712 break;
713 case AUDIT_ARG0:
714 case AUDIT_ARG1:
715 case AUDIT_ARG2:
716 case AUDIT_ARG3:
717 if (ctx)
718 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
719 break;
720 case AUDIT_FILTERKEY:
721 /* ignore this field for filtering */
722 result = 1;
723 break;
724 case AUDIT_PERM:
725 result = audit_match_perm(ctx, f->val);
726 if (f->op == Audit_not_equal)
727 result = !result;
728 break;
729 case AUDIT_FILETYPE:
730 result = audit_match_filetype(ctx, f->val);
731 if (f->op == Audit_not_equal)
732 result = !result;
733 break;
734 case AUDIT_FIELD_COMPARE:
735 result = audit_field_compare(tsk, cred, f, ctx, name);
736 break;
737 }
738 if (!result)
739 return 0;
740 }
741
742 if (ctx) {
743 if (rule->filterkey) {
744 kfree(ctx->filterkey);
745 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
746 }
747 ctx->prio = rule->prio;
748 }
749 switch (rule->action) {
750 case AUDIT_NEVER:
751 *state = AUDIT_STATE_DISABLED;
752 break;
753 case AUDIT_ALWAYS:
754 *state = AUDIT_STATE_RECORD;
755 break;
756 }
757 return 1;
758 }
759
760 /* At process creation time, we can determine if system-call auditing is
761 * completely disabled for this task. Since we only have the task
762 * structure at this point, we can only check uid and gid.
763 */
audit_filter_task(struct task_struct * tsk,char ** key)764 static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
765 {
766 struct audit_entry *e;
767 enum audit_state state;
768
769 rcu_read_lock();
770 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
771 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
772 &state, true)) {
773 if (state == AUDIT_STATE_RECORD)
774 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
775 rcu_read_unlock();
776 return state;
777 }
778 }
779 rcu_read_unlock();
780 return AUDIT_STATE_BUILD;
781 }
782
audit_in_mask(const struct audit_krule * rule,unsigned long val)783 static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
784 {
785 int word, bit;
786
787 if (val > 0xffffffff)
788 return false;
789
790 word = AUDIT_WORD(val);
791 if (word >= AUDIT_BITMASK_SIZE)
792 return false;
793
794 bit = AUDIT_BIT(val);
795
796 return rule->mask[word] & bit;
797 }
798
799 /**
800 * audit_filter_uring - apply filters to an io_uring operation
801 * @tsk: associated task
802 * @ctx: audit context
803 */
audit_filter_uring(struct task_struct * tsk,struct audit_context * ctx)804 static void audit_filter_uring(struct task_struct *tsk,
805 struct audit_context *ctx)
806 {
807 struct audit_entry *e;
808 enum audit_state state;
809
810 if (auditd_test_task(tsk))
811 return;
812
813 rcu_read_lock();
814 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
815 list) {
816 if (audit_in_mask(&e->rule, ctx->uring_op) &&
817 audit_filter_rules(tsk, &e->rule, ctx, NULL, &state,
818 false)) {
819 rcu_read_unlock();
820 ctx->current_state = state;
821 return;
822 }
823 }
824 rcu_read_unlock();
825 }
826
827 /* At syscall exit time, this filter is called if the audit_state is
828 * not low enough that auditing cannot take place, but is also not
829 * high enough that we already know we have to write an audit record
830 * (i.e., the state is AUDIT_STATE_BUILD).
831 */
audit_filter_syscall(struct task_struct * tsk,struct audit_context * ctx)832 static void audit_filter_syscall(struct task_struct *tsk,
833 struct audit_context *ctx)
834 {
835 struct audit_entry *e;
836 enum audit_state state;
837
838 if (auditd_test_task(tsk))
839 return;
840
841 rcu_read_lock();
842 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_EXIT], list) {
843 if (audit_in_mask(&e->rule, ctx->major) &&
844 audit_filter_rules(tsk, &e->rule, ctx, NULL,
845 &state, false)) {
846 rcu_read_unlock();
847 ctx->current_state = state;
848 return;
849 }
850 }
851 rcu_read_unlock();
852 return;
853 }
854
855 /*
856 * Given an audit_name check the inode hash table to see if they match.
857 * Called holding the rcu read lock to protect the use of audit_inode_hash
858 */
audit_filter_inode_name(struct task_struct * tsk,struct audit_names * n,struct audit_context * ctx)859 static int audit_filter_inode_name(struct task_struct *tsk,
860 struct audit_names *n,
861 struct audit_context *ctx) {
862 int h = audit_hash_ino((u32)n->ino);
863 struct list_head *list = &audit_inode_hash[h];
864 struct audit_entry *e;
865 enum audit_state state;
866
867 list_for_each_entry_rcu(e, list, list) {
868 if (audit_in_mask(&e->rule, ctx->major) &&
869 audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
870 ctx->current_state = state;
871 return 1;
872 }
873 }
874 return 0;
875 }
876
877 /* At syscall exit time, this filter is called if any audit_names have been
878 * collected during syscall processing. We only check rules in sublists at hash
879 * buckets applicable to the inode numbers in audit_names.
880 * Regarding audit_state, same rules apply as for audit_filter_syscall().
881 */
audit_filter_inodes(struct task_struct * tsk,struct audit_context * ctx)882 void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
883 {
884 struct audit_names *n;
885
886 if (auditd_test_task(tsk))
887 return;
888
889 rcu_read_lock();
890
891 list_for_each_entry(n, &ctx->names_list, list) {
892 if (audit_filter_inode_name(tsk, n, ctx))
893 break;
894 }
895 rcu_read_unlock();
896 }
897
audit_proctitle_free(struct audit_context * context)898 static inline void audit_proctitle_free(struct audit_context *context)
899 {
900 kfree(context->proctitle.value);
901 context->proctitle.value = NULL;
902 context->proctitle.len = 0;
903 }
904
audit_free_module(struct audit_context * context)905 static inline void audit_free_module(struct audit_context *context)
906 {
907 if (context->type == AUDIT_KERN_MODULE) {
908 kfree(context->module.name);
909 context->module.name = NULL;
910 }
911 }
audit_free_names(struct audit_context * context)912 static inline void audit_free_names(struct audit_context *context)
913 {
914 struct audit_names *n, *next;
915
916 list_for_each_entry_safe(n, next, &context->names_list, list) {
917 list_del(&n->list);
918 if (n->name)
919 putname(n->name);
920 if (n->should_free)
921 kfree(n);
922 }
923 context->name_count = 0;
924 path_put(&context->pwd);
925 context->pwd.dentry = NULL;
926 context->pwd.mnt = NULL;
927 }
928
audit_free_aux(struct audit_context * context)929 static inline void audit_free_aux(struct audit_context *context)
930 {
931 struct audit_aux_data *aux;
932
933 while ((aux = context->aux)) {
934 context->aux = aux->next;
935 kfree(aux);
936 }
937 context->aux = NULL;
938 while ((aux = context->aux_pids)) {
939 context->aux_pids = aux->next;
940 kfree(aux);
941 }
942 context->aux_pids = NULL;
943 }
944
945 /**
946 * audit_reset_context - reset a audit_context structure
947 * @ctx: the audit_context to reset
948 *
949 * All fields in the audit_context will be reset to an initial state, all
950 * references held by fields will be dropped, and private memory will be
951 * released. When this function returns the audit_context will be suitable
952 * for reuse, so long as the passed context is not NULL or a dummy context.
953 */
audit_reset_context(struct audit_context * ctx)954 static void audit_reset_context(struct audit_context *ctx)
955 {
956 if (!ctx)
957 return;
958
959 /* if ctx is non-null, reset the "ctx->state" regardless */
960 ctx->context = AUDIT_CTX_UNUSED;
961 if (ctx->dummy)
962 return;
963
964 /*
965 * NOTE: It shouldn't matter in what order we release the fields, so
966 * release them in the order in which they appear in the struct;
967 * this gives us some hope of quickly making sure we are
968 * resetting the audit_context properly.
969 *
970 * Other things worth mentioning:
971 * - we don't reset "dummy"
972 * - we don't reset "state", we do reset "current_state"
973 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
974 * - much of this is likely overkill, but play it safe for now
975 * - we really need to work on improving the audit_context struct
976 */
977
978 ctx->current_state = ctx->state;
979 ctx->serial = 0;
980 ctx->major = 0;
981 ctx->uring_op = 0;
982 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
983 memset(ctx->argv, 0, sizeof(ctx->argv));
984 ctx->return_code = 0;
985 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
986 ctx->return_valid = AUDITSC_INVALID;
987 audit_free_names(ctx);
988 if (ctx->state != AUDIT_STATE_RECORD) {
989 kfree(ctx->filterkey);
990 ctx->filterkey = NULL;
991 }
992 audit_free_aux(ctx);
993 kfree(ctx->sockaddr);
994 ctx->sockaddr = NULL;
995 ctx->sockaddr_len = 0;
996 ctx->pid = ctx->ppid = 0;
997 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
998 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
999 ctx->personality = 0;
1000 ctx->arch = 0;
1001 ctx->target_pid = 0;
1002 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1003 ctx->target_sessionid = 0;
1004 ctx->target_sid = 0;
1005 ctx->target_comm[0] = '\0';
1006 unroll_tree_refs(ctx, NULL, 0);
1007 WARN_ON(!list_empty(&ctx->killed_trees));
1008 ctx->type = 0;
1009 audit_free_module(ctx);
1010 ctx->fds[0] = -1;
1011 audit_proctitle_free(ctx);
1012 }
1013
audit_alloc_context(enum audit_state state)1014 static inline struct audit_context *audit_alloc_context(enum audit_state state)
1015 {
1016 struct audit_context *context;
1017
1018 context = kzalloc(sizeof(*context), GFP_KERNEL);
1019 if (!context)
1020 return NULL;
1021 context->context = AUDIT_CTX_UNUSED;
1022 context->state = state;
1023 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1024 INIT_LIST_HEAD(&context->killed_trees);
1025 INIT_LIST_HEAD(&context->names_list);
1026 context->fds[0] = -1;
1027 context->return_valid = AUDITSC_INVALID;
1028 return context;
1029 }
1030
1031 /**
1032 * audit_alloc - allocate an audit context block for a task
1033 * @tsk: task
1034 *
1035 * Filter on the task information and allocate a per-task audit context
1036 * if necessary. Doing so turns on system call auditing for the
1037 * specified task. This is called from copy_process, so no lock is
1038 * needed.
