1 // SPDX-License-Identifier: LGPL-2.1+
2 /*
3 * This implementation is based on code from uClibc-0.9.30.3 but was
4 * modified and extended for use within U-Boot.
5 *
6 * Copyright (C) 2010-2013 Wolfgang Denk <wd@denx.de>
7 *
8 * Original license header:
9 *
10 * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc.
11 * This file is part of the GNU C Library.
12 * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993.
13 */
14
15 #include <errno.h>
16 #include <log.h>
17 #include <malloc.h>
18 #include <sort.h>
19
20 #ifdef USE_HOSTCC /* HOST build */
21 # include <string.h>
22 # include <assert.h>
23 # include <ctype.h>
24
25 # ifndef debug
26 # ifdef DEBUG
27 # define debug(fmt,args...) printf(fmt ,##args)
28 # else
29 # define debug(fmt,args...)
30 # endif
31 # endif
32 #else /* U-Boot build */
33 # include <common.h>
34 # include <linux/string.h>
35 # include <linux/ctype.h>
36 #endif
37
38 #ifndef CONFIG_ENV_MIN_ENTRIES /* minimum number of entries */
39 #define CONFIG_ENV_MIN_ENTRIES 64
40 #endif
41 #ifndef CONFIG_ENV_MAX_ENTRIES /* maximum number of entries */
42 #define CONFIG_ENV_MAX_ENTRIES 512
43 #endif
44
45 #define USED_FREE 0
46 #define USED_DELETED -1
47
48 #include <env_callback.h>
49 #include <env_flags.h>
50 #include <search.h>
51 #include <slre.h>
52
53 /*
54 * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
55 * [Knuth] The Art of Computer Programming, part 3 (6.4)
56 */
57
58 /*
59 * The reentrant version has no static variables to maintain the state.
60 * Instead the interface of all functions is extended to take an argument
61 * which describes the current status.
62 */
63
64 struct env_entry_node {
65 int used;
66 struct env_entry entry;
67 };
68
69
70 static void _hdelete(const char *key, struct hsearch_data *htab,
71 struct env_entry *ep, int idx);
72
73 /*
74 * hcreate()
75 */
76
77 /*
78 * For the used double hash method the table size has to be a prime. To
79 * correct the user given table size we need a prime test. This trivial
80 * algorithm is adequate because
81 * a) the code is (most probably) called a few times per program run and
82 * b) the number is small because the table must fit in the core
83 * */
isprime(unsigned int number)84 static int isprime(unsigned int number)
85 {
86 /* no even number will be passed */
87 unsigned int div = 3;
88
89 while (div * div < number && number % div != 0)
90 div += 2;
91
92 return number % div != 0;
93 }
94
95 /*
96 * Before using the hash table we must allocate memory for it.
97 * Test for an existing table are done. We allocate one element
98 * more as the found prime number says. This is done for more effective
99 * indexing as explained in the comment for the hsearch function.
100 * The contents of the table is zeroed, especially the field used
101 * becomes zero.
102 */
103
hcreate_r(size_t nel,struct hsearch_data * htab)104 int hcreate_r(size_t nel, struct hsearch_data *htab)
105 {
106 /* Test for correct arguments. */
107 if (htab == NULL) {
108 __set_errno(EINVAL);
109 return 0;
110 }
111
112 /* There is still another table active. Return with error. */
113 if (htab->table != NULL) {
114 __set_errno(EINVAL);
115 return 0;
116 }
117
118 /* Change nel to the first prime number not smaller as nel. */
119 nel |= 1; /* make odd */
120 while (!isprime(nel))
121 nel += 2;
122
123 htab->size = nel;
124 htab->filled = 0;
125
126 /* allocate memory and zero out */
127 htab->table = (struct env_entry_node *)calloc(htab->size + 1,
128 sizeof(struct env_entry_node));
129 if (htab->table == NULL) {
130 __set_errno(ENOMEM);
131 return 0;
132 }
133
134 /* everything went alright */
135 return 1;
136 }
137
138
139 /*
140 * hdestroy()
141 */
142
143 /*
144 * After using the hash table it has to be destroyed. The used memory can
145 * be freed and the local static variable can be marked as not used.
