1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/oom_kill.c
4  *
5  *  Copyright (C)  1998,2000  Rik van Riel
6  *	Thanks go out to Claus Fischer for some serious inspiration and
7  *	for goading me into coding this file...
8  *  Copyright (C)  2010  Google, Inc.
9  *	Rewritten by David Rientjes
10  *
11  *  The routines in this file are used to kill a process when
12  *  we're seriously out of memory. This gets called from __alloc_pages()
13  *  in mm/page_alloc.c when we really run out of memory.
14  *
15  *  Since we won't call these routines often (on a well-configured
16  *  machine) this file will double as a 'coding guide' and a signpost
17  *  for newbie kernel hackers. It features several pointers to major
18  *  kernel subsystems and hints as to where to find out what things do.
19  */
20 
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/debug.h>
30 #include <linux/swap.h>
31 #include <linux/syscalls.h>
32 #include <linux/timex.h>
33 #include <linux/jiffies.h>
34 #include <linux/cpuset.h>
35 #include <linux/export.h>
36 #include <linux/notifier.h>
37 #include <linux/memcontrol.h>
38 #include <linux/mempolicy.h>
39 #include <linux/security.h>
40 #include <linux/ptrace.h>
41 #include <linux/freezer.h>
42 #include <linux/ftrace.h>
43 #include <linux/ratelimit.h>
44 #include <linux/kthread.h>
45 #include <linux/init.h>
46 #include <linux/mmu_notifier.h>
47 
48 #include <asm/tlb.h>
49 #include "internal.h"
50 #include "slab.h"
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/oom.h>
54 
55 int sysctl_panic_on_oom;
56 int sysctl_oom_kill_allocating_task;
57 int sysctl_oom_dump_tasks = 1;
58 
59 /*
60  * Serializes oom killer invocations (out_of_memory()) from all contexts to
61  * prevent from over eager oom killing (e.g. when the oom killer is invoked
62  * from different domains).
63  *
64  * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
65  * and mark_oom_victim
66  */
67 DEFINE_MUTEX(oom_lock);
68 /* Serializes oom_score_adj and oom_score_adj_min updates */
69 DEFINE_MUTEX(oom_adj_mutex);
70 
is_memcg_oom(struct oom_control * oc)71 static inline bool is_memcg_oom(struct oom_control *oc)
72 {
73 	return oc->memcg != NULL;
74 }
75 
76 #ifdef CONFIG_NUMA
77 /**
78  * oom_cpuset_eligible() - check task eligibility for kill
79  * @start: task struct of which task to consider
80  * @oc: pointer to struct oom_control
81  *
82  * Task eligibility is determined by whether or not a candidate task, @tsk,
83  * shares the same mempolicy nodes as current if it is bound by such a policy
84  * and whether or not it has the same set of allowed cpuset nodes.
85  *
86  * This function is assuming oom-killer context and 'current' has triggered
87  * the oom-killer.
88  */
oom_cpuset_eligible(struct task_struct * start,struct oom_control * oc)89 static bool oom_cpuset_eligible(struct task_struct *start,
90 				struct oom_control *oc)
91 {
92 	struct task_struct *tsk;
93 	bool ret = false;
94 	const nodemask_t *mask = oc->nodemask;
95 
96 	if (is_memcg_oom(oc))
97 		return true;
98 
99 	rcu_read_lock();
100 	for_each_thread(start, tsk) {
101 		if (mask) {
102 			/*
103 			 * If this is a mempolicy constrained oom, tsk's
104 			 * cpuset is irrelevant.  Only return true if its
105 			 * mempolicy intersects current, otherwise it may be
106 			 * needlessly killed.
107 			 */
108 			ret = mempolicy_in_oom_domain(tsk, mask);
109 		} else {
110 			/*
111 			 * This is not a mempolicy constrained oom, so only
112 			 * check the mems of tsk's cpuset.
113 			 */
114 			ret = cpuset_mems_allowed_intersects(current, tsk);
115 		}
116 		if (ret)
117 			break;
118 	}
119 	rcu_read_unlock();
120 
121 	return ret;
122 }
123 #else
oom_cpuset_eligible(struct task_struct * tsk,struct oom_control * oc)124 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
125 {
126 	return true;
127 }
128 #endif /* CONFIG_NUMA */
129 
130 /*
131  * The process p may have detached its own ->mm while exiting or through
132  * kthread_use_mm(), but one or more of its subthreads may still have a valid
133  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
134  * task_lock() held.