1039 */
audit_alloc(struct task_struct * tsk)1040 int audit_alloc(struct task_struct *tsk)
1041 {
1042 struct audit_context *context;
1043 enum audit_state state;
1044 char *key = NULL;
1045
1046 if (likely(!audit_ever_enabled))
1047 return 0;
1048
1049 state = audit_filter_task(tsk, &key);
1050 if (state == AUDIT_STATE_DISABLED) {
1051 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1052 return 0;
1053 }
1054
1055 if (!(context = audit_alloc_context(state))) {
1056 kfree(key);
1057 audit_log_lost("out of memory in audit_alloc");
1058 return -ENOMEM;
1059 }
1060 context->filterkey = key;
1061
1062 audit_set_context(tsk, context);
1063 set_task_syscall_work(tsk, SYSCALL_AUDIT);
1064 return 0;
1065 }
1066
1067 /**
1068 * audit_alloc_kernel - allocate an audit_context for a kernel task
1069 * @tsk: the kernel task
1070 *
1071 * Similar to the audit_alloc() function, but intended for kernel private
1072 * threads. Returns zero on success, negative values on failure.
1073 */
audit_alloc_kernel(struct task_struct * tsk)1074 int audit_alloc_kernel(struct task_struct *tsk)
1075 {
1076 /*
1077 * At the moment we are just going to call into audit_alloc() to
1078 * simplify the code, but there two things to keep in mind with this
1079 * approach:
1080 *
1081 * 1. Filtering internal kernel tasks is a bit laughable in almost all
1082 * cases, but there is at least one case where there is a benefit:
1083 * the '-a task,never' case allows the admin to effectively disable
1084 * task auditing at runtime.
1085 *
1086 * 2. The {set,clear}_task_syscall_work() ops likely have zero effect
1087 * on these internal kernel tasks, but they probably don't hurt either.
1088 */
1089 return audit_alloc(tsk);
1090 }
1091
audit_free_context(struct audit_context * context)1092 static inline void audit_free_context(struct audit_context *context)
1093 {
1094 /* resetting is extra work, but it is likely just noise */
1095 audit_reset_context(context);
1096 free_tree_refs(context);
1097 kfree(context->filterkey);
1098 kfree(context);
1099 }
1100
audit_log_pid_context(struct audit_context * context,pid_t pid,kuid_t auid,kuid_t uid,unsigned int sessionid,u32 sid,char * comm)1101 static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1102 kuid_t auid, kuid_t uid, unsigned int sessionid,
1103 u32 sid, char *comm)
1104 {
1105 struct audit_buffer *ab;
1106 char *ctx = NULL;
1107 u32 len;
1108 int rc = 0;
1109
1110 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1111 if (!ab)
1112 return rc;
1113
1114 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1115 from_kuid(&init_user_ns, auid),
1116 from_kuid(&init_user_ns, uid), sessionid);
1117 if (sid) {
1118 if (security_secid_to_secctx(sid, &ctx, &len)) {
1119 audit_log_format(ab, " obj=(none)");
1120 rc = 1;
1121 } else {
1122 audit_log_format(ab, " obj=%s", ctx);
1123 security_release_secctx(ctx, len);
1124 }
1125 }
1126 audit_log_format(ab, " ocomm=");
1127 audit_log_untrustedstring(ab, comm);
1128 audit_log_end(ab);
1129
1130 return rc;
1131 }
1132
audit_log_execve_info(struct audit_context * context,struct audit_buffer ** ab)1133 static void audit_log_execve_info(struct audit_context *context,
1134 struct audit_buffer **ab)
1135 {
1136 long len_max;
1137 long len_rem;
1138 long len_full;
1139 long len_buf;
1140 long len_abuf = 0;
1141 long len_tmp;
1142 bool require_data;
1143 bool encode;
1144 unsigned int iter;
1145 unsigned int arg;
1146 char *buf_head;
1147 char *buf;
1148 const char __user *p = (const char __user *)current->mm->arg_start;
1149
1150 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1151 * data we put in the audit record for this argument (see the
1152 * code below) ... at this point in time 96 is plenty */
1153 char abuf[96];
1154
1155 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1156 * current value of 7500 is not as important as the fact that it
1157 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1158 * room if we go over a little bit in the logging below */
1159 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1160 len_max = MAX_EXECVE_AUDIT_LEN;
1161
1162 /* scratch buffer to hold the userspace args */
1163 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1164 if (!buf_head) {
1165 audit_panic("out of memory for argv string");
1166 return;
1167 }
1168 buf = buf_head;
1169
1170 audit_log_format(*ab, "argc=%d", context->execve.argc);
1171
1172 len_rem = len_max;
1173 len_buf = 0;
1174 len_full = 0;
1175 require_data = true;
1176 encode = false;
1177 iter = 0;
1178 arg = 0;
1179 do {
1180 /* NOTE: we don't ever want to trust this value for anything
1181 * serious, but the audit record format insists we
1182 * provide an argument length for really long arguments,
1183 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1184 * to use strncpy_from_user() to obtain this value for
1185 * recording in the log, although we don't use it
1186 * anywhere here to avoid a double-fetch problem */
1187 if (len_full == 0)
1188 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1189
1190 /* read more data from userspace */
1191 if (require_data) {
1192 /* can we make more room in the buffer? */
1193 if (buf != buf_head) {
1194 memmove(buf_head, buf, len_buf);
1195 buf = buf_head;
1196 }
1197
1198 /* fetch as much as we can of the argument */
1199 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1200 len_max - len_buf);
1201 if (len_tmp == -EFAULT) {
1202 /* unable to copy from userspace */
1203 send_sig(SIGKILL, current, 0);
1204 goto out;
1205 } else if (len_tmp == (len_max - len_buf)) {
1206 /* buffer is not large enough */
1207 require_data = true;
1208 /* NOTE: if we are going to span multiple
1209 * buffers force the encoding so we stand
1210 * a chance at a sane len_full value and
1211 * consistent record encoding */
1212 encode = true;
1213 len_full = len_full * 2;
1214 p += len_tmp;
1215 } else {
1216 require_data = false;
1217 if (!encode)
1218 encode = audit_string_contains_control(
1219 buf, len_tmp);
1220 /* try to use a trusted value for len_full */
1221 if (len_full < len_max)
1222 len_full = (encode ?