146 */
147
hdestroy_r(struct hsearch_data * htab)148 void hdestroy_r(struct hsearch_data *htab)
149 {
150 int i;
151
152 /* Test for correct arguments. */
153 if (htab == NULL) {
154 __set_errno(EINVAL);
155 return;
156 }
157
158 /* free used memory */
159 for (i = 1; i <= htab->size; ++i) {
160 if (htab->table[i].used > 0) {
161 struct env_entry *ep = &htab->table[i].entry;
162
163 free((void *)ep->key);
164 free(ep->data);
165 }
166 }
167 free(htab->table);
168
169 /* the sign for an existing table is an value != NULL in htable */
170 htab->table = NULL;
171 }
172
173 /*
174 * hsearch()
175 */
176
177 /*
178 * This is the search function. It uses double hashing with open addressing.
179 * The argument item.key has to be a pointer to an zero terminated, most
180 * probably strings of chars. The function for generating a number of the
181 * strings is simple but fast. It can be replaced by a more complex function
182 * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown.
183 *
184 * We use an trick to speed up the lookup. The table is created by hcreate
185 * with one more element available. This enables us to use the index zero
186 * special. This index will never be used because we store the first hash
187 * index in the field used where zero means not used. Every other value
188 * means used. The used field can be used as a first fast comparison for
189 * equality of the stored and the parameter value. This helps to prevent
190 * unnecessary expensive calls of strcmp.
191 *
192 * This implementation differs from the standard library version of
193 * this function in a number of ways:
194 *
195 * - While the standard version does not make any assumptions about
196 * the type of the stored data objects at all, this implementation
197 * works with NUL terminated strings only.
198 * - Instead of storing just pointers to the original objects, we
199 * create local copies so the caller does not need to care about the
200 * data any more.
201 * - The standard implementation does not provide a way to update an
202 * existing entry. This version will create a new entry or update an
203 * existing one when both "action == ENV_ENTER" and "item.data != NULL".
204 * - Instead of returning 1 on success, we return the index into the
205 * internal hash table, which is also guaranteed to be positive.
206 * This allows us direct access to the found hash table slot for
207 * example for functions like hdelete().
208 */
209
hmatch_r(const char * match,int last_idx,struct env_entry ** retval,struct hsearch_data * htab)210 int hmatch_r(const char *match, int last_idx, struct env_entry **retval,
211 struct hsearch_data *htab)
212 {
213 unsigned int idx;
214 size_t key_len = strlen(match);
215
216 for (idx = last_idx + 1; idx < htab->size; ++idx) {
217 if (htab->table[idx].used <= 0)
218 continue;
219 if (!strncmp(match, htab->table[idx].entry.key, key_len)) {
220 *retval = &htab->table[idx].entry;
221 return idx;
222 }
223 }
224
225 __set_errno(ESRCH);
226 *retval = NULL;
227 return 0;
228 }
229
230 static int
do_callback(const struct env_entry * e,const char * name,const char * value,enum env_op op,int flags)231 do_callback(const struct env_entry *e, const char *name, const char *value,
232 enum env_op op, int flags)
233 {
234 #ifndef CONFIG_SPL_BUILD
235 if (e->callback)
236 return e->callback(name, value, op, flags);
237 #endif
238 return 0;
239 }
240
241 /*
242 * Compare an existing entry with the desired key, and overwrite if the action
243 * is ENV_ENTER. This is simply a helper function for hsearch_r().
