1 // SPDX-License-Identifier: LGPL-2.1+
2 /*
3  * This implementation is based on code from uClibc-0.9.30.3 but was
4  * modified and extended for use within U-Boot.
5  *
6  * Copyright (C) 2010-2013 Wolfgang Denk <wd@denx.de>
7  *
8  * Original license header:
9  *
10  * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc.
11  * This file is part of the GNU C Library.
12  * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993.
13  */
14 
15 #include <errno.h>
16 #include <log.h>
17 #include <malloc.h>
18 #include <sort.h>
19 
20 #ifdef USE_HOSTCC		/* HOST build */
21 # include <string.h>
22 # include <assert.h>
23 # include <ctype.h>
24 
25 # ifndef debug
26 #  ifdef DEBUG
27 #   define debug(fmt,args...)	printf(fmt ,##args)
28 #  else
29 #   define debug(fmt,args...)
30 #  endif
31 # endif
32 #else				/* U-Boot build */
33 # include <common.h>
34 # include <linux/string.h>
35 # include <linux/ctype.h>
36 #endif
37 
38 #ifndef	CONFIG_ENV_MIN_ENTRIES	/* minimum number of entries */
39 #define	CONFIG_ENV_MIN_ENTRIES 64
40 #endif
41 #ifndef	CONFIG_ENV_MAX_ENTRIES	/* maximum number of entries */
42 #define	CONFIG_ENV_MAX_ENTRIES 512
43 #endif
44 
45 #define USED_FREE 0
46 #define USED_DELETED -1
47 
48 #include <env_callback.h>
49 #include <env_flags.h>
50 #include <search.h>
51 #include <slre.h>
52 
53 /*
54  * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986
55  * [Knuth]	      The Art of Computer Programming, part 3 (6.4)
56  */
57 
58 /*
59  * The reentrant version has no static variables to maintain the state.
60  * Instead the interface of all functions is extended to take an argument
61  * which describes the current status.
62  */
63 
64 struct env_entry_node {
65 	int used;
66 	struct env_entry entry;
67 };
68 
69 
70 static void _hdelete(const char *key, struct hsearch_data *htab,
71 		     struct env_entry *ep, int idx);
72 
73 /*
74  * hcreate()
75  */
76 
77 /*
78  * For the used double hash method the table size has to be a prime. To
79  * correct the user given table size we need a prime test.  This trivial
80  * algorithm is adequate because
81  * a)  the code is (most probably) called a few times per program run and
82  * b)  the number is small because the table must fit in the core
83  * */
isprime(unsigned int number)84 static int isprime(unsigned int number)
85 {
86 	/* no even number will be passed */
87 	unsigned int div = 3;
88 
89 	while (div * div < number && number % div != 0)
90 		div += 2;
91 
92 	return number % div != 0;
93 }
94 
95 /*
96  * Before using the hash table we must allocate memory for it.
97  * Test for an existing table are done. We allocate one element
98  * more as the found prime number says. This is done for more effective
99  * indexing as explained in the comment for the hsearch function.
100  * The contents of the table is zeroed, especially the field used
101  * becomes zero.
102  */
103 
hcreate_r(size_t nel,struct hsearch_data * htab)104 int hcreate_r(size_t nel, struct hsearch_data *htab)
105 {
106 	/* Test for correct arguments.  */
107 	if (htab == NULL) {
108 		__set_errno(EINVAL);
109 		return 0;
110 	}
111 
112 	/* There is still another table active. Return with error. */
113 	if (htab->table != NULL) {
114 		__set_errno(EINVAL);
115 		return 0;
116 	}
117 
118 	/* Change nel to the first prime number not smaller as nel. */
119 	nel |= 1;		/* make odd */
120 	while (!isprime(nel))
121 		nel += 2;
122 
123 	htab->size = nel;
124 	htab->filled = 0;
125 
126 	/* allocate memory and zero out */
127 	htab->table = (struct env_entry_node *)calloc(htab->size + 1,
128 						sizeof(struct env_entry_node));
129 	if (htab->table == NULL) {
130 		__set_errno(ENOMEM);
131 		return 0;
132 	}
133 
134 	/* everything went alright */
135 	return 1;
136 }
137 
138 
139 /*
140  * hdestroy()
141  */
142 
143 /*
144  * After using the hash table it has to be destroyed. The used memory can
145  * be freed and the local static variable can be marked as not used.