1223 len_tmp * 2 : len_tmp);
1224 p += len_tmp + 1;
1225 }
1226 len_buf += len_tmp;
1227 buf_head[len_buf] = '\0';
1228
1229 /* length of the buffer in the audit record? */
1230 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1231 }
1232
1233 /* write as much as we can to the audit log */
1234 if (len_buf >= 0) {
1235 /* NOTE: some magic numbers here - basically if we
1236 * can't fit a reasonable amount of data into the
1237 * existing audit buffer, flush it and start with
1238 * a new buffer */
1239 if ((sizeof(abuf) + 8) > len_rem) {
1240 len_rem = len_max;
1241 audit_log_end(*ab);
1242 *ab = audit_log_start(context,
1243 GFP_KERNEL, AUDIT_EXECVE);
1244 if (!*ab)
1245 goto out;
1246 }
1247
1248 /* create the non-arg portion of the arg record */
1249 len_tmp = 0;
1250 if (require_data || (iter > 0) ||
1251 ((len_abuf + sizeof(abuf)) > len_rem)) {
1252 if (iter == 0) {
1253 len_tmp += snprintf(&abuf[len_tmp],
1254 sizeof(abuf) - len_tmp,
1255 " a%d_len=%lu",
1256 arg, len_full);
1257 }
1258 len_tmp += snprintf(&abuf[len_tmp],
1259 sizeof(abuf) - len_tmp,
1260 " a%d[%d]=", arg, iter++);
1261 } else
1262 len_tmp += snprintf(&abuf[len_tmp],
1263 sizeof(abuf) - len_tmp,
1264 " a%d=", arg);
1265 WARN_ON(len_tmp >= sizeof(abuf));
1266 abuf[sizeof(abuf) - 1] = '\0';
1267
1268 /* log the arg in the audit record */
1269 audit_log_format(*ab, "%s", abuf);
1270 len_rem -= len_tmp;
1271 len_tmp = len_buf;
1272 if (encode) {
1273 if (len_abuf > len_rem)
1274 len_tmp = len_rem / 2; /* encoding */
1275 audit_log_n_hex(*ab, buf, len_tmp);
1276 len_rem -= len_tmp * 2;
1277 len_abuf -= len_tmp * 2;
1278 } else {
1279 if (len_abuf > len_rem)
1280 len_tmp = len_rem - 2; /* quotes */
1281 audit_log_n_string(*ab, buf, len_tmp);
1282 len_rem -= len_tmp + 2;
1283 /* don't subtract the "2" because we still need
1284 * to add quotes to the remaining string */
1285 len_abuf -= len_tmp;
1286 }
1287 len_buf -= len_tmp;
1288 buf += len_tmp;
1289 }
1290
1291 /* ready to move to the next argument? */
1292 if ((len_buf == 0) && !require_data) {
1293 arg++;
1294 iter = 0;
1295 len_full = 0;
1296 require_data = true;
1297 encode = false;
1298 }
1299 } while (arg < context->execve.argc);
1300
1301 /* NOTE: the caller handles the final audit_log_end() call */
1302
1303 out:
1304 kfree(buf_head);
1305 }
1306
audit_log_cap(struct audit_buffer * ab,char * prefix,kernel_cap_t * cap)1307 static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1308 kernel_cap_t *cap)
1309 {
1310 int i;
1311
1312 if (cap_isclear(*cap)) {
1313 audit_log_format(ab, " %s=0", prefix);
1314 return;
1315 }
1316 audit_log_format(ab, " %s=", prefix);
1317 CAP_FOR_EACH_U32(i)
1318 audit_log_format(ab, "%08x", cap->cap[CAP_LAST_U32 - i]);
1319 }
1320
audit_log_fcaps(struct audit_buffer * ab,struct audit_names * name)1321 static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1322 {
1323 if (name->fcap_ver == -1) {
1324 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1325 return;
1326 }
1327 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1328 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1329 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1330 name->fcap.fE, name->fcap_ver,
1331 from_kuid(&init_user_ns, name->fcap.rootid));
1332 }
1333
show_special(struct audit_context * context,int * call_panic)1334 static void show_special(struct audit_context *context, int *call_panic)
1335 {
1336 struct audit_buffer *ab;
1337 int i;
1338
1339 ab = audit_log_start(context, GFP_KERNEL, context->type);
1340 if (!ab)
1341 return;
1342
1343 switch (context->type) {
1344 case AUDIT_SOCKETCALL: {
1345 int nargs = context->socketcall.nargs;
1346
1347 audit_log_format(ab, "nargs=%d", nargs);
1348 for (i = 0; i < nargs; i++)
1349 audit_log_format(ab, " a%d=%lx", i,
1350 context->socketcall.args[i]);
1351 break; }
1352 case AUDIT_IPC: {
1353 u32 osid = context->ipc.osid;
1354
1355 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1356 from_kuid(&init_user_ns, context->ipc.uid),
1357 from_kgid(&init_user_ns, context->ipc.gid),
1358 context->ipc.mode);
1359 if (osid) {
1360 char *ctx = NULL;
1361 u32 len;
1362
1363 if (security_secid_to_secctx(osid, &ctx, &len)) {
1364 audit_log_format(ab, " osid=%u", osid);
1365 *call_panic = 1;
1366 } else {
1367 audit_log_format(ab, " obj=%s", ctx);
1368 security_release_secctx(ctx, len);
1369 }
1370 }
1371 if (context->ipc.has_perm) {
1372 audit_log_end(ab);
1373 ab = audit_log_start(context, GFP_KERNEL,
1374 AUDIT_IPC_SET_PERM);
1375 if (unlikely(!ab))
1376 return;
1377 audit_log_format(ab,
1378 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1379 context->ipc.qbytes,
1380 context->ipc.perm_uid,
1381 context->ipc.perm_gid,
1382 context->ipc.perm_mode);
1383 }
1384 break; }
1385 case AUDIT_MQ_OPEN:
1386 audit_log_format(ab,
1387 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1388 "mq_msgsize=%ld mq_curmsgs=%ld",
1389 context->mq_open.oflag, context->mq_open.mode,
1390 context->mq_open.attr.mq_flags,
1391 context->mq_open.attr.mq_maxmsg,
1392 context->mq_open.attr.mq_msgsize,
1393 context->mq_open.attr.mq_curmsgs);
1394 break;
1395 case AUDIT_MQ_SENDRECV:
1396 audit_log_format(ab,
1397 "mqdes=%d msg_len=%zd msg_prio=%u "
1398 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1399 context->mq_sendrecv.mqdes,
1400 context->mq_sendrecv.msg_len,
1401 context->mq_sendrecv.msg_prio,
1402 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1403 context->mq_sendrecv.abs_timeout.tv_nsec);
1404 break;
1405 case AUDIT_MQ_NOTIFY:
1406 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1407 context->mq_notify.mqdes,
1408 context->mq_notify.sigev_signo);
1409 break;
1410 case AUDIT_MQ_GETSETATTR: {
1411 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1412
1413 audit_log_format(ab,
1414 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1415 "mq_curmsgs=%ld ",
1416 context->mq_getsetattr.mqdes,
1417 attr->mq_flags, attr->mq_maxmsg,
1418 attr->mq_msgsize, attr->mq_curmsgs);
1419 break; }
1420 case AUDIT_CAPSET:
1421 audit_log_format(ab, "pid=%d", context->capset.pid);
1422 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1423 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1424 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1425 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1426 break;
1427 case AUDIT_MMAP:
1428 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1429 context->mmap.flags);
1430 break;
1431 case AUDIT_OPENAT2:
1432 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1433 context->openat2.flags,
1434 context->openat2.mode,
1435 context->openat2.resolve);
1436 break;
1437 case AUDIT_EXECVE:
1438 audit_log_execve_info(context, &ab);
1439 break;
1440 case AUDIT_KERN_MODULE:
1441 audit_log_format(ab, "name=");
1442 if (context->module.name) {
1443 audit_log_untrustedstring(ab, context->module.name);
1444 } else
1445 audit_log_format(ab, "(null)");
1446
1447 break;
1448 }
1449 audit_log_end(ab);
1450 }
1451
audit_proctitle_rtrim(char * proctitle,int len)1452 static inline int audit_proctitle_rtrim(char *proctitle, int len)
1453 {
1454 char *end = proctitle + len - 1;
1455
1456 while (end > proctitle && !isprint(*end))
1457 end--;
1458
1459 /* catch the case where proctitle is only 1 non-print character */
1460 len = end - proctitle + 1;
1461 len -= isprint(proctitle[len-1]) == 0;
1462 return len;
1463 }
1464
1465 /*
1466 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1467 * @context: audit_context for the task
1468 * @n: audit_names structure with reportable details
1469 * @path: optional path to report instead of audit_names->name
1470 * @record_num: record number to report when handling a list of names
1471 * @call_panic: optional pointer to int that will be updated if secid fails
1472 */
audit_log_name(struct audit_context * context,struct audit_names * n,const struct path * path,int record_num,int * call_panic)1473 static void audit_log_name(struct audit_context *context, struct audit_names *n,
1474 const struct path *path, int record_num, int *call_panic)
1475 {
1476 struct audit_buffer *ab;
1477
1478 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1479 if (!ab)
1480 return;
1481
1482 audit_log_format(ab, "item=%d", record_num);
1483
1484 if (path)
1485 audit_log_d_path(ab, " name=", path);
1486 else if (n->name) {
1487 switch (n->name_len) {
1488 case AUDIT_NAME_FULL:
1489 /* log the full path */
1490 audit_log_format(ab, " name=");
1491 audit_log_untrustedstring(ab, n->name->name);
1492 break;
1493 case 0:
1494 /* name was specified as a relative path and the
1495 * directory component is the cwd
1496 */
1497 if (context->pwd.dentry && context->pwd.mnt)
1498 audit_log_d_path(ab, " name=", &context->pwd);
1499 else
1500 audit_log_format(ab, " name=(null)");
1501 break;
1502 default:
1503 /* log the name's directory component */
1504 audit_log_format(ab, " name=");
1505 audit_log_n_untrustedstring(ab, n->name->name,
1506 n->name_len);
1507 }
1508 } else
1509 audit_log_format(ab, " name=(null)");
1510
1511 if (n->ino != AUDIT_INO_UNSET)
1512 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1513 n->ino,
1514 MAJOR(n->dev),
1515 MINOR(n->dev),
1516 n->mode,
1517 from_kuid(&init_user_ns, n->uid),
1518 from_kgid(&init_user_ns, n->gid),
1519 MAJOR(n->rdev),
1520 MINOR(n->rdev));
1521 if (n->osid != 0) {
1522 char *ctx = NULL;
1523 u32 len;
1524
1525 if (security_secid_to_secctx(
1526 n->osid, &ctx, &len)) {
1527 audit_log_format(ab, " osid=%u", n->osid);
1528 if (call_panic)
1529 *call_panic = 2;
1530 } else {
1531 audit_log_format(ab, " obj=%s", ctx);
1532 security_release_secctx(ctx, len);
1533 }
1534 }
1535
1536 /* log the audit_names record type */
1537 switch (n->type) {
1538 case AUDIT_TYPE_NORMAL:
1539 audit_log_format(ab, " nametype=NORMAL");
1540 break;
1541 case AUDIT_TYPE_PARENT:
1542 audit_log_format(ab, " nametype=PARENT");
1543 break;
1544 case AUDIT_TYPE_CHILD_DELETE:
1545 audit_log_format(ab, " nametype=DELETE");
1546 break;
1547 case AUDIT_TYPE_CHILD_CREATE:
1548 audit_log_format(ab, " nametype=CREATE");
1549 break;
1550 default:
1551 audit_log_format(ab, " nametype=UNKNOWN");
1552 break;
1553 }
1554
1555 audit_log_fcaps(ab, n);
1556 audit_log_end(ab);
1557 }
1558
audit_log_proctitle(void)1559 static void audit_log_proctitle(void)
1560 {
1561 int res;
1562 char *buf;
1563 char *msg = "(null)";
1564 int len = strlen(msg);
1565 struct audit_context *context = audit_context();
1566 struct audit_buffer *ab;
1567
1568 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1569 if (!ab)
1570 return; /* audit_panic or being filtered */
1571
1572 audit_log_format(ab, "proctitle=");
1573
1574 /* Not cached */
1575 if (!context->proctitle.value) {
1576 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1577 if (!buf)
1578 goto out;
1579 /* Historically called this from procfs naming */
1580 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1581 if (res == 0) {
1582 kfree(buf);
1583 goto out;
1584 }
1585 res = audit_proctitle_rtrim(buf, res);
1586 if (res == 0) {
1587 kfree(buf);
1588 goto out;
1589 }
1590 context->proctitle.value = buf;
1591 context->proctitle.len = res;
1592 }
1593 msg = context->proctitle.value;
1594 len = context->proctitle.len;
1595 out:
1596 audit_log_n_untrustedstring(ab, msg, len);
1597 audit_log_end(ab);
1598 }
1599
1600 /**
1601 * audit_log_uring - generate a AUDIT_URINGOP record
1602 * @ctx: the audit context
1603 */
audit_log_uring(struct audit_context * ctx)1604 static void audit_log_uring(struct audit_context *ctx)
1605 {
1606 struct audit_buffer *ab;
1607 const struct cred *cred;
1608
1609 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1610 if (!ab)
1611 return;
1612 cred = current_cred();
1613 audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1614 if (ctx->return_valid != AUDITSC_INVALID)
1615 audit_log_format(ab, " success=%s exit=%ld",
1616 (ctx->return_valid == AUDITSC_SUCCESS ?