244 */
_compare_and_overwrite_entry(struct env_entry item,enum env_action action,struct env_entry ** retval,struct hsearch_data * htab,int flag,unsigned int hval,unsigned int idx)245 static inline int _compare_and_overwrite_entry(struct env_entry item,
246 enum env_action action, struct env_entry **retval,
247 struct hsearch_data *htab, int flag, unsigned int hval,
248 unsigned int idx)
249 {
250 if (htab->table[idx].used == hval
251 && strcmp(item.key, htab->table[idx].entry.key) == 0) {
252 /* Overwrite existing value? */
253 if (action == ENV_ENTER && item.data) {
254 /* check for permission */
255 if (htab->change_ok != NULL && htab->change_ok(
256 &htab->table[idx].entry, item.data,
257 env_op_overwrite, flag)) {
258 debug("change_ok() rejected setting variable "
259 "%s, skipping it!\n", item.key);
260 __set_errno(EPERM);
261 *retval = NULL;
262 return 0;
263 }
264
265 /* If there is a callback, call it */
266 if (do_callback(&htab->table[idx].entry, item.key,
267 item.data, env_op_overwrite, flag)) {
268 debug("callback() rejected setting variable "
269 "%s, skipping it!\n", item.key);
270 __set_errno(EINVAL);
271 *retval = NULL;
272 return 0;
273 }
274
275 free(htab->table[idx].entry.data);
276 htab->table[idx].entry.data = strdup(item.data);
277 if (!htab->table[idx].entry.data) {
278 __set_errno(ENOMEM);
279 *retval = NULL;
280 return 0;
281 }
282 }
283 /* return found entry */
284 *retval = &htab->table[idx].entry;
285 return idx;
286 }
287 /* keep searching */
288 return -1;
289 }
290
hsearch_r(struct env_entry item,enum env_action action,struct env_entry ** retval,struct hsearch_data * htab,int flag)291 int hsearch_r(struct env_entry item, enum env_action action,
292 struct env_entry **retval, struct hsearch_data *htab, int flag)
293 {
294 unsigned int hval;
295 unsigned int count;
296 unsigned int len = strlen(item.key);
297 unsigned int idx;
298 unsigned int first_deleted = 0;
299 int ret;
300
301 /* Compute an value for the given string. Perhaps use a better method. */
302 hval = len;
303 count = len;
304 while (count-- > 0) {
305 hval <<= 4;
306 hval += item.key[count];
307 }
308
309 /*
310 * First hash function:
311 * simply take the modul but prevent zero.
312 */
313 hval %= htab->size;
314 if (hval == 0)
315 ++hval;
316
317 /* The first index tried. */
318 idx = hval;
319
320 if (htab->table[idx].used) {
321 /*
322 * Further action might be required according to the
323 * action value.
324 */
325 unsigned hval2;
326
327 if (htab->table[idx].used == USED_DELETED)
328 first_deleted = idx;
329
330 ret = _compare_and_overwrite_entry(item, action, retval, htab,
331 flag, hval, idx);
332 if (ret != -1)
333 return ret;
334
335 /*
336 * Second hash function:
337 * as suggested in [Knuth]
338 */
339 hval2 = 1 + hval % (htab->size - 2);
340
341 do {
342 /*
343 * Because SIZE is prime this guarantees to
344 * step through all available indices.
345 */
346 if (idx <= hval2)
347 idx = htab->size + idx - hval2;
348 else
349 idx -= hval2;
350
351 /*
352 * If we visited all entries leave the loop
353 * unsuccessfully.
354 */
355 if (idx == hval)
356 break;
357
358 if (htab->table[idx].used == USED_DELETED
359 && !first_deleted)
360 first_deleted = idx;
361
362 /* If entry is found use it. */
363 ret = _compare_and_overwrite_entry(item, action, retval,
364 htab, flag, hval, idx);
365 if (ret != -1)
366 return ret;
367 }
368 while (htab->table[idx].used != USED_FREE);
369 }
370
371 /* An empty bucket has been found. */
372 if (action == ENV_ENTER) {
373 /*
374 * If table is full and another entry should be
375 * entered return with error.