146  */
147 
hdestroy_r(struct hsearch_data * htab)148 void hdestroy_r(struct hsearch_data *htab)
149 {
150 	int i;
151 
152 	/* Test for correct arguments.  */
153 	if (htab == NULL) {
154 		__set_errno(EINVAL);
155 		return;
156 	}
157 
158 	/* free used memory */
159 	for (i = 1; i <= htab->size; ++i) {
160 		if (htab->table[i].used > 0) {
161 			struct env_entry *ep = &htab->table[i].entry;
162 
163 			free((void *)ep->key);
164 			free(ep->data);
165 		}
166 	}
167 	free(htab->table);
168 
169 	/* the sign for an existing table is an value != NULL in htable */
170 	htab->table = NULL;
171 }
172 
173 /*
174  * hsearch()
175  */
176 
177 /*
178  * This is the search function. It uses double hashing with open addressing.
179  * The argument item.key has to be a pointer to an zero terminated, most
180  * probably strings of chars. The function for generating a number of the
181  * strings is simple but fast. It can be replaced by a more complex function
182  * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown.
183  *
184  * We use an trick to speed up the lookup. The table is created by hcreate
185  * with one more element available. This enables us to use the index zero
186  * special. This index will never be used because we store the first hash
187  * index in the field used where zero means not used. Every other value
188  * means used. The used field can be used as a first fast comparison for
189  * equality of the stored and the parameter value. This helps to prevent
190  * unnecessary expensive calls of strcmp.
191  *
192  * This implementation differs from the standard library version of
193  * this function in a number of ways:
194  *
195  * - While the standard version does not make any assumptions about
196  *   the type of the stored data objects at all, this implementation
197  *   works with NUL terminated strings only.
198  * - Instead of storing just pointers to the original objects, we
199  *   create local copies so the caller does not need to care about the
200  *   data any more.
201  * - The standard implementation does not provide a way to update an
202  *   existing entry.  This version will create a new entry or update an
203  *   existing one when both "action == ENV_ENTER" and "item.data != NULL".
204  * - Instead of returning 1 on success, we return the index into the
205  *   internal hash table, which is also guaranteed to be positive.
206  *   This allows us direct access to the found hash table slot for
207  *   example for functions like hdelete().
208  */
209 
hmatch_r(const char * match,int last_idx,struct env_entry ** retval,struct hsearch_data * htab)210 int hmatch_r(const char *match, int last_idx, struct env_entry **retval,
211 	     struct hsearch_data *htab)
212 {
213 	unsigned int idx;
214 	size_t key_len = strlen(match);
215 
216 	for (idx = last_idx + 1; idx < htab->size; ++idx) {
217 		if (htab->table[idx].used <= 0)
218 			continue;
219 		if (!strncmp(match, htab->table[idx].entry.key, key_len)) {
220 			*retval = &htab->table[idx].entry;
221 			return idx;
222 		}
223 	}
224 
225 	__set_errno(ESRCH);
226 	*retval = NULL;
227 	return 0;
228 }
229 
230 static int
do_callback(const struct env_entry * e,const char * name,const char * value,enum env_op op,int flags)231 do_callback(const struct env_entry *e, const char *name, const char *value,
232 	    enum env_op op, int flags)
233 {
234 #ifndef CONFIG_SPL_BUILD
235 	if (e->callback)
236 		return e->callback(name, value, op, flags);
237 #endif
238 	return 0;
239 }
240 
241 /*
242  * Compare an existing entry with the desired key, and overwrite if the action
243  * is ENV_ENTER.  This is simply a helper function for hsearch_r().