1617 "yes" : "no"),
1618 ctx->return_code);
1619 audit_log_format(ab,
1620 " items=%d"
1621 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1622 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1623 ctx->name_count,
1624 task_ppid_nr(current), task_tgid_nr(current),
1625 from_kuid(&init_user_ns, cred->uid),
1626 from_kgid(&init_user_ns, cred->gid),
1627 from_kuid(&init_user_ns, cred->euid),
1628 from_kuid(&init_user_ns, cred->suid),
1629 from_kuid(&init_user_ns, cred->fsuid),
1630 from_kgid(&init_user_ns, cred->egid),
1631 from_kgid(&init_user_ns, cred->sgid),
1632 from_kgid(&init_user_ns, cred->fsgid));
1633 audit_log_task_context(ab);
1634 audit_log_key(ab, ctx->filterkey);
1635 audit_log_end(ab);
1636 }
1637
audit_log_exit(void)1638 static void audit_log_exit(void)
1639 {
1640 int i, call_panic = 0;
1641 struct audit_context *context = audit_context();
1642 struct audit_buffer *ab;
1643 struct audit_aux_data *aux;
1644 struct audit_names *n;
1645
1646 context->personality = current->personality;
1647
1648 switch (context->context) {
1649 case AUDIT_CTX_SYSCALL:
1650 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1651 if (!ab)
1652 return;
1653 audit_log_format(ab, "arch=%x syscall=%d",
1654 context->arch, context->major);
1655 if (context->personality != PER_LINUX)
1656 audit_log_format(ab, " per=%lx", context->personality);
1657 if (context->return_valid != AUDITSC_INVALID)
1658 audit_log_format(ab, " success=%s exit=%ld",
1659 (context->return_valid == AUDITSC_SUCCESS ?
1660 "yes" : "no"),
1661 context->return_code);
1662 audit_log_format(ab,
1663 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1664 context->argv[0],
1665 context->argv[1],
1666 context->argv[2],
1667 context->argv[3],
1668 context->name_count);
1669 audit_log_task_info(ab);
1670 audit_log_key(ab, context->filterkey);
1671 audit_log_end(ab);
1672 break;
1673 case AUDIT_CTX_URING:
1674 audit_log_uring(context);
1675 break;
1676 default:
1677 BUG();
1678 break;
1679 }
1680
1681 for (aux = context->aux; aux; aux = aux->next) {
1682
1683 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1684 if (!ab)
1685 continue; /* audit_panic has been called */
1686
1687 switch (aux->type) {
1688
1689 case AUDIT_BPRM_FCAPS: {
1690 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1691
1692 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1693 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1694 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1695 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1696 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1697 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1698 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1699 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1700 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1701 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1702 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1703 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1704 audit_log_format(ab, " frootid=%d",
1705 from_kuid(&init_user_ns,
1706 axs->fcap.rootid));
1707 break; }
1708
1709 }
1710 audit_log_end(ab);
1711 }
1712
1713 if (context->type)
1714 show_special(context, &call_panic);
1715
1716 if (context->fds[0] >= 0) {
1717 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1718 if (ab) {
1719 audit_log_format(ab, "fd0=%d fd1=%d",
1720 context->fds[0], context->fds[1]);
1721 audit_log_end(ab);
1722 }
1723 }
1724
1725 if (context->sockaddr_len) {
1726 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1727 if (ab) {
1728 audit_log_format(ab, "saddr=");
1729 audit_log_n_hex(ab, (void *)context->sockaddr,
1730 context->sockaddr_len);
1731 audit_log_end(ab);
1732 }
1733 }
1734
1735 for (aux = context->aux_pids; aux; aux = aux->next) {
1736 struct audit_aux_data_pids *axs = (void *)aux;
1737
1738 for (i = 0; i < axs->pid_count; i++)
1739 if (audit_log_pid_context(context, axs->target_pid[i],
1740 axs->target_auid[i],
1741 axs->target_uid[i],
1742 axs->target_sessionid[i],
1743 axs->target_sid[i],
1744 axs->target_comm[i]))
1745 call_panic = 1;
1746 }
1747
1748 if (context->target_pid &&
1749 audit_log_pid_context(context, context->target_pid,
1750 context->target_auid, context->target_uid,
1751 context->target_sessionid,
1752 context->target_sid, context->target_comm))
1753 call_panic = 1;
1754
1755 if (context->pwd.dentry && context->pwd.mnt) {
1756 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1757 if (ab) {
1758 audit_log_d_path(ab, "cwd=", &context->pwd);
1759 audit_log_end(ab);
1760 }
1761 }
1762
1763 i = 0;
1764 list_for_each_entry(n, &context->names_list, list) {
1765 if (n->hidden)
1766 continue;
1767 audit_log_name(context, n, NULL, i++, &call_panic);
1768 }
1769
1770 if (context->context == AUDIT_CTX_SYSCALL)
1771 audit_log_proctitle();
1772
1773 /* Send end of event record to help user space know we are finished */
1774 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1775 if (ab)
1776 audit_log_end(ab);
1777 if (call_panic)
1778 audit_panic("error in audit_log_exit()");
1779 }
1780
1781 /**
1782 * __audit_free - free a per-task audit context
1783 * @tsk: task whose audit context block to free
1784 *
1785 * Called from copy_process, do_exit, and the io_uring code
1786 */
__audit_free(struct task_struct * tsk)1787 void __audit_free(struct task_struct *tsk)
1788 {
1789 struct audit_context *context = tsk->audit_context;
1790
1791 if (!context)
1792 return;
1793
1794 /* this may generate CONFIG_CHANGE records */
1795 if (!list_empty(&context->killed_trees))
1796 audit_kill_trees(context);
1797
1798 /* We are called either by do_exit() or the fork() error handling code;
1799 * in the former case tsk == current and in the latter tsk is a
1800 * random task_struct that doesn't doesn't have any meaningful data we
1801 * need to log via audit_log_exit().
1802 */
1803 if (tsk == current && !context->dummy) {
1804 context->return_valid = AUDITSC_INVALID;
1805 context->return_code = 0;
1806 if (context->context == AUDIT_CTX_SYSCALL) {
1807 audit_filter_syscall(tsk, context);
1808 audit_filter_inodes(tsk, context);
1809 if (context->current_state == AUDIT_STATE_RECORD)
1810 audit_log_exit();
1811 } else if (context->context == AUDIT_CTX_URING) {
1812 /* TODO: verify this case is real and valid */
1813 audit_filter_uring(tsk, context);
1814 audit_filter_inodes(tsk, context);
1815 if (context->current_state == AUDIT_STATE_RECORD)
1816 audit_log_uring(context);
1817 }
1818 }
1819
1820 audit_set_context(tsk, NULL);
1821 audit_free_context(context);
1822 }
1823
1824 /**
1825 * audit_return_fixup - fixup the return codes in the audit_context
1826 * @ctx: the audit_context
1827 * @success: true/false value to indicate if the operation succeeded or not
1828 * @code: operation return code
1829 *
1830 * We need to fixup the return code in the audit logs if the actual return
1831 * codes are later going to be fixed by the arch specific signal handlers.
1832 */
audit_return_fixup(struct audit_context * ctx,int success,long code)1833 static void audit_return_fixup(struct audit_context *ctx,
1834 int success, long code)
1835 {
1836 /*
1837 * This is actually a test for:
1838 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1839 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1840 *
1841 * but is faster than a bunch of ||
1842 */
1843 if (unlikely(code <= -ERESTARTSYS) &&
1844 (code >= -ERESTART_RESTARTBLOCK) &&
1845 (code != -ENOIOCTLCMD))
1846 ctx->return_code = -EINTR;
1847 else
1848 ctx->return_code = code;
1849 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1850 }
1851
1852 /**
1853 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1854 * @op: the io_uring opcode
1855 *
1856 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1857 * operations. This function should only ever be called from
1858 * audit_uring_entry() as we rely on the audit context checking present in that
1859 * function.
1860 */
__audit_uring_entry(u8 op)1861 void __audit_uring_entry(u8 op)
1862 {
1863 struct audit_context *ctx = audit_context();
1864
1865 if (ctx->state == AUDIT_STATE_DISABLED)
1866 return;
1867
1868 /*
1869 * NOTE: It's possible that we can be called from the process' context
1870 * before it returns to userspace, and before audit_syscall_exit()
1871 * is called. In this case there is not much to do, just record
1872 * the io_uring details and return.