376 */
377 if (htab->filled == htab->size) {
378 __set_errno(ENOMEM);
379 *retval = NULL;
380 return 0;
381 }
382
383 /*
384 * Create new entry;
385 * create copies of item.key and item.data
386 */
387 if (first_deleted)
388 idx = first_deleted;
389
390 htab->table[idx].used = hval;
391 htab->table[idx].entry.key = strdup(item.key);
392 htab->table[idx].entry.data = strdup(item.data);
393 if (!htab->table[idx].entry.key ||
394 !htab->table[idx].entry.data) {
395 __set_errno(ENOMEM);
396 *retval = NULL;
397 return 0;
398 }
399
400 ++htab->filled;
401
402 /* This is a new entry, so look up a possible callback */
403 env_callback_init(&htab->table[idx].entry);
404 /* Also look for flags */
405 env_flags_init(&htab->table[idx].entry);
406
407 /* check for permission */
408 if (htab->change_ok != NULL && htab->change_ok(
409 &htab->table[idx].entry, item.data, env_op_create, flag)) {
410 debug("change_ok() rejected setting variable "
411 "%s, skipping it!\n", item.key);
412 _hdelete(item.key, htab, &htab->table[idx].entry, idx);
413 __set_errno(EPERM);
414 *retval = NULL;
415 return 0;
416 }
417
418 /* If there is a callback, call it */
419 if (do_callback(&htab->table[idx].entry, item.key, item.data,
420 env_op_create, flag)) {
421 debug("callback() rejected setting variable "
422 "%s, skipping it!\n", item.key);
423 _hdelete(item.key, htab, &htab->table[idx].entry, idx);
424 __set_errno(EINVAL);
425 *retval = NULL;
426 return 0;
427 }
428
429 /* return new entry */
430 *retval = &htab->table[idx].entry;
431 return 1;
432 }
433
434 __set_errno(ESRCH);
435 *retval = NULL;
436 return 0;
437 }
438
439
440 /*
441 * hdelete()
442 */
443
444 /*
445 * The standard implementation of hsearch(3) does not provide any way
446 * to delete any entries from the hash table. We extend the code to
447 * do that.
448 */
449
_hdelete(const char * key,struct hsearch_data * htab,struct env_entry * ep,int idx)450 static void _hdelete(const char *key, struct hsearch_data *htab,
451 struct env_entry *ep, int idx)
452 {
453 /* free used entry */
454 debug("hdelete: DELETING key \"%s\"\n", key);
455 free((void *)ep->key);
456 free(ep->data);
457 ep->flags = 0;
458 htab->table[idx].used = USED_DELETED;
459
460 --htab->filled;
461 }
462
hdelete_r(const char * key,struct hsearch_data * htab,int flag)463 int hdelete_r(const char *key, struct hsearch_data *htab, int flag)
464 {
465 struct env_entry e, *ep;
466 int idx;
467
468 debug("hdelete: DELETE key \"%s\"\n", key);
469
470 e.key = (char *)key;
471
472 idx = hsearch_r(e, ENV_FIND, &ep, htab, 0);
473 if (idx == 0) {
474 __set_errno(ESRCH);
475 return -ENOENT; /* not found */
476 }
477
478 /* Check for permission */
479 if (htab->change_ok != NULL &&
480 htab->change_ok(ep, NULL, env_op_delete, flag)) {
481 debug("change_ok() rejected deleting variable "
482 "%s, skipping it!\n", key);
483 __set_errno(EPERM);
484 return -EPERM;
485 }
486
487 /* If there is a callback, call it */
488 if (do_callback(&htab->table[idx].entry, key, NULL,
489 env_op_delete, flag)) {
490 debug("callback() rejected deleting variable "
491 "%s, skipping it!\n", key);
492 __set_errno(EINVAL);
493 return -EINVAL;
494 }
495
496 _hdelete(key, htab, ep, idx);
497
498 return 0;
499 }
500
501 #if !(defined(CONFIG_SPL_BUILD) && !defined(CONFIG_SPL_SAVEENV))
502 /*
503 * hexport()
504 */
505
506 /*
507 * Export the data stored in the hash table in linearized form.
508 *
509 * Entries are exported as "name=value" strings, separated by an
510 * arbitrary (non-NUL, of course) separator character. This allows to
511 * use this function both when formatting the U-Boot environment for
512 * external storage (using '\0' as separator), but also when using it
513 * for the "printenv" command to print all variables, simply by using
514 * as '\n" as separator. This can also be used for new features like
515 * exporting the environment data as text file, including the option
516 * for later re-import.
517 *
518 * The entries in the result list will be sorted by ascending key
519 * values.