244  */
_compare_and_overwrite_entry(struct env_entry item,enum env_action action,struct env_entry ** retval,struct hsearch_data * htab,int flag,unsigned int hval,unsigned int idx)245 static inline int _compare_and_overwrite_entry(struct env_entry item,
246 		enum env_action action, struct env_entry **retval,
247 		struct hsearch_data *htab, int flag, unsigned int hval,
248 		unsigned int idx)
249 {
250 	if (htab->table[idx].used == hval
251 	    && strcmp(item.key, htab->table[idx].entry.key) == 0) {
252 		/* Overwrite existing value? */
253 		if (action == ENV_ENTER && item.data) {
254 			/* check for permission */
255 			if (htab->change_ok != NULL && htab->change_ok(
256 			    &htab->table[idx].entry, item.data,
257 			    env_op_overwrite, flag)) {
258 				debug("change_ok() rejected setting variable "
259 					"%s, skipping it!\n", item.key);
260 				__set_errno(EPERM);
261 				*retval = NULL;
262 				return 0;
263 			}
264 
265 			/* If there is a callback, call it */
266 			if (do_callback(&htab->table[idx].entry, item.key,
267 					item.data, env_op_overwrite, flag)) {
268 				debug("callback() rejected setting variable "
269 					"%s, skipping it!\n", item.key);
270 				__set_errno(EINVAL);
271 				*retval = NULL;
272 				return 0;
273 			}
274 
275 			free(htab->table[idx].entry.data);
276 			htab->table[idx].entry.data = strdup(item.data);
277 			if (!htab->table[idx].entry.data) {
278 				__set_errno(ENOMEM);
279 				*retval = NULL;
280 				return 0;
281 			}
282 		}
283 		/* return found entry */
284 		*retval = &htab->table[idx].entry;
285 		return idx;
286 	}
287 	/* keep searching */
288 	return -1;
289 }
290 
hsearch_r(struct env_entry item,enum env_action action,struct env_entry ** retval,struct hsearch_data * htab,int flag)291 int hsearch_r(struct env_entry item, enum env_action action,
292 	      struct env_entry **retval, struct hsearch_data *htab, int flag)
293 {
294 	unsigned int hval;
295 	unsigned int count;
296 	unsigned int len = strlen(item.key);
297 	unsigned int idx;
298 	unsigned int first_deleted = 0;
299 	int ret;
300 
301 	/* Compute an value for the given string. Perhaps use a better method. */
302 	hval = len;
303 	count = len;
304 	while (count-- > 0) {
305 		hval <<= 4;
306 		hval += item.key[count];
307 	}
308 
309 	/*
310 	 * First hash function:
311 	 * simply take the modul but prevent zero.
312 	 */
313 	hval %= htab->size;
314 	if (hval == 0)
315 		++hval;
316 
317 	/* The first index tried. */
318 	idx = hval;
319 
320 	if (htab->table[idx].used) {
321 		/*
322 		 * Further action might be required according to the
323 		 * action value.
324 		 */
325 		unsigned hval2;
326 
327 		if (htab->table[idx].used == USED_DELETED)
328 			first_deleted = idx;
329 
330 		ret = _compare_and_overwrite_entry(item, action, retval, htab,
331 			flag, hval, idx);
332 		if (ret != -1)
333 			return ret;
334 
335 		/*
336 		 * Second hash function:
337 		 * as suggested in [Knuth]
338 		 */
339 		hval2 = 1 + hval % (htab->size - 2);
340 
341 		do {
342 			/*
343 			 * Because SIZE is prime this guarantees to
344 			 * step through all available indices.
345 			 */
346 			if (idx <= hval2)
347 				idx = htab->size + idx - hval2;
348 			else
349 				idx -= hval2;
350 
351 			/*
352 			 * If we visited all entries leave the loop
353 			 * unsuccessfully.
354 			 */
355 			if (idx == hval)
356 				break;
357 
358 			if (htab->table[idx].used == USED_DELETED
359 			    && !first_deleted)
360 				first_deleted = idx;
361 
362 			/* If entry is found use it. */
363 			ret = _compare_and_overwrite_entry(item, action, retval,
364 				htab, flag, hval, idx);
365 			if (ret != -1)
366 				return ret;
367 		}
368 		while (htab->table[idx].used != USED_FREE);
369 	}
370 
371 	/* An empty bucket has been found. */
372 	if (action == ENV_ENTER) {
373 		/*
374 		 * If table is full and another entry should be
375 		 * entered return with error.