1873 */
1874 ctx->uring_op = op;
1875 if (ctx->context == AUDIT_CTX_SYSCALL)
1876 return;
1877
1878 ctx->dummy = !audit_n_rules;
1879 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1880 ctx->prio = 0;
1881
1882 ctx->context = AUDIT_CTX_URING;
1883 ctx->current_state = ctx->state;
1884 ktime_get_coarse_real_ts64(&ctx->ctime);
1885 }
1886
1887 /**
1888 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1889 * @success: true/false value to indicate if the operation succeeded or not
1890 * @code: operation return code
1891 *
1892 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1893 * operations. This function should only ever be called from
1894 * audit_uring_exit() as we rely on the audit context checking present in that
1895 * function.
1896 */
__audit_uring_exit(int success,long code)1897 void __audit_uring_exit(int success, long code)
1898 {
1899 struct audit_context *ctx = audit_context();
1900
1901 if (ctx->context == AUDIT_CTX_SYSCALL) {
1902 /*
1903 * NOTE: See the note in __audit_uring_entry() about the case
1904 * where we may be called from process context before we
1905 * return to userspace via audit_syscall_exit(). In this
1906 * case we simply emit a URINGOP record and bail, the
1907 * normal syscall exit handling will take care of
1908 * everything else.
1909 * It is also worth mentioning that when we are called,
1910 * the current process creds may differ from the creds
1911 * used during the normal syscall processing; keep that
1912 * in mind if/when we move the record generation code.
1913 */
1914
1915 /*
1916 * We need to filter on the syscall info here to decide if we
1917 * should emit a URINGOP record. I know it seems odd but this
1918 * solves the problem where users have a filter to block *all*
1919 * syscall records in the "exit" filter; we want to preserve
1920 * the behavior here.
1921 */
1922 audit_filter_syscall(current, ctx);
1923 if (ctx->current_state != AUDIT_STATE_RECORD)
1924 audit_filter_uring(current, ctx);
1925 audit_filter_inodes(current, ctx);
1926 if (ctx->current_state != AUDIT_STATE_RECORD)
1927 return;
1928
1929 audit_log_uring(ctx);
1930 return;
1931 }
1932
1933 /* this may generate CONFIG_CHANGE records */
1934 if (!list_empty(&ctx->killed_trees))
1935 audit_kill_trees(ctx);
1936
1937 /* run through both filters to ensure we set the filterkey properly */
1938 audit_filter_uring(current, ctx);
1939 audit_filter_inodes(current, ctx);
1940 if (ctx->current_state != AUDIT_STATE_RECORD)
1941 goto out;
1942 audit_return_fixup(ctx, success, code);
1943 audit_log_exit();
1944
1945 out:
1946 audit_reset_context(ctx);
1947 }
1948
1949 /**
1950 * __audit_syscall_entry - fill in an audit record at syscall entry
1951 * @major: major syscall type (function)
1952 * @a1: additional syscall register 1
1953 * @a2: additional syscall register 2
1954 * @a3: additional syscall register 3
1955 * @a4: additional syscall register 4
1956 *
1957 * Fill in audit context at syscall entry. This only happens if the
1958 * audit context was created when the task was created and the state or
1959 * filters demand the audit context be built. If the state from the
1960 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
1961 * then the record will be written at syscall exit time (otherwise, it
1962 * will only be written if another part of the kernel requests that it
1963 * be written).
1964 */
__audit_syscall_entry(int major,unsigned long a1,unsigned long a2,unsigned long a3,unsigned long a4)1965 void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1966 unsigned long a3, unsigned long a4)
1967 {
1968 struct audit_context *context = audit_context();
1969 enum audit_state state;
1970
1971 if (!audit_enabled || !context)
1972 return;
1973
1974 WARN_ON(context->context != AUDIT_CTX_UNUSED);
1975 WARN_ON(context->name_count);
1976 if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
1977 audit_panic("unrecoverable error in audit_syscall_entry()");
1978 return;
1979 }
1980
1981 state = context->state;
1982 if (state == AUDIT_STATE_DISABLED)
1983 return;
1984
1985 context->dummy = !audit_n_rules;
1986 if (!context->dummy && state == AUDIT_STATE_BUILD) {
1987 context->prio = 0;
1988 if (auditd_test_task(current))
1989 return;
1990 }
1991
1992 context->arch = syscall_get_arch(current);
1993 context->major = major;
1994 context->argv[0] = a1;
1995 context->argv[1] = a2;
1996 context->argv[2] = a3;
1997 context->argv[3] = a4;
1998 context->context = AUDIT_CTX_SYSCALL;
1999 context->current_state = state;
2000 ktime_get_coarse_real_ts64(&context->ctime);
2001 }
2002
2003 /**
2004 * __audit_syscall_exit - deallocate audit context after a system call
2005 * @success: success value of the syscall
2006 * @return_code: return value of the syscall
2007 *
2008 * Tear down after system call. If the audit context has been marked as
2009 * auditable (either because of the AUDIT_STATE_RECORD state from
2010 * filtering, or because some other part of the kernel wrote an audit
2011 * message), then write out the syscall information. In call cases,
2012 * free the names stored from getname().
2013 */
__audit_syscall_exit(int success,long return_code)2014 void __audit_syscall_exit(int success, long return_code)
2015 {
2016 struct audit_context *context = audit_context();
2017
2018 if (!context || context->dummy ||
2019 context->context != AUDIT_CTX_SYSCALL)
2020 goto out;
2021
2022 /* this may generate CONFIG_CHANGE records */
2023 if (!list_empty(&context->killed_trees))
2024 audit_kill_trees(context);
2025
2026 /* run through both filters to ensure we set the filterkey properly */
2027 audit_filter_syscall(current, context);
2028 audit_filter_inodes(current, context);
2029 if (context->current_state < AUDIT_STATE_RECORD)
2030 goto out;
2031
2032 audit_return_fixup(context, success, return_code);
2033 audit_log_exit();
2034
2035 out:
2036 audit_reset_context(context);
2037 }
2038
handle_one(const struct inode * inode)2039 static inline void handle_one(const struct inode *inode)
2040 {
2041 struct audit_context *context;
2042 struct audit_tree_refs *p;
2043 struct audit_chunk *chunk;
2044 int count;
2045
2046 if (likely(!inode->i_fsnotify_marks))
2047 return;
2048 context = audit_context();
2049 p = context->trees;
2050 count = context->tree_count;
2051 rcu_read_lock();
2052 chunk = audit_tree_lookup(inode);
2053 rcu_read_unlock();
2054 if (!chunk)
2055 return;
2056 if (likely(put_tree_ref(context, chunk)))
2057 return;
2058 if (unlikely(!grow_tree_refs(context))) {
2059 pr_warn("out of memory, audit has lost a tree reference\n");
2060 audit_set_auditable(context);
2061 audit_put_chunk(chunk);
2062 unroll_tree_refs(context, p, count);
2063 return;
2064 }
2065 put_tree_ref(context, chunk);
2066 }
2067
handle_path(const struct dentry * dentry)2068 static void handle_path(const struct dentry *dentry)
2069 {
2070 struct audit_context *context;
2071 struct audit_tree_refs *p;
2072 const struct dentry *d, *parent;
2073 struct audit_chunk *drop;
2074 unsigned long seq;
2075 int count;
2076
2077 context = audit_context();
2078 p = context->trees;
2079 count = context->tree_count;
2080 retry:
2081 drop = NULL;
2082 d = dentry;
2083 rcu_read_lock();
2084 seq = read_seqbegin(&rename_lock);
2085 for(;;) {
2086 struct inode *inode = d_backing_inode(d);
2087
2088 if (inode && unlikely(inode->i_fsnotify_marks)) {
2089 struct audit_chunk *chunk;
2090
2091 chunk = audit_tree_lookup(inode);
2092 if (chunk) {
2093 if (unlikely(!put_tree_ref(context, chunk))) {
2094 drop = chunk;
2095 break;
2096 }
2097 }
2098 }
2099 parent = d->d_parent;
2100 if (parent == d)
2101 break;
2102 d = parent;
2103 }
2104 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
2105 rcu_read_unlock();
2106 if (!drop) {
2107 /* just a race with rename */
2108 unroll_tree_refs(context, p, count);
2109 goto retry;
2110 }
2111 audit_put_chunk(drop);
2112 if (grow_tree_refs(context)) {
2113 /* OK, got more space */
2114 unroll_tree_refs(context, p, count);
2115 goto retry;
2116 }
2117 /* too bad */
2118 pr_warn("out of memory, audit has lost a tree reference\n");
2119 unroll_tree_refs(context, p, count);
2120 audit_set_auditable(context);
2121 return;
2122 }
2123 rcu_read_unlock();
2124 }
2125
audit_alloc_name(struct audit_context * context,unsigned char type)2126 static struct audit_names *audit_alloc_name(struct audit_context *context,
2127 unsigned char type)
2128 {
2129 struct audit_names *aname;
2130
2131 if (context->name_count < AUDIT_NAMES) {
2132 aname = &context->preallocated_names[context->name_count];
2133 memset(aname, 0, sizeof(*aname));
2134 } else {
2135 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2136 if (!aname)
2137 return NULL;
2138 aname->should_free = true;
2139 }
2140
2141 aname->ino = AUDIT_INO_UNSET;
2142 aname->type = type;
2143 list_add_tail(&aname->list, &context->names_list);
2144
2145 context->name_count++;
2146 if (!context->pwd.dentry)
2147 get_fs_pwd(current->fs, &context->pwd);
2148 return aname;
2149 }
2150
2151 /**
2152 * __audit_reusename - fill out filename with info from existing entry
2153 * @uptr: userland ptr to pathname
2154 *
2155 * Search the audit_names list for the current audit context. If there is an
2156 * existing entry with a matching "uptr" then return the filename
2157 * associated with that audit_name. If not, return NULL.