520 *
521 * If the separator character is different from NUL, then any
522 * separator characters and backslash characters in the values will
523 * be escaped by a preceding backslash in output. This is needed for
524 * example to enable multi-line values, especially when the output
525 * shall later be parsed (for example, for re-import).
526 *
527 * There are several options how the result buffer is handled:
528 *
529 * *resp size
530 * -----------
531 * NULL 0 A string of sufficient length will be allocated.
532 * NULL >0 A string of the size given will be
533 * allocated. An error will be returned if the size is
534 * not sufficient. Any unused bytes in the string will
535 * be '\0'-padded.
536 * !NULL 0 The user-supplied buffer will be used. No length
537 * checking will be performed, i. e. it is assumed that
538 * the buffer size will always be big enough. DANGEROUS.
539 * !NULL >0 The user-supplied buffer will be used. An error will
540 * be returned if the size is not sufficient. Any unused
541 * bytes in the string will be '\0'-padded.
542 */
543
cmpkey(const void * p1,const void * p2)544 static int cmpkey(const void *p1, const void *p2)
545 {
546 struct env_entry *e1 = *(struct env_entry **)p1;
547 struct env_entry *e2 = *(struct env_entry **)p2;
548
549 return (strcmp(e1->key, e2->key));
550 }
551
match_string(int flag,const char * str,const char * pat,void * priv)552 static int match_string(int flag, const char *str, const char *pat, void *priv)
553 {
554 switch (flag & H_MATCH_METHOD) {
555 case H_MATCH_IDENT:
556 if (strcmp(str, pat) == 0)
557 return 1;
558 break;
559 case H_MATCH_SUBSTR:
560 if (strstr(str, pat))
561 return 1;
562 break;
563 #ifdef CONFIG_REGEX
564 case H_MATCH_REGEX:
565 {
566 struct slre *slrep = (struct slre *)priv;
567
568 if (slre_match(slrep, str, strlen(str), NULL))
569 return 1;
570 }
571 break;
572 #endif
573 default:
574 printf("## ERROR: unsupported match method: 0x%02x\n",
575 flag & H_MATCH_METHOD);
576 break;
577 }
578 return 0;
579 }
580
match_entry(struct env_entry * ep,int flag,int argc,char * const argv[])581 static int match_entry(struct env_entry *ep, int flag, int argc,
582 char *const argv[])
583 {
584 int arg;
585 void *priv = NULL;
586
587 for (arg = 0; arg < argc; ++arg) {
588 #ifdef CONFIG_REGEX
589 struct slre slre;
590
591 if (slre_compile(&slre, argv[arg]) == 0) {
592 printf("Error compiling regex: %s\n", slre.err_str);
593 return 0;
594 }
595
596 priv = (void *)&slre;
597 #endif
598 if (flag & H_MATCH_KEY) {
599 if (match_string(flag, ep->key, argv[arg], priv))
600 return 1;
601 }
602 if (flag & H_MATCH_DATA) {
603 if (match_string(flag, ep->data, argv[arg], priv))
604 return 1;
605 }
606 }
607 return 0;
608 }
609
hexport_r(struct hsearch_data * htab,const char sep,int flag,char ** resp,size_t size,int argc,char * const argv[])610 ssize_t hexport_r(struct hsearch_data *htab, const char sep, int flag,
611 char **resp, size_t size,
612 int argc, char *const argv[])
613 {
614 struct env_entry *list[htab->size];
615 char *res, *p;
616 size_t totlen;
617 int i, n;
618
619 /* Test for correct arguments. */
620 if ((resp == NULL) || (htab == NULL)) {
621 __set_errno(EINVAL);
622 return (-1);
623 }
624
625 debug("EXPORT table = %p, htab.size = %d, htab.filled = %d, size = %lu\n",
626 htab, htab->size, htab->filled, (ulong)size);
627 /*
628 * Pass 1:
629 * search used entries,
630 * save addresses and compute total length
631 */
632 for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) {
633
634 if (htab->table[i].used > 0) {
635 struct env_entry *ep = &htab->table[i].entry;
636 int found = match_entry(ep, flag, argc, argv);
637
638 if ((argc > 0) && (found == 0))
639 continue;
640
641 if ((flag & H_HIDE_DOT) && ep->key[0] == '.')