376 		 */
377 		if (htab->filled == htab->size) {
378 			__set_errno(ENOMEM);
379 			*retval = NULL;
380 			return 0;
381 		}
382 
383 		/*
384 		 * Create new entry;
385 		 * create copies of item.key and item.data
386 		 */
387 		if (first_deleted)
388 			idx = first_deleted;
389 
390 		htab->table[idx].used = hval;
391 		htab->table[idx].entry.key = strdup(item.key);
392 		htab->table[idx].entry.data = strdup(item.data);
393 		if (!htab->table[idx].entry.key ||
394 		    !htab->table[idx].entry.data) {
395 			__set_errno(ENOMEM);
396 			*retval = NULL;
397 			return 0;
398 		}
399 
400 		++htab->filled;
401 
402 		/* This is a new entry, so look up a possible callback */
403 		env_callback_init(&htab->table[idx].entry);
404 		/* Also look for flags */
405 		env_flags_init(&htab->table[idx].entry);
406 
407 		/* check for permission */
408 		if (htab->change_ok != NULL && htab->change_ok(
409 		    &htab->table[idx].entry, item.data, env_op_create, flag)) {
410 			debug("change_ok() rejected setting variable "
411 				"%s, skipping it!\n", item.key);
412 			_hdelete(item.key, htab, &htab->table[idx].entry, idx);
413 			__set_errno(EPERM);
414 			*retval = NULL;
415 			return 0;
416 		}
417 
418 		/* If there is a callback, call it */
419 		if (do_callback(&htab->table[idx].entry, item.key, item.data,
420 				env_op_create, flag)) {
421 			debug("callback() rejected setting variable "
422 				"%s, skipping it!\n", item.key);
423 			_hdelete(item.key, htab, &htab->table[idx].entry, idx);
424 			__set_errno(EINVAL);
425 			*retval = NULL;
426 			return 0;
427 		}
428 
429 		/* return new entry */
430 		*retval = &htab->table[idx].entry;
431 		return 1;
432 	}
433 
434 	__set_errno(ESRCH);
435 	*retval = NULL;
436 	return 0;
437 }
438 
439 
440 /*
441  * hdelete()
442  */
443 
444 /*
445  * The standard implementation of hsearch(3) does not provide any way
446  * to delete any entries from the hash table.  We extend the code to
447  * do that.
448  */
449 
_hdelete(const char * key,struct hsearch_data * htab,struct env_entry * ep,int idx)450 static void _hdelete(const char *key, struct hsearch_data *htab,
451 		     struct env_entry *ep, int idx)
452 {
453 	/* free used entry */
454 	debug("hdelete: DELETING key \"%s\"\n", key);
455 	free((void *)ep->key);
456 	free(ep->data);
457 	ep->flags = 0;
458 	htab->table[idx].used = USED_DELETED;
459 
460 	--htab->filled;
461 }
462 
hdelete_r(const char * key,struct hsearch_data * htab,int flag)463 int hdelete_r(const char *key, struct hsearch_data *htab, int flag)
464 {
465 	struct env_entry e, *ep;
466 	int idx;
467 
468 	debug("hdelete: DELETE key \"%s\"\n", key);
469 
470 	e.key = (char *)key;
471 
472 	idx = hsearch_r(e, ENV_FIND, &ep, htab, 0);
473 	if (idx == 0) {
474 		__set_errno(ESRCH);
475 		return -ENOENT;	/* not found */
476 	}
477 
478 	/* Check for permission */
479 	if (htab->change_ok != NULL &&
480 	    htab->change_ok(ep, NULL, env_op_delete, flag)) {
481 		debug("change_ok() rejected deleting variable "
482 			"%s, skipping it!\n", key);
483 		__set_errno(EPERM);
484 		return -EPERM;
485 	}
486 
487 	/* If there is a callback, call it */
488 	if (do_callback(&htab->table[idx].entry, key, NULL,
489 			env_op_delete, flag)) {
490 		debug("callback() rejected deleting variable "
491 			"%s, skipping it!\n", key);
492 		__set_errno(EINVAL);
493 		return -EINVAL;
494 	}
495 
496 	_hdelete(key, htab, ep, idx);
497 
498 	return 0;
499 }
500 
501 #if !(defined(CONFIG_SPL_BUILD) && !defined(CONFIG_SPL_SAVEENV))
502 /*
503  * hexport()
504  */
505 
506 /*
507  * Export the data stored in the hash table in linearized form.
508  *
509  * Entries are exported as "name=value" strings, separated by an
510  * arbitrary (non-NUL, of course) separator character. This allows to
511  * use this function both when formatting the U-Boot environment for
512  * external storage (using '\0' as separator), but also when using it
513  * for the "printenv" command to print all variables, simply by using
514  * as '\n" as separator. This can also be used for new features like
515  * exporting the environment data as text file, including the option
516  * for later re-import.
517  *
518  * The entries in the result list will be sorted by ascending key
519  * values.