2158 */
2159 struct filename *
__audit_reusename(const __user char * uptr)2160 __audit_reusename(const __user char *uptr)
2161 {
2162 struct audit_context *context = audit_context();
2163 struct audit_names *n;
2164
2165 list_for_each_entry(n, &context->names_list, list) {
2166 if (!n->name)
2167 continue;
2168 if (n->name->uptr == uptr) {
2169 n->name->refcnt++;
2170 return n->name;
2171 }
2172 }
2173 return NULL;
2174 }
2175
2176 /**
2177 * __audit_getname - add a name to the list
2178 * @name: name to add
2179 *
2180 * Add a name to the list of audit names for this context.
2181 * Called from fs/namei.c:getname().
2182 */
__audit_getname(struct filename * name)2183 void __audit_getname(struct filename *name)
2184 {
2185 struct audit_context *context = audit_context();
2186 struct audit_names *n;
2187
2188 if (context->context == AUDIT_CTX_UNUSED)
2189 return;
2190
2191 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2192 if (!n)
2193 return;
2194
2195 n->name = name;
2196 n->name_len = AUDIT_NAME_FULL;
2197 name->aname = n;
2198 name->refcnt++;
2199 }
2200
audit_copy_fcaps(struct audit_names * name,const struct dentry * dentry)2201 static inline int audit_copy_fcaps(struct audit_names *name,
2202 const struct dentry *dentry)
2203 {
2204 struct cpu_vfs_cap_data caps;
2205 int rc;
2206
2207 if (!dentry)
2208 return 0;
2209
2210 rc = get_vfs_caps_from_disk(&init_user_ns, dentry, &caps);
2211 if (rc)
2212 return rc;
2213
2214 name->fcap.permitted = caps.permitted;
2215 name->fcap.inheritable = caps.inheritable;
2216 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2217 name->fcap.rootid = caps.rootid;
2218 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2219 VFS_CAP_REVISION_SHIFT;
2220
2221 return 0;
2222 }
2223
2224 /* Copy inode data into an audit_names. */
audit_copy_inode(struct audit_names * name,const struct dentry * dentry,struct inode * inode,unsigned int flags)2225 static void audit_copy_inode(struct audit_names *name,
2226 const struct dentry *dentry,
2227 struct inode *inode, unsigned int flags)
2228 {
2229 name->ino = inode->i_ino;
2230 name->dev = inode->i_sb->s_dev;
2231 name->mode = inode->i_mode;
2232 name->uid = inode->i_uid;
2233 name->gid = inode->i_gid;
2234 name->rdev = inode->i_rdev;
2235 security_inode_getsecid(inode, &name->osid);
2236 if (flags & AUDIT_INODE_NOEVAL) {
2237 name->fcap_ver = -1;
2238 return;
2239 }
2240 audit_copy_fcaps(name, dentry);
2241 }
2242
2243 /**
2244 * __audit_inode - store the inode and device from a lookup
2245 * @name: name being audited
2246 * @dentry: dentry being audited
2247 * @flags: attributes for this particular entry
2248 */
__audit_inode(struct filename * name,const struct dentry * dentry,unsigned int flags)2249 void __audit_inode(struct filename *name, const struct dentry *dentry,
2250 unsigned int flags)
2251 {
2252 struct audit_context *context = audit_context();
2253 struct inode *inode = d_backing_inode(dentry);
2254 struct audit_names *n;
2255 bool parent = flags & AUDIT_INODE_PARENT;
2256 struct audit_entry *e;
2257 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2258 int i;
2259
2260 if (context->context == AUDIT_CTX_UNUSED)
2261 return;
2262
2263 rcu_read_lock();
2264 list_for_each_entry_rcu(e, list, list) {
2265 for (i = 0; i < e->rule.field_count; i++) {
2266 struct audit_field *f = &e->rule.fields[i];
2267
2268 if (f->type == AUDIT_FSTYPE
2269 && audit_comparator(inode->i_sb->s_magic,
2270 f->op, f->val)
2271 && e->rule.action == AUDIT_NEVER) {
2272 rcu_read_unlock();
2273 return;
2274 }
2275 }
2276 }
2277 rcu_read_unlock();
2278
2279 if (!name)
2280 goto out_alloc;
2281
2282 /*
2283 * If we have a pointer to an audit_names entry already, then we can
2284 * just use it directly if the type is correct.
2285 */
2286 n = name->aname;
2287 if (n) {
2288 if (parent) {
2289 if (n->type == AUDIT_TYPE_PARENT ||
2290 n->type == AUDIT_TYPE_UNKNOWN)
2291 goto out;
2292 } else {
2293 if (n->type != AUDIT_TYPE_PARENT)
2294 goto out;
2295 }
2296 }
2297
2298 list_for_each_entry_reverse(n, &context->names_list, list) {
2299 if (n->ino) {
2300 /* valid inode number, use that for the comparison */
2301 if (n->ino != inode->i_ino ||
2302 n->dev != inode->i_sb->s_dev)
2303 continue;
2304 } else if (n->name) {
2305 /* inode number has not been set, check the name */
2306 if (strcmp(n->name->name, name->name))
2307 continue;
2308 } else
2309 /* no inode and no name (?!) ... this is odd ... */
2310 continue;
2311
2312 /* match the correct record type */
2313 if (parent) {
2314 if (n->type == AUDIT_TYPE_PARENT ||
2315 n->type == AUDIT_TYPE_UNKNOWN)
2316 goto out;
2317 } else {
2318 if (n->type != AUDIT_TYPE_PARENT)
2319 goto out;
2320 }
2321 }
2322
2323 out_alloc:
2324 /* unable to find an entry with both a matching name and type */
2325 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2326 if (!n)
2327 return;
2328 if (name) {
2329 n->name = name;
2330 name->refcnt++;
2331 }
2332
2333 out:
2334 if (parent) {
2335 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2336 n->type = AUDIT_TYPE_PARENT;
2337 if (flags & AUDIT_INODE_HIDDEN)
2338 n->hidden = true;
2339 } else {
2340 n->name_len = AUDIT_NAME_FULL;
2341 n->type = AUDIT_TYPE_NORMAL;
2342 }
2343 handle_path(dentry);
2344 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2345 }
2346
__audit_file(const struct file * file)2347 void __audit_file(const struct file *file)
2348 {
2349 __audit_inode(NULL, file->f_path.dentry, 0);
2350 }
2351
2352 /**
2353 * __audit_inode_child - collect inode info for created/removed objects
2354 * @parent: inode of dentry parent
2355 * @dentry: dentry being audited
2356 * @type: AUDIT_TYPE_* value that we're looking for
2357 *
2358 * For syscalls that create or remove filesystem objects, audit_inode
2359 * can only collect information for the filesystem object's parent.
2360 * This call updates the audit context with the child's information.
2361 * Syscalls that create a new filesystem object must be hooked after
2362 * the object is created. Syscalls that remove a filesystem object
2363 * must be hooked prior, in order to capture the target inode during
2364 * unsuccessful attempts.
2365 */
__audit_inode_child(struct inode * parent,const struct dentry * dentry,const unsigned char type)2366 void __audit_inode_child(struct inode *parent,
2367 const struct dentry *dentry,
2368 const unsigned char type)
2369 {
2370 struct audit_context *context = audit_context();
2371 struct inode *inode = d_backing_inode(dentry);
2372 const struct qstr *dname = &dentry->d_name;
2373 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2374 struct audit_entry *e;
2375 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2376 int i;
2377
2378 if (context->context == AUDIT_CTX_UNUSED)
2379 return;
2380
2381 rcu_read_lock();
2382 list_for_each_entry_rcu(e, list, list) {
2383 for (i = 0; i < e->rule.field_count; i++) {
2384 struct audit_field *f = &e->rule.fields[i];
2385
2386 if (f->type == AUDIT_FSTYPE
2387 && audit_comparator(parent->i_sb->s_magic,
2388 f->op, f->val)
2389 && e->rule.action == AUDIT_NEVER) {
2390 rcu_read_unlock();
2391 return;
2392 }
2393 }
2394 }
2395 rcu_read_unlock();
2396
2397 if (inode)
2398 handle_one(inode);
2399
2400 /* look for a parent entry first */
2401 list_for_each_entry(n, &context->names_list, list) {
2402 if (!n->name ||
2403 (n->type != AUDIT_TYPE_PARENT &&
2404 n->type != AUDIT_TYPE_UNKNOWN))
2405 continue;
2406
2407 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2408 !audit_compare_dname_path(dname,
2409 n->name->name, n->name_len)) {
2410 if (n->type == AUDIT_TYPE_UNKNOWN)
2411 n->type = AUDIT_TYPE_PARENT;
2412 found_parent = n;
2413 break;
2414 }
2415 }
2416
2417 /* is there a matching child entry? */
2418 list_for_each_entry(n, &context->names_list, list) {
2419 /* can only match entries that have a name */
2420 if (!n->name ||
2421 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2422 continue;
2423
2424 if (!strcmp(dname->name, n->name->name) ||
2425 !audit_compare_dname_path(dname, n->name->name,
2426 found_parent ?