642 continue;
643
644 list[n++] = ep;
645
646 totlen += strlen(ep->key);
647
648 if (sep == '\0') {
649 totlen += strlen(ep->data);
650 } else { /* check if escapes are needed */
651 char *s = ep->data;
652
653 while (*s) {
654 ++totlen;
655 /* add room for needed escape chars */
656 if ((*s == sep) || (*s == '\\'))
657 ++totlen;
658 ++s;
659 }
660 }
661 totlen += 2; /* for '=' and 'sep' char */
662 }
663 }
664
665 #ifdef DEBUG
666 /* Pass 1a: print unsorted list */
667 printf("Unsorted: n=%d\n", n);
668 for (i = 0; i < n; ++i) {
669 printf("\t%3d: %p ==> %-10s => %s\n",
670 i, list[i], list[i]->key, list[i]->data);
671 }
672 #endif
673
674 /* Sort list by keys */
675 qsort(list, n, sizeof(struct env_entry *), cmpkey);
676
677 /* Check if the user supplied buffer size is sufficient */
678 if (size) {
679 if (size < totlen + 1) { /* provided buffer too small */
680 printf("Env export buffer too small: %lu, but need %lu\n",
681 (ulong)size, (ulong)totlen + 1);
682 __set_errno(ENOMEM);
683 return (-1);
684 }
685 } else {
686 size = totlen + 1;
687 }
688
689 /* Check if the user provided a buffer */
690 if (*resp) {
691 /* yes; clear it */
692 res = *resp;
693 memset(res, '\0', size);
694 } else {
695 /* no, allocate and clear one */
696 *resp = res = calloc(1, size);
697 if (res == NULL) {
698 __set_errno(ENOMEM);
699 return (-1);
700 }
701 }
702 /*
703 * Pass 2:
704 * export sorted list of result data
705 */
706 for (i = 0, p = res; i < n; ++i) {
707 const char *s;
708
709 s = list[i]->key;
710 while (*s)
711 *p++ = *s++;
712 *p++ = '=';
713
714 s = list[i]->data;
715
716 while (*s) {
717 if ((*s == sep) || (*s == '\\'))
718 *p++ = '\\'; /* escape */
719 *p++ = *s++;
720 }
721 *p++ = sep;
722 }
723 *p = '\0'; /* terminate result */
724
725 return size;
726 }
727 #endif
728
729
730 /*
731 * himport()
732 */
733
734 /*
735 * Check whether variable 'name' is amongst vars[],
736 * and remove all instances by setting the pointer to NULL
737 */
drop_var_from_set(const char * name,int nvars,char * vars[])738 static int drop_var_from_set(const char *name, int nvars, char * vars[])
739 {
740 int i = 0;
741 int res = 0;
742
743 /* No variables specified means process all of them */
744 if (nvars == 0)
745 return 1;
746
747 for (i = 0; i < nvars; i++) {
748 if (vars[i] == NULL)
749 continue;
750 /* If we found it, delete all of them */
751 if (!strcmp(name, vars[i])) {
752 vars[i] = NULL;
753 res = 1;
754 }
755 }
756 if (!res)
757 debug("Skipping non-listed variable %s\n", name);
758
759 return res;
760 }
761
762 /*
763 * Import linearized data into hash table.
764 *
765 * This is the inverse function to hexport(): it takes a linear list
766 * of "name=value" pairs and creates hash table entries from it.
767 *
768 * Entries without "value", i. e. consisting of only "name" or
769 * "name=", will cause this entry to be deleted from the hash table.
770 *
771 * The "flag" argument can be used to control the behaviour: when the
772 * H_NOCLEAR bit is set, then an existing hash table will kept, i. e.
773 * new data will be added to an existing hash table; otherwise, if no
774 * vars are passed, old data will be discarded and a new hash table
775 * will be created. If vars are passed, passed vars that are not in
776 * the linear list of "name=value" pairs will be removed from the
777 * current hash table.