135  */
find_lock_task_mm(struct task_struct * p)136 struct task_struct *find_lock_task_mm(struct task_struct *p)
137 {
138 	struct task_struct *t;
139 
140 	rcu_read_lock();
141 
142 	for_each_thread(p, t) {
143 		task_lock(t);
144 		if (likely(t->mm))
145 			goto found;
146 		task_unlock(t);
147 	}
148 	t = NULL;
149 found:
150 	rcu_read_unlock();
151 
152 	return t;
153 }
154 
155 /*
156  * order == -1 means the oom kill is required by sysrq, otherwise only
157  * for display purposes.
158  */
is_sysrq_oom(struct oom_control * oc)159 static inline bool is_sysrq_oom(struct oom_control *oc)
160 {
161 	return oc->order == -1;
162 }
163 
164 /* return true if the task is not adequate as candidate victim task. */
oom_unkillable_task(struct task_struct * p)165 static bool oom_unkillable_task(struct task_struct *p)
166 {
167 	if (is_global_init(p))
168 		return true;
169 	if (p->flags & PF_KTHREAD)
170 		return true;
171 	return false;
172 }
173 
174 /*
175  * Check whether unreclaimable slab amount is greater than
176  * all user memory(LRU pages).
177  * dump_unreclaimable_slab() could help in the case that
178  * oom due to too much unreclaimable slab used by kernel.
179 */
should_dump_unreclaim_slab(void)180 static bool should_dump_unreclaim_slab(void)
181 {
182 	unsigned long nr_lru;
183 
184 	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
185 		 global_node_page_state(NR_INACTIVE_ANON) +
186 		 global_node_page_state(NR_ACTIVE_FILE) +
187 		 global_node_page_state(NR_INACTIVE_FILE) +
188 		 global_node_page_state(NR_ISOLATED_ANON) +
189 		 global_node_page_state(NR_ISOLATED_FILE) +
190 		 global_node_page_state(NR_UNEVICTABLE);
191 
192 	return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
193 }
194 
195 /**
196  * oom_badness - heuristic function to determine which candidate task to kill
197  * @p: task struct of which task we should calculate
198  * @totalpages: total present RAM allowed for page allocation
199  *
200  * The heuristic for determining which task to kill is made to be as simple and
201  * predictable as possible.  The goal is to return the highest value for the
202  * task consuming the most memory to avoid subsequent oom failures.
203  */
oom_badness(struct task_struct * p,unsigned long totalpages)204 long oom_badness(struct task_struct *p, unsigned long totalpages)
205 {
206 	long points;
207 	long adj;
208 
209 	if (oom_unkillable_task(p))
210 		return LONG_MIN;
211 
212 	p = find_lock_task_mm(p);
213 	if (!p)
214 		return LONG_MIN;
215 
216 	/*
217 	 * Do not even consider tasks which are explicitly marked oom
218 	 * unkillable or have been already oom reaped or the are in
219 	 * the middle of vfork
220 	 */
221 	adj = (long)p->signal->oom_score_adj;
222 	if (adj == OOM_SCORE_ADJ_MIN ||
223 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
224 			in_vfork(p)) {
225 		task_unlock(p);
226 		return LONG_MIN;
227 	}
228 
229 	/*
230 	 * The baseline for the badness score is the proportion of RAM that each
231 	 * task's rss, pagetable and swap space use.
232 	 */
233 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
234 		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
235 	task_unlock(p);
236 
237 	/* Normalize to oom_score_adj units */
238 	adj *= totalpages / 1000;
239 	points += adj;
240 
241 	return points;
242 }
243 
244 static const char * const oom_constraint_text[] = {
245 	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
246 	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
247 	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
248 	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
249 };
250 
251 /*
252  * Determine the type of allocation constraint.
253  */
constrained_alloc(struct oom_control * oc)254 static enum oom_constraint constrained_alloc(struct oom_control *oc)
255 {
256 	struct zone *zone;
257 	struct zoneref *z;
258 	enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
259 	bool cpuset_limited = false;
260 	int nid;
261 
262 	if (is_memcg_oom(oc)) {
263 		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
264 		return CONSTRAINT_MEMCG;
265 	}
266 
267 	/* Default to all available memory */
268 	oc->totalpages = totalram_pages() + total_swap_pages;
269 
270 	if (!IS_ENABLED(CONFIG_NUMA))
271 		return CONSTRAINT_NONE;
272 
273 	if (!oc->zonelist)
274 		return CONSTRAINT_NONE;
275 	/*
276 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
277 	 * to kill current.We have to random task kill in this case.