2427 found_parent->name_len :
2428 AUDIT_NAME_FULL)) {
2429 if (n->type == AUDIT_TYPE_UNKNOWN)
2430 n->type = type;
2431 found_child = n;
2432 break;
2433 }
2434 }
2435
2436 if (!found_parent) {
2437 /* create a new, "anonymous" parent record */
2438 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2439 if (!n)
2440 return;
2441 audit_copy_inode(n, NULL, parent, 0);
2442 }
2443
2444 if (!found_child) {
2445 found_child = audit_alloc_name(context, type);
2446 if (!found_child)
2447 return;
2448
2449 /* Re-use the name belonging to the slot for a matching parent
2450 * directory. All names for this context are relinquished in
2451 * audit_free_names() */
2452 if (found_parent) {
2453 found_child->name = found_parent->name;
2454 found_child->name_len = AUDIT_NAME_FULL;
2455 found_child->name->refcnt++;
2456 }
2457 }
2458
2459 if (inode)
2460 audit_copy_inode(found_child, dentry, inode, 0);
2461 else
2462 found_child->ino = AUDIT_INO_UNSET;
2463 }
2464 EXPORT_SYMBOL_GPL(__audit_inode_child);
2465
2466 /**
2467 * auditsc_get_stamp - get local copies of audit_context values
2468 * @ctx: audit_context for the task
2469 * @t: timespec64 to store time recorded in the audit_context
2470 * @serial: serial value that is recorded in the audit_context
2471 *
2472 * Also sets the context as auditable.
2473 */
auditsc_get_stamp(struct audit_context * ctx,struct timespec64 * t,unsigned int * serial)2474 int auditsc_get_stamp(struct audit_context *ctx,
2475 struct timespec64 *t, unsigned int *serial)
2476 {
2477 if (ctx->context == AUDIT_CTX_UNUSED)
2478 return 0;
2479 if (!ctx->serial)
2480 ctx->serial = audit_serial();
2481 t->tv_sec = ctx->ctime.tv_sec;
2482 t->tv_nsec = ctx->ctime.tv_nsec;
2483 *serial = ctx->serial;
2484 if (!ctx->prio) {
2485 ctx->prio = 1;
2486 ctx->current_state = AUDIT_STATE_RECORD;
2487 }
2488 return 1;
2489 }
2490
2491 /**
2492 * __audit_mq_open - record audit data for a POSIX MQ open
2493 * @oflag: open flag
2494 * @mode: mode bits
2495 * @attr: queue attributes
2496 *
2497 */
__audit_mq_open(int oflag,umode_t mode,struct mq_attr * attr)2498 void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2499 {
2500 struct audit_context *context = audit_context();
2501
2502 if (attr)
2503 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2504 else
2505 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2506
2507 context->mq_open.oflag = oflag;
2508 context->mq_open.mode = mode;
2509
2510 context->type = AUDIT_MQ_OPEN;
2511 }
2512
2513 /**
2514 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2515 * @mqdes: MQ descriptor
2516 * @msg_len: Message length
2517 * @msg_prio: Message priority
2518 * @abs_timeout: Message timeout in absolute time
2519 *
2520 */
__audit_mq_sendrecv(mqd_t mqdes,size_t msg_len,unsigned int msg_prio,const struct timespec64 * abs_timeout)2521 void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2522 const struct timespec64 *abs_timeout)
2523 {
2524 struct audit_context *context = audit_context();
2525 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2526
2527 if (abs_timeout)
2528 memcpy(p, abs_timeout, sizeof(*p));
2529 else
2530 memset(p, 0, sizeof(*p));
2531
2532 context->mq_sendrecv.mqdes = mqdes;
2533 context->mq_sendrecv.msg_len = msg_len;
2534 context->mq_sendrecv.msg_prio = msg_prio;
2535
2536 context->type = AUDIT_MQ_SENDRECV;
2537 }
2538
2539 /**
2540 * __audit_mq_notify - record audit data for a POSIX MQ notify
2541 * @mqdes: MQ descriptor
2542 * @notification: Notification event
2543 *
2544 */
2545
__audit_mq_notify(mqd_t mqdes,const struct sigevent * notification)2546 void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2547 {
2548 struct audit_context *context = audit_context();
2549
2550 if (notification)
2551 context->mq_notify.sigev_signo = notification->sigev_signo;
2552 else
2553 context->mq_notify.sigev_signo = 0;
2554
2555 context->mq_notify.mqdes = mqdes;
2556 context->type = AUDIT_MQ_NOTIFY;
2557 }
2558
2559 /**
2560 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2561 * @mqdes: MQ descriptor
2562 * @mqstat: MQ flags
2563 *
2564 */
__audit_mq_getsetattr(mqd_t mqdes,struct mq_attr * mqstat)2565 void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2566 {
2567 struct audit_context *context = audit_context();
2568
2569 context->mq_getsetattr.mqdes = mqdes;
2570 context->mq_getsetattr.mqstat = *mqstat;
2571 context->type = AUDIT_MQ_GETSETATTR;
2572 }
2573
2574 /**
2575 * __audit_ipc_obj - record audit data for ipc object
2576 * @ipcp: ipc permissions
2577 *
2578 */
__audit_ipc_obj(struct kern_ipc_perm * ipcp)2579 void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2580 {
2581 struct audit_context *context = audit_context();
2582
2583 context->ipc.uid = ipcp->uid;
2584 context->ipc.gid = ipcp->gid;
2585 context->ipc.mode = ipcp->mode;
2586 context->ipc.has_perm = 0;
2587 security_ipc_getsecid(ipcp, &context->ipc.osid);
2588 context->type = AUDIT_IPC;
2589 }
2590
2591 /**
2592 * __audit_ipc_set_perm - record audit data for new ipc permissions
2593 * @qbytes: msgq bytes
2594 * @uid: msgq user id
2595 * @gid: msgq group id
2596 * @mode: msgq mode (permissions)
2597 *
2598 * Called only after audit_ipc_obj().
2599 */
__audit_ipc_set_perm(unsigned long qbytes,uid_t uid,gid_t gid,umode_t mode)2600 void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2601 {
2602 struct audit_context *context = audit_context();
2603
2604 context->ipc.qbytes = qbytes;
2605 context->ipc.perm_uid = uid;
2606 context->ipc.perm_gid = gid;
2607 context->ipc.perm_mode = mode;
2608 context->ipc.has_perm = 1;
2609 }
2610
__audit_bprm(struct linux_binprm * bprm)2611 void __audit_bprm(struct linux_binprm *bprm)
2612 {
2613 struct audit_context *context = audit_context();
2614
2615 context->type = AUDIT_EXECVE;
2616 context->execve.argc = bprm->argc;
2617 }
2618
2619
2620 /**
2621 * __audit_socketcall - record audit data for sys_socketcall
2622 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2623 * @args: args array
2624 *
2625 */
__audit_socketcall(int nargs,unsigned long * args)2626 int __audit_socketcall(int nargs, unsigned long *args)
2627 {
2628 struct audit_context *context = audit_context();
2629
2630 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2631 return -EINVAL;
2632 context->type = AUDIT_SOCKETCALL;
2633 context->socketcall.nargs = nargs;
2634 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2635 return 0;
2636 }
2637
2638 /**
2639 * __audit_fd_pair - record audit data for pipe and socketpair
2640 * @fd1: the first file descriptor
2641 * @fd2: the second file descriptor
2642 *
2643 */
__audit_fd_pair(int fd1,int fd2)2644 void __audit_fd_pair(int fd1, int fd2)
2645 {
2646 struct audit_context *context = audit_context();
2647
2648 context->fds[0] = fd1;
2649 context->fds[1] = fd2;
2650 }
2651
2652 /**
2653 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2654 * @len: data length in user space
2655 * @a: data address in kernel space
2656 *
2657 * Returns 0 for success or NULL context or < 0 on error.
2658 */
__audit_sockaddr(int len,void * a)2659 int __audit_sockaddr(int len, void *a)
2660 {
2661 struct audit_context *context = audit_context();
2662
2663 if (!context->sockaddr) {
2664 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2665
2666 if (!p)
2667 return -ENOMEM;
2668 context->sockaddr = p;
2669 }
2670
2671 context->sockaddr_len = len;
2672 memcpy(context->sockaddr, a, len);
2673 return 0;
2674 }
2675
__audit_ptrace(struct task_struct * t)2676 void __audit_ptrace(struct task_struct *t)
2677 {
2678 struct audit_context *context = audit_context();
2679
2680 context->target_pid = task_tgid_nr(t);
2681 context->target_auid = audit_get_loginuid(t);
2682 context->target_uid = task_uid(t);
2683 context->target_sessionid = audit_get_sessionid(t);
2684 security_task_getsecid_obj(t, &context->target_sid);
2685 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2686 }
2687
2688 /**
2689 * audit_signal_info_syscall - record signal info for syscalls
2690 * @t: task being signaled
2691 *
2692 * If the audit subsystem is being terminated, record the task (pid)
2693 * and uid that is doing that.