520  *
521  * If the separator character is different from NUL, then any
522  * separator characters and backslash characters in the values will
523  * be escaped by a preceding backslash in output. This is needed for
524  * example to enable multi-line values, especially when the output
525  * shall later be parsed (for example, for re-import).
526  *
527  * There are several options how the result buffer is handled:
528  *
529  * *resp  size
530  * -----------
531  *  NULL    0	A string of sufficient length will be allocated.
532  *  NULL   >0	A string of the size given will be
533  *		allocated. An error will be returned if the size is
534  *		not sufficient.  Any unused bytes in the string will
535  *		be '\0'-padded.
536  * !NULL    0	The user-supplied buffer will be used. No length
537  *		checking will be performed, i. e. it is assumed that
538  *		the buffer size will always be big enough. DANGEROUS.
539  * !NULL   >0	The user-supplied buffer will be used. An error will
540  *		be returned if the size is not sufficient.  Any unused
541  *		bytes in the string will be '\0'-padded.
542  */
543 
cmpkey(const void * p1,const void * p2)544 static int cmpkey(const void *p1, const void *p2)
545 {
546 	struct env_entry *e1 = *(struct env_entry **)p1;
547 	struct env_entry *e2 = *(struct env_entry **)p2;
548 
549 	return (strcmp(e1->key, e2->key));
550 }
551 
match_string(int flag,const char * str,const char * pat,void * priv)552 static int match_string(int flag, const char *str, const char *pat, void *priv)
553 {
554 	switch (flag & H_MATCH_METHOD) {
555 	case H_MATCH_IDENT:
556 		if (strcmp(str, pat) == 0)
557 			return 1;
558 		break;
559 	case H_MATCH_SUBSTR:
560 		if (strstr(str, pat))
561 			return 1;
562 		break;
563 #ifdef CONFIG_REGEX
564 	case H_MATCH_REGEX:
565 		{
566 			struct slre *slrep = (struct slre *)priv;
567 
568 			if (slre_match(slrep, str, strlen(str), NULL))
569 				return 1;
570 		}
571 		break;
572 #endif
573 	default:
574 		printf("## ERROR: unsupported match method: 0x%02x\n",
575 			flag & H_MATCH_METHOD);
576 		break;
577 	}
578 	return 0;
579 }
580 
match_entry(struct env_entry * ep,int flag,int argc,char * const argv[])581 static int match_entry(struct env_entry *ep, int flag, int argc,
582 		       char *const argv[])
583 {
584 	int arg;
585 	void *priv = NULL;
586 
587 	for (arg = 0; arg < argc; ++arg) {
588 #ifdef CONFIG_REGEX
589 		struct slre slre;
590 
591 		if (slre_compile(&slre, argv[arg]) == 0) {
592 			printf("Error compiling regex: %s\n", slre.err_str);
593 			return 0;
594 		}
595 
596 		priv = (void *)&slre;
597 #endif
598 		if (flag & H_MATCH_KEY) {
599 			if (match_string(flag, ep->key, argv[arg], priv))
600 				return 1;
601 		}
602 		if (flag & H_MATCH_DATA) {
603 			if (match_string(flag, ep->data, argv[arg], priv))
604 				return 1;
605 		}
606 	}
607 	return 0;
608 }
609 
hexport_r(struct hsearch_data * htab,const char sep,int flag,char ** resp,size_t size,int argc,char * const argv[])610 ssize_t hexport_r(struct hsearch_data *htab, const char sep, int flag,
611 		 char **resp, size_t size,
612 		 int argc, char *const argv[])
613 {
614 	struct env_entry *list[htab->size];
615 	char *res, *p;
616 	size_t totlen;
617 	int i, n;
618 
619 	/* Test for correct arguments.  */
620 	if ((resp == NULL) || (htab == NULL)) {
621 		__set_errno(EINVAL);
622 		return (-1);
623 	}
624 
625 	debug("EXPORT  table = %p, htab.size = %d, htab.filled = %d, size = %lu\n",
626 	      htab, htab->size, htab->filled, (ulong)size);
627 	/*
628 	 * Pass 1:
629 	 * search used entries,
630 	 * save addresses and compute total length
631 	 */
632 	for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) {
633 
634 		if (htab->table[i].used > 0) {
635 			struct env_entry *ep = &htab->table[i].entry;
636 			int found = match_entry(ep, flag, argc, argv);
637 
638 			if ((argc > 0) && (found == 0))
639 				continue;
640 
641 			if ((flag & H_HIDE_DOT) && ep->key[0] == '.')