278 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
279 	 */
280 	if (oc->gfp_mask & __GFP_THISNODE)
281 		return CONSTRAINT_NONE;
282 
283 	/*
284 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
285 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
286 	 * is enforced in get_page_from_freelist().
287 	 */
288 	if (oc->nodemask &&
289 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
290 		oc->totalpages = total_swap_pages;
291 		for_each_node_mask(nid, *oc->nodemask)
292 			oc->totalpages += node_present_pages(nid);
293 		return CONSTRAINT_MEMORY_POLICY;
294 	}
295 
296 	/* Check this allocation failure is caused by cpuset's wall function */
297 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
298 			highest_zoneidx, oc->nodemask)
299 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
300 			cpuset_limited = true;
301 
302 	if (cpuset_limited) {
303 		oc->totalpages = total_swap_pages;
304 		for_each_node_mask(nid, cpuset_current_mems_allowed)
305 			oc->totalpages += node_present_pages(nid);
306 		return CONSTRAINT_CPUSET;
307 	}
308 	return CONSTRAINT_NONE;
309 }
310 
oom_evaluate_task(struct task_struct * task,void * arg)311 static int oom_evaluate_task(struct task_struct *task, void *arg)
312 {
313 	struct oom_control *oc = arg;
314 	long points;
315 
316 	if (oom_unkillable_task(task))
317 		goto next;
318 
319 	/* p may not have freeable memory in nodemask */
320 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
321 		goto next;
322 
323 	/*
324 	 * This task already has access to memory reserves and is being killed.
325 	 * Don't allow any other task to have access to the reserves unless
326 	 * the task has MMF_OOM_SKIP because chances that it would release
327 	 * any memory is quite low.
328 	 */
329 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
330 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
331 			goto next;
332 		goto abort;
333 	}
334 
335 	/*
336 	 * If task is allocating a lot of memory and has been marked to be
337 	 * killed first if it triggers an oom, then select it.
338 	 */
339 	if (oom_task_origin(task)) {
340 		points = LONG_MAX;
341 		goto select;
342 	}
343 
344 	points = oom_badness(task, oc->totalpages);
345 	if (points == LONG_MIN || points < oc->chosen_points)
346 		goto next;
347 
348 select:
349 	if (oc->chosen)
350 		put_task_struct(oc->chosen);
351 	get_task_struct(task);
352 	oc->chosen = task;
353 	oc->chosen_points = points;
354 next:
355 	return 0;
356 abort:
357 	if (oc->chosen)
358 		put_task_struct(oc->chosen);
359 	oc->chosen = (void *)-1UL;
360 	return 1;
361 }
362 
363 /*
364  * Simple selection loop. We choose the process with the highest number of
365  * 'points'. In case scan was aborted, oc->chosen is set to -1.
366  */
select_bad_process(struct oom_control * oc)367 static void select_bad_process(struct oom_control *oc)
368 {
369 	oc->chosen_points = LONG_MIN;
370 
371 	if (is_memcg_oom(oc))
372 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
373 	else {
374 		struct task_struct *p;
375 
376 		rcu_read_lock();
377 		for_each_process(p)
378 			if (oom_evaluate_task(p, oc))
379 				break;
380 		rcu_read_unlock();
381 	}
382 }
383 
dump_task(struct task_struct * p,void * arg)384 static int dump_task(struct task_struct *p, void *arg)
385 {
386 	struct oom_control *oc = arg;
387 	struct task_struct *task;
388 
389 	if (oom_unkillable_task(p))
390 		return 0;
391 
392 	/* p may not have freeable memory in nodemask */
393 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
394 		return 0;
395 
396 	task = find_lock_task_mm(p);
397 	if (!task) {
398 		/*
399 		 * All of p's threads have already detached their mm's. There's
400 		 * no need to report them; they can't be oom killed anyway.
401 		 */
402 		return 0;
403 	}
404 
405 	pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
406 		task->pid, from_kuid(&init_user_ns, task_uid(task)),
407 		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
408 		mm_pgtables_bytes(task->mm),
409 		get_mm_counter(task->mm, MM_SWAPENTS),
410 		task->signal->oom_score_adj, task->comm);
411 	task_unlock(task);
412 
413 	return 0;
414 }
415 
416 /**
417  * dump_tasks - dump current memory state of all system tasks
418  * @oc: pointer to struct oom_control
419  *
420  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
421  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
422  * are not shown.
423  * State information includes task's pid, uid, tgid, vm size, rss,
424  * pgtables_bytes, swapents, oom_score_adj value, and name.