778 *
779 * The separator character for the "name=value" pairs can be selected,
780 * so we both support importing from externally stored environment
781 * data (separated by NUL characters) and from plain text files
782 * (entries separated by newline characters).
783 *
784 * To allow for nicely formatted text input, leading white space
785 * (sequences of SPACE and TAB chars) is ignored, and entries starting
786 * (after removal of any leading white space) with a '#' character are
787 * considered comments and ignored.
788 *
789 * [NOTE: this means that a variable name cannot start with a '#'
790 * character.]
791 *
792 * When using a non-NUL separator character, backslash is used as
793 * escape character in the value part, allowing for example for
794 * multi-line values.
795 *
796 * In theory, arbitrary separator characters can be used, but only
797 * '\0' and '\n' have really been tested.
798 */
799
himport_r(struct hsearch_data * htab,const char * env,size_t size,const char sep,int flag,int crlf_is_lf,int nvars,char * const vars[])800 int himport_r(struct hsearch_data *htab,
801 const char *env, size_t size, const char sep, int flag,
802 int crlf_is_lf, int nvars, char * const vars[])
803 {
804 char *data, *sp, *dp, *name, *value;
805 char *localvars[nvars];
806 int i;
807
808 /* Test for correct arguments. */
809 if (htab == NULL) {
810 __set_errno(EINVAL);
811 return 0;
812 }
813
814 /* we allocate new space to make sure we can write to the array */
815 if ((data = malloc(size + 1)) == NULL) {
816 debug("himport_r: can't malloc %lu bytes\n", (ulong)size + 1);
817 __set_errno(ENOMEM);
818 return 0;
819 }
820 memcpy(data, env, size);
821 data[size] = '\0';
822 dp = data;
823
824 /* make a local copy of the list of variables */
825 if (nvars)
826 memcpy(localvars, vars, sizeof(vars[0]) * nvars);
827
828 #if CONFIG_IS_ENABLED(ENV_APPEND)
829 flag |= H_NOCLEAR;
830 #endif
831
832 if ((flag & H_NOCLEAR) == 0 && !nvars) {
833 /* Destroy old hash table if one exists */
834 debug("Destroy Hash Table: %p table = %p\n", htab,
835 htab->table);
836 if (htab->table)
837 hdestroy_r(htab);
838 }
839
840 /*
841 * Create new hash table (if needed). The computation of the hash
842 * table size is based on heuristics: in a sample of some 70+
843 * existing systems we found an average size of 39+ bytes per entry
844 * in the environment (for the whole key=value pair). Assuming a
845 * size of 8 per entry (= safety factor of ~5) should provide enough
846 * safety margin for any existing environment definitions and still
847 * allow for more than enough dynamic additions. Note that the
848 * "size" argument is supposed to give the maximum environment size
849 * (CONFIG_ENV_SIZE). This heuristics will result in
850 * unreasonably large numbers (and thus memory footprint) for
851 * big flash environments (>8,000 entries for 64 KB
852 * environment size), so we clip it to a reasonable value.
853 * On the other hand we need to add some more entries for free
854 * space when importing very small buffers. Both boundaries can
855 * be overwritten in the board config file if needed.