642 				continue;
643 
644 			list[n++] = ep;
645 
646 			totlen += strlen(ep->key);
647 
648 			if (sep == '\0') {
649 				totlen += strlen(ep->data);
650 			} else {	/* check if escapes are needed */
651 				char *s = ep->data;
652 
653 				while (*s) {
654 					++totlen;
655 					/* add room for needed escape chars */
656 					if ((*s == sep) || (*s == '\\'))
657 						++totlen;
658 					++s;
659 				}
660 			}
661 			totlen += 2;	/* for '=' and 'sep' char */
662 		}
663 	}
664 
665 #ifdef DEBUG
666 	/* Pass 1a: print unsorted list */
667 	printf("Unsorted: n=%d\n", n);
668 	for (i = 0; i < n; ++i) {
669 		printf("\t%3d: %p ==> %-10s => %s\n",
670 		       i, list[i], list[i]->key, list[i]->data);
671 	}
672 #endif
673 
674 	/* Sort list by keys */
675 	qsort(list, n, sizeof(struct env_entry *), cmpkey);
676 
677 	/* Check if the user supplied buffer size is sufficient */
678 	if (size) {
679 		if (size < totlen + 1) {	/* provided buffer too small */
680 			printf("Env export buffer too small: %lu, but need %lu\n",
681 			       (ulong)size, (ulong)totlen + 1);
682 			__set_errno(ENOMEM);
683 			return (-1);
684 		}
685 	} else {
686 		size = totlen + 1;
687 	}
688 
689 	/* Check if the user provided a buffer */
690 	if (*resp) {
691 		/* yes; clear it */
692 		res = *resp;
693 		memset(res, '\0', size);
694 	} else {
695 		/* no, allocate and clear one */
696 		*resp = res = calloc(1, size);
697 		if (res == NULL) {
698 			__set_errno(ENOMEM);
699 			return (-1);
700 		}
701 	}
702 	/*
703 	 * Pass 2:
704 	 * export sorted list of result data
705 	 */
706 	for (i = 0, p = res; i < n; ++i) {
707 		const char *s;
708 
709 		s = list[i]->key;
710 		while (*s)
711 			*p++ = *s++;
712 		*p++ = '=';
713 
714 		s = list[i]->data;
715 
716 		while (*s) {
717 			if ((*s == sep) || (*s == '\\'))
718 				*p++ = '\\';	/* escape */
719 			*p++ = *s++;
720 		}
721 		*p++ = sep;
722 	}
723 	*p = '\0';		/* terminate result */
724 
725 	return size;
726 }
727 #endif
728 
729 
730 /*
731  * himport()
732  */
733 
734 /*
735  * Check whether variable 'name' is amongst vars[],
736  * and remove all instances by setting the pointer to NULL
737  */
drop_var_from_set(const char * name,int nvars,char * vars[])738 static int drop_var_from_set(const char *name, int nvars, char * vars[])
739 {
740 	int i = 0;
741 	int res = 0;
742 
743 	/* No variables specified means process all of them */
744 	if (nvars == 0)
745 		return 1;
746 
747 	for (i = 0; i < nvars; i++) {
748 		if (vars[i] == NULL)
749 			continue;
750 		/* If we found it, delete all of them */
751 		if (!strcmp(name, vars[i])) {
752 			vars[i] = NULL;
753 			res = 1;
754 		}
755 	}
756 	if (!res)
757 		debug("Skipping non-listed variable %s\n", name);
758 
759 	return res;
760 }
761 
762 /*
763  * Import linearized data into hash table.
764  *
765  * This is the inverse function to hexport(): it takes a linear list
766  * of "name=value" pairs and creates hash table entries from it.
767  *
768  * Entries without "value", i. e. consisting of only "name" or
769  * "name=", will cause this entry to be deleted from the hash table.
770  *
771  * The "flag" argument can be used to control the behaviour: when the
772  * H_NOCLEAR bit is set, then an existing hash table will kept, i. e.
773  * new data will be added to an existing hash table; otherwise, if no
774  * vars are passed, old data will be discarded and a new hash table
775  * will be created. If vars are passed, passed vars that are not in
776  * the linear list of "name=value" pairs will be removed from the
777  * current hash table.