2694 */
audit_signal_info_syscall(struct task_struct * t)2695 int audit_signal_info_syscall(struct task_struct *t)
2696 {
2697 struct audit_aux_data_pids *axp;
2698 struct audit_context *ctx = audit_context();
2699 kuid_t t_uid = task_uid(t);
2700
2701 if (!audit_signals || audit_dummy_context())
2702 return 0;
2703
2704 /* optimize the common case by putting first signal recipient directly
2705 * in audit_context */
2706 if (!ctx->target_pid) {
2707 ctx->target_pid = task_tgid_nr(t);
2708 ctx->target_auid = audit_get_loginuid(t);
2709 ctx->target_uid = t_uid;
2710 ctx->target_sessionid = audit_get_sessionid(t);
2711 security_task_getsecid_obj(t, &ctx->target_sid);
2712 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2713 return 0;
2714 }
2715
2716 axp = (void *)ctx->aux_pids;
2717 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2718 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2719 if (!axp)
2720 return -ENOMEM;
2721
2722 axp->d.type = AUDIT_OBJ_PID;
2723 axp->d.next = ctx->aux_pids;
2724 ctx->aux_pids = (void *)axp;
2725 }
2726 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2727
2728 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2729 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2730 axp->target_uid[axp->pid_count] = t_uid;
2731 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2732 security_task_getsecid_obj(t, &axp->target_sid[axp->pid_count]);
2733 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2734 axp->pid_count++;
2735
2736 return 0;
2737 }
2738
2739 /**
2740 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2741 * @bprm: pointer to the bprm being processed
2742 * @new: the proposed new credentials
2743 * @old: the old credentials
2744 *
2745 * Simply check if the proc already has the caps given by the file and if not
2746 * store the priv escalation info for later auditing at the end of the syscall
2747 *
2748 * -Eric
2749 */
__audit_log_bprm_fcaps(struct linux_binprm * bprm,const struct cred * new,const struct cred * old)2750 int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2751 const struct cred *new, const struct cred *old)
2752 {
2753 struct audit_aux_data_bprm_fcaps *ax;
2754 struct audit_context *context = audit_context();
2755 struct cpu_vfs_cap_data vcaps;
2756
2757 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2758 if (!ax)
2759 return -ENOMEM;
2760
2761 ax->d.type = AUDIT_BPRM_FCAPS;
2762 ax->d.next = context->aux;
2763 context->aux = (void *)ax;
2764
2765 get_vfs_caps_from_disk(&init_user_ns,
2766 bprm->file->f_path.dentry, &vcaps);
2767
2768 ax->fcap.permitted = vcaps.permitted;
2769 ax->fcap.inheritable = vcaps.inheritable;
2770 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2771 ax->fcap.rootid = vcaps.rootid;
2772 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2773
2774 ax->old_pcap.permitted = old->cap_permitted;
2775 ax->old_pcap.inheritable = old->cap_inheritable;
2776 ax->old_pcap.effective = old->cap_effective;
2777 ax->old_pcap.ambient = old->cap_ambient;
2778
2779 ax->new_pcap.permitted = new->cap_permitted;
2780 ax->new_pcap.inheritable = new->cap_inheritable;
2781 ax->new_pcap.effective = new->cap_effective;
2782 ax->new_pcap.ambient = new->cap_ambient;
2783 return 0;
2784 }
2785
2786 /**
2787 * __audit_log_capset - store information about the arguments to the capset syscall
2788 * @new: the new credentials
2789 * @old: the old (current) credentials
2790 *
2791 * Record the arguments userspace sent to sys_capset for later printing by the
2792 * audit system if applicable
2793 */
__audit_log_capset(const struct cred * new,const struct cred * old)2794 void __audit_log_capset(const struct cred *new, const struct cred *old)
2795 {
2796 struct audit_context *context = audit_context();
2797
2798 context->capset.pid = task_tgid_nr(current);
2799 context->capset.cap.effective = new->cap_effective;
2800 context->capset.cap.inheritable = new->cap_effective;
2801 context->capset.cap.permitted = new->cap_permitted;
2802 context->capset.cap.ambient = new->cap_ambient;
2803 context->type = AUDIT_CAPSET;
2804 }
2805
__audit_mmap_fd(int fd,int flags)2806 void __audit_mmap_fd(int fd, int flags)
2807 {
2808 struct audit_context *context = audit_context();
2809
2810 context->mmap.fd = fd;
2811 context->mmap.flags = flags;
2812 context->type = AUDIT_MMAP;
2813 }
2814
__audit_openat2_how(struct open_how * how)2815 void __audit_openat2_how(struct open_how *how)
2816 {
2817 struct audit_context *context = audit_context();
2818
2819 context->openat2.flags = how->flags;
2820 context->openat2.mode = how->mode;
2821 context->openat2.resolve = how->resolve;
2822 context->type = AUDIT_OPENAT2;
2823 }
2824
__audit_log_kern_module(char * name)2825 void __audit_log_kern_module(char *name)
2826 {
2827 struct audit_context *context = audit_context();
2828
2829 context->module.name = kstrdup(name, GFP_KERNEL);
2830 if (!context->module.name)
2831 audit_log_lost("out of memory in __audit_log_kern_module");
2832 context->type = AUDIT_KERN_MODULE;
2833 }
2834
__audit_fanotify(unsigned int response)2835 void __audit_fanotify(unsigned int response)
2836 {
2837 audit_log(audit_context(), GFP_KERNEL,
2838 AUDIT_FANOTIFY, "resp=%u", response);
2839 }
2840
__audit_tk_injoffset(struct timespec64 offset)2841 void __audit_tk_injoffset(struct timespec64 offset)
2842 {
2843 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_INJOFFSET,
2844 "sec=%lli nsec=%li",
2845 (long long)offset.tv_sec, offset.tv_nsec);
2846 }
2847
audit_log_ntp_val(const struct audit_ntp_data * ad,const char * op,enum audit_ntp_type type)2848 static void audit_log_ntp_val(const struct audit_ntp_data *ad,
2849 const char *op, enum audit_ntp_type type)
2850 {
2851 const struct audit_ntp_val *val = &ad->vals[type];
2852
2853 if (val->newval == val->oldval)
2854 return;
2855
2856 audit_log(audit_context(), GFP_KERNEL, AUDIT_TIME_ADJNTPVAL,
2857 "op=%s old=%lli new=%lli", op, val->oldval, val->newval);
2858 }
2859
__audit_ntp_log(const struct audit_ntp_data * ad)2860 void __audit_ntp_log(const struct audit_ntp_data *ad)
2861 {
2862 audit_log_ntp_val(ad, "offset", AUDIT_NTP_OFFSET);
2863 audit_log_ntp_val(ad, "freq", AUDIT_NTP_FREQ);
2864 audit_log_ntp_val(ad, "status", AUDIT_NTP_STATUS);
2865 audit_log_ntp_val(ad, "tai", AUDIT_NTP_TAI);
2866 audit_log_ntp_val(ad, "tick", AUDIT_NTP_TICK);
2867 audit_log_ntp_val(ad, "adjust", AUDIT_NTP_ADJUST);
2868 }
2869
__audit_log_nfcfg(const char * name,u8 af,unsigned int nentries,enum audit_nfcfgop op,gfp_t gfp)2870 void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2871 enum audit_nfcfgop op, gfp_t gfp)
2872 {
2873 struct audit_buffer *ab;
2874 char comm[sizeof(current->comm)];
2875
2876 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2877 if (!ab)
2878 return;
2879 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2880 name, af, nentries, audit_nfcfgs[op].s);
2881
2882 audit_log_format(ab, " pid=%u", task_pid_nr(current));
2883 audit_log_task_context(ab); /* subj= */
2884 audit_log_format(ab, " comm=");
2885 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2886 audit_log_end(ab);
2887 }
2888 EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2889
audit_log_task(struct audit_buffer * ab)2890 static void audit_log_task(struct audit_buffer *ab)
2891 {
2892 kuid_t auid, uid;
2893 kgid_t gid;
2894 unsigned int sessionid;
2895 char comm[sizeof(current->comm)];
2896
2897 auid = audit_get_loginuid(current);
2898 sessionid = audit_get_sessionid(current);
2899 current_uid_gid(&uid, &gid);
2900
2901 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2902 from_kuid(&init_user_ns, auid),
2903 from_kuid(&init_user_ns, uid),
2904 from_kgid(&init_user_ns, gid),
2905 sessionid);
2906 audit_log_task_context(ab);
2907 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2908 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2909 audit_log_d_path_exe(ab, current->mm);
2910 }
2911
2912 /**
2913 * audit_core_dumps - record information about processes that end abnormally
2914 * @signr: signal value
2915 *
2916 * If a process ends with a core dump, something fishy is going on and we
2917 * should record the event for investigation.
2918 */
audit_core_dumps(long signr)2919 void audit_core_dumps(long signr)
2920 {
2921 struct audit_buffer *ab;
2922
2923 if (!audit_enabled)
2924 return;
2925
2926 if (signr == SIGQUIT) /* don't care for those */
2927 return;
2928
2929 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2930 if (unlikely(!ab))
2931 return;
2932 audit_log_task(ab);
2933 audit_log_format(ab, " sig=%ld res=1", signr);
2934 audit_log_end(ab);
2935 }
2936
2937 /**
2938 * audit_seccomp - record information about a seccomp action
2939 * @syscall: syscall number
2940 * @signr: signal value
2941 * @code: the seccomp action
2942 *
2943 * Record the information associated with a seccomp action. Event filtering for
2944 * seccomp actions that are not to be logged is done in seccomp_log().
2945 * Therefore, this function forces auditing independent of the audit_enabled
2946 * and dummy context state because seccomp actions should be logged even when
2947 * audit is not in use.
2948 */
audit_seccomp(unsigned long syscall,long signr,int code)2949 void audit_seccomp(unsigned long syscall, long signr, int code)
2950 {
2951 struct audit_buffer *ab;
2952
2953 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
2954 if (unlikely(!ab))
2955 return;
2956 audit_log_task(ab);
2957 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2958 signr, syscall_get_arch(current), syscall,
2959 in_compat_syscall(), KSTK_EIP(current), code);
2960 audit_log_end(ab);
2961 }
2962
audit_seccomp_actions_logged(const char * names,const char * old_names,int res)2963 void audit_seccomp_actions_logged(const char *names, const char *old_names,
2964 int res)
2965 {
2966 struct audit_buffer *ab;
2967
2968 if (!audit_enabled)
2969 return;
2970
2971 ab = audit_log_start(audit_context(), GFP_KERNEL,
2972 AUDIT_CONFIG_CHANGE);
2973 if (unlikely(!ab))
2974 return;
2975
2976 audit_log_format(ab,
2977 "op=seccomp-logging actions=%s old-actions=%s res=%d",
2978 names, old_names, res);
2979 audit_log_end(ab);
2980 }
2981
audit_killed_trees(void)2982 struct list_head *audit_killed_trees(void)
2983 {
2984 struct audit_context *ctx = audit_context();
2985 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
2986 return NULL;
2987 return &ctx->killed_trees;
2988 }
2989