856 */
857
858 if (!htab->table) {
859 int nent = CONFIG_ENV_MIN_ENTRIES + size / 8;
860
861 if (nent > CONFIG_ENV_MAX_ENTRIES)
862 nent = CONFIG_ENV_MAX_ENTRIES;
863
864 debug("Create Hash Table: N=%d\n", nent);
865
866 if (hcreate_r(nent, htab) == 0) {
867 free(data);
868 return 0;
869 }
870 }
871
872 if (!size) {
873 free(data);
874 return 1; /* everything OK */
875 }
876 if(crlf_is_lf) {
877 /* Remove Carriage Returns in front of Line Feeds */
878 unsigned ignored_crs = 0;
879 for(;dp < data + size && *dp; ++dp) {
880 if(*dp == '\r' &&
881 dp < data + size - 1 && *(dp+1) == '\n')
882 ++ignored_crs;
883 else
884 *(dp-ignored_crs) = *dp;
885 }
886 size -= ignored_crs;
887 dp = data;
888 }
889 /* Parse environment; allow for '\0' and 'sep' as separators */
890 do {
891 struct env_entry e, *rv;
892
893 /* skip leading white space */
894 while (isblank(*dp))
895 ++dp;
896
897 /* skip comment lines */
898 if (*dp == '#') {
899 while (*dp && (*dp != sep))
900 ++dp;
901 ++dp;
902 continue;
903 }
904
905 /* parse name */
906 for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp)
907 ;
908
909 /* deal with "name" and "name=" entries (delete var) */
910 if (*dp == '\0' || *(dp + 1) == '\0' ||
911 *dp == sep || *(dp + 1) == sep) {
912 if (*dp == '=')
913 *dp++ = '\0';
914 *dp++ = '\0'; /* terminate name */
915
916 debug("DELETE CANDIDATE: \"%s\"\n", name);
917 if (!drop_var_from_set(name, nvars, localvars))
918 continue;
919
920 if (hdelete_r(name, htab, flag))
921 debug("DELETE ERROR ##############################\n");
922
923 continue;
924 }
925 *dp++ = '\0'; /* terminate name */
926
927 /* parse value; deal with escapes */
928 for (value = sp = dp; *dp && (*dp != sep); ++dp) {
929 if ((*dp == '\\') && *(dp + 1))
930 ++dp;
931 *sp++ = *dp;
932 }
933 *sp++ = '\0'; /* terminate value */
934 ++dp;
935
936 if (*name == 0) {
937 debug("INSERT: unable to use an empty key\n");
938 __set_errno(EINVAL);
939 free(data);
940 return 0;
941 }
942
943 /* Skip variables which are not supposed to be processed */
944 if (!drop_var_from_set(name, nvars, localvars))
945 continue;
946
947 /* enter into hash table */
948 e.key = name;
949 e.data = value;
950
951 hsearch_r(e, ENV_ENTER, &rv, htab, flag);
952 #if !CONFIG_IS_ENABLED(ENV_WRITEABLE_LIST)
953 if (rv == NULL) {
954 printf("himport_r: can't insert \"%s=%s\" into hash table\n",
955 name, value);
956 }
957 #endif
958
959 debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n",
960 htab, htab->filled, htab->size,
961 rv, name, value);
962 } while ((dp < data + size) && *dp); /* size check needed for text */
963 /* without '\0' termination */
964 debug("INSERT: free(data = %p)\n", data);
965 free(data);
966
967 if (flag & H_NOCLEAR)
968 goto end;
969
970 /* process variables which were not considered */
971 for (i = 0; i < nvars; i++) {
972 if (localvars[i] == NULL)
973 continue;
974 /*
975 * All variables which were not deleted from the variable list
976 * were not present in the imported env
977 * This could mean two things:
978 * a) if the variable was present in current env, we delete it
979 * b) if the variable was not present in current env, we notify
980 * it might be a typo
981 */
982 if (hdelete_r(localvars[i], htab, flag))
983 printf("WARNING: '%s' neither in running nor in imported env!\n", localvars[i]);
984 else
985 printf("WARNING: '%s' not in imported env, deleting it!\n", localvars[i]);
986 }
987
988 end:
989 debug("INSERT: done\n");
990 return 1; /* everything OK */
991 }
992
993 /*
994 * hwalk_r()
995 */
996
997 /*
998 * Walk all of the entries in the hash, calling the callback for each one.
999 * this allows some generic operation to be performed on each element.
1000 */
hwalk_r(struct hsearch_data * htab,int (* callback)(struct env_entry * entry))1001 int hwalk_r(struct hsearch_data *htab, int (*callback)(struct env_entry *entry))
1002 {
1003 int i;
1004 int retval;
1005
1006 for (i = 1; i <= htab->size; ++i) {
1007 if (htab->table[i].used > 0) {
1008 retval = callback(&htab->table[i].entry);
1009 if (retval)
1010 return retval;
1011 }
1012 }
1013
1014 return 0;
1015 }
1016