778  *
779  * The separator character for the "name=value" pairs can be selected,
780  * so we both support importing from externally stored environment
781  * data (separated by NUL characters) and from plain text files
782  * (entries separated by newline characters).
783  *
784  * To allow for nicely formatted text input, leading white space
785  * (sequences of SPACE and TAB chars) is ignored, and entries starting
786  * (after removal of any leading white space) with a '#' character are
787  * considered comments and ignored.
788  *
789  * [NOTE: this means that a variable name cannot start with a '#'
790  * character.]
791  *
792  * When using a non-NUL separator character, backslash is used as
793  * escape character in the value part, allowing for example for
794  * multi-line values.
795  *
796  * In theory, arbitrary separator characters can be used, but only
797  * '\0' and '\n' have really been tested.
798  */
799 
himport_r(struct hsearch_data * htab,const char * env,size_t size,const char sep,int flag,int crlf_is_lf,int nvars,char * const vars[])800 int himport_r(struct hsearch_data *htab,
801 		const char *env, size_t size, const char sep, int flag,
802 		int crlf_is_lf, int nvars, char * const vars[])
803 {
804 	char *data, *sp, *dp, *name, *value;
805 	char *localvars[nvars];
806 	int i;
807 
808 	/* Test for correct arguments.  */
809 	if (htab == NULL) {
810 		__set_errno(EINVAL);
811 		return 0;
812 	}
813 
814 	/* we allocate new space to make sure we can write to the array */
815 	if ((data = malloc(size + 1)) == NULL) {
816 		debug("himport_r: can't malloc %lu bytes\n", (ulong)size + 1);
817 		__set_errno(ENOMEM);
818 		return 0;
819 	}
820 	memcpy(data, env, size);
821 	data[size] = '\0';
822 	dp = data;
823 
824 	/* make a local copy of the list of variables */
825 	if (nvars)
826 		memcpy(localvars, vars, sizeof(vars[0]) * nvars);
827 
828 #if CONFIG_IS_ENABLED(ENV_APPEND)
829 	flag |= H_NOCLEAR;
830 #endif
831 
832 	if ((flag & H_NOCLEAR) == 0 && !nvars) {
833 		/* Destroy old hash table if one exists */
834 		debug("Destroy Hash Table: %p table = %p\n", htab,
835 		       htab->table);
836 		if (htab->table)
837 			hdestroy_r(htab);
838 	}
839 
840 	/*
841 	 * Create new hash table (if needed).  The computation of the hash
842 	 * table size is based on heuristics: in a sample of some 70+
843 	 * existing systems we found an average size of 39+ bytes per entry
844 	 * in the environment (for the whole key=value pair). Assuming a
845 	 * size of 8 per entry (= safety factor of ~5) should provide enough
846 	 * safety margin for any existing environment definitions and still
847 	 * allow for more than enough dynamic additions. Note that the
848 	 * "size" argument is supposed to give the maximum environment size
849 	 * (CONFIG_ENV_SIZE).  This heuristics will result in
850 	 * unreasonably large numbers (and thus memory footprint) for
851 	 * big flash environments (>8,000 entries for 64 KB
852 	 * environment size), so we clip it to a reasonable value.
853 	 * On the other hand we need to add some more entries for free
854 	 * space when importing very small buffers. Both boundaries can
855 	 * be overwritten in the board config file if needed.
856 	 */
857 
858 	if (!htab->table) {
859 		int nent = CONFIG_ENV_MIN_ENTRIES + size / 8;
860 
861 		if (nent > CONFIG_ENV_MAX_ENTRIES)
862 			nent = CONFIG_ENV_MAX_ENTRIES;
863 
864 		debug("Create Hash Table: N=%d\n", nent);
865 
866 		if (hcreate_r(nent, htab) == 0) {
867 			free(data);
868 			return 0;
869 		}
870 	}
871 
872 	if (!size) {
873 		free(data);
874 		return 1;		/* everything OK */
875 	}
876 	if(crlf_is_lf) {
877 		/* Remove Carriage Returns in front of Line Feeds */
878 		unsigned ignored_crs = 0;
879 		for(;dp < data + size && *dp; ++dp) {
880 			if(*dp == '\r' &&
881 			   dp < data + size - 1 && *(dp+1) == '\n')
882 				++ignored_crs;
883 			else
884 				*(dp-ignored_crs) = *dp;
885 		}
886 		size -= ignored_crs;
887 		dp = data;
888 	}
889 	/* Parse environment; allow for '\0' and 'sep' as separators */
890 	do {
891 		struct env_entry e, *rv;
892 
893 		/* skip leading white space */
894 		while (isblank(*dp))
895 			++dp;
896 
897 		/* skip comment lines */
898 		if (*dp == '#') {
899 			while (*dp && (*dp != sep))
900 				++dp;
901 			++dp;
902 			continue;
903 		}
904 
905 		/* parse name */
906 		for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp)
907 			;
908 
909 		/* deal with "name" and "name=" entries (delete var) */
910 		if (*dp == '\0' || *(dp + 1) == '\0' ||
911 		    *dp == sep || *(dp + 1) == sep) {
912 			if (*dp == '=')
913 				*dp++ = '\0';
914 			*dp++ = '\0';	/* terminate name */
915 
916 			debug("DELETE CANDIDATE: \"%s\"\n", name);
917 			if (!drop_var_from_set(name, nvars, localvars))
918 				continue;
919 
920 			if (hdelete_r(name, htab, flag))
921 				debug("DELETE ERROR ##############################\n");
922 
923 			continue;
924 		}
925 		*dp++ = '\0';	/* terminate name */
926 
927 		/* parse value; deal with escapes */
928 		for (value = sp = dp; *dp && (*dp != sep); ++dp) {
929 			if ((*dp == '\\') && *(dp + 1))
930 				++dp;
931 			*sp++ = *dp;
932 		}
933 		*sp++ = '\0';	/* terminate value */
934 		++dp;
935 
936 		if (*name == 0) {
937 			debug("INSERT: unable to use an empty key\n");
938 			__set_errno(EINVAL);
939 			free(data);
940 			return 0;
941 		}
942 
943 		/* Skip variables which are not supposed to be processed */
944 		if (!drop_var_from_set(name, nvars, localvars))
945 			continue;
946 
947 		/* enter into hash table */
948 		e.key = name;
949 		e.data = value;
950 
951 		hsearch_r(e, ENV_ENTER, &rv, htab, flag);
952 #if !CONFIG_IS_ENABLED(ENV_WRITEABLE_LIST)
953 		if (rv == NULL) {
954 			printf("himport_r: can't insert \"%s=%s\" into hash table\n",
955 				name, value);
956 		}
957 #endif
958 
959 		debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n",
960 			htab, htab->filled, htab->size,
961 			rv, name, value);
962 	} while ((dp < data + size) && *dp);	/* size check needed for text */
963 						/* without '\0' termination */
964 	debug("INSERT: free(data = %p)\n", data);
965 	free(data);
966 
967 	if (flag & H_NOCLEAR)
968 		goto end;
969 
970 	/* process variables which were not considered */
971 	for (i = 0; i < nvars; i++) {
972 		if (localvars[i] == NULL)
973 			continue;
974 		/*
975 		 * All variables which were not deleted from the variable list
976 		 * were not present in the imported env
977 		 * This could mean two things:
978 		 * a) if the variable was present in current env, we delete it
979 		 * b) if the variable was not present in current env, we notify
980 		 *    it might be a typo
981 		 */
982 		if (hdelete_r(localvars[i], htab, flag))
983 			printf("WARNING: '%s' neither in running nor in imported env!\n", localvars[i]);
984 		else
985 			printf("WARNING: '%s' not in imported env, deleting it!\n", localvars[i]);
986 	}
987 
988 end:
989 	debug("INSERT: done\n");
990 	return 1;		/* everything OK */
991 }
992 
993 /*
994  * hwalk_r()
995  */
996 
997 /*
998  * Walk all of the entries in the hash, calling the callback for each one.
999  * this allows some generic operation to be performed on each element.
1000  */
hwalk_r(struct hsearch_data * htab,int (* callback)(struct env_entry * entry))1001 int hwalk_r(struct hsearch_data *htab, int (*callback)(struct env_entry *entry))
1002 {
1003 	int i;
1004 	int retval;
1005 
1006 	for (i = 1; i <= htab->size; ++i) {
1007 		if (htab->table[i].used > 0) {
1008 			retval = callback(&htab->table[i].entry);
1009 			if (retval)
1010 				return retval;
1011 		}
1012 	}
1013 
1014 	return 0;
1015 }
1016