425  */
dump_tasks(struct oom_control * oc)426 static void dump_tasks(struct oom_control *oc)
427 {
428 	pr_info("Tasks state (memory values in pages):\n");
429 	pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
430 
431 	if (is_memcg_oom(oc))
432 		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
433 	else {
434 		struct task_struct *p;
435 
436 		rcu_read_lock();
437 		for_each_process(p)
438 			dump_task(p, oc);
439 		rcu_read_unlock();
440 	}
441 }
442 
dump_oom_summary(struct oom_control * oc,struct task_struct * victim)443 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
444 {
445 	/* one line summary of the oom killer context. */
446 	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
447 			oom_constraint_text[oc->constraint],
448 			nodemask_pr_args(oc->nodemask));
449 	cpuset_print_current_mems_allowed();
450 	mem_cgroup_print_oom_context(oc->memcg, victim);
451 	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
452 		from_kuid(&init_user_ns, task_uid(victim)));
453 }
454 
dump_header(struct oom_control * oc,struct task_struct * p)455 static void dump_header(struct oom_control *oc, struct task_struct *p)
456 {
457 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
458 		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
459 			current->signal->oom_score_adj);
460 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
461 		pr_warn("COMPACTION is disabled!!!\n");
462 
463 	dump_stack();
464 	if (is_memcg_oom(oc))
465 		mem_cgroup_print_oom_meminfo(oc->memcg);
466 	else {
467 		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
468 		if (should_dump_unreclaim_slab())
469 			dump_unreclaimable_slab();
470 	}
471 	if (sysctl_oom_dump_tasks)
472 		dump_tasks(oc);
473 	if (p)
474 		dump_oom_summary(oc, p);
475 }
476 
477 /*
478  * Number of OOM victims in flight
479  */
480 static atomic_t oom_victims = ATOMIC_INIT(0);
481 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
482 
483 static bool oom_killer_disabled __read_mostly;
484 
485 #define K(x) ((x) << (PAGE_SHIFT-10))
486 
487 /*
488  * task->mm can be NULL if the task is the exited group leader.  So to
489  * determine whether the task is using a particular mm, we examine all the
490  * task's threads: if one of those is using this mm then this task was also
491  * using it.
492  */
process_shares_mm(struct task_struct * p,struct mm_struct * mm)493 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
494 {
495 	struct task_struct *t;
496 
497 	for_each_thread(p, t) {
498 		struct mm_struct *t_mm = READ_ONCE(t->mm);
499 		if (t_mm)
500 			return t_mm == mm;
501 	}
502 	return false;
503 }
504 
505 #ifdef CONFIG_MMU
506 /*
507  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
508  * victim (if that is possible) to help the OOM killer to move on.
509  */
510 static struct task_struct *oom_reaper_th;
511 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
512 static struct task_struct *oom_reaper_list;
513 static DEFINE_SPINLOCK(oom_reaper_lock);
514 
__oom_reap_task_mm(struct mm_struct * mm)515 bool __oom_reap_task_mm(struct mm_struct *mm)
516 {
517 	struct vm_area_struct *vma;
518 	bool ret = true;
519 
520 	/*
521 	 * Tell all users of get_user/copy_from_user etc... that the content
522 	 * is no longer stable. No barriers really needed because unmapping
523 	 * should imply barriers already and the reader would hit a page fault
524 	 * if it stumbled over a reaped memory.
525 	 */
526 	set_bit(MMF_UNSTABLE, &mm->flags);
527 
528 	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
529 		if (!can_madv_lru_vma(vma))
530 			continue;
531 
532 		/*
533 		 * Only anonymous pages have a good chance to be dropped
534 		 * without additional steps which we cannot afford as we
535 		 * are OOM already.
536 		 *
537 		 * We do not even care about fs backed pages because all
538 		 * which are reclaimable have already been reclaimed and
539 		 * we do not want to block exit_mmap by keeping mm ref
540 		 * count elevated without a good reason.
541 		 */
542 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
543 			struct mmu_notifier_range range;
544 			struct mmu_gather tlb;
545 
546 			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
547 						vma, mm, vma->vm_start,
548 						vma->vm_end);
549 			tlb_gather_mmu(&tlb, mm);
550 			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
551 				tlb_finish_mmu(&tlb);
552 				ret = false;
553 				continue;
554 			}
555 			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
556 			mmu_notifier_invalidate_range_end(&range);
557 			tlb_finish_mmu(&tlb);
558 		}
559 	}
560 
561 	return ret;
562 }
563 
564 /*
565  * Reaps the address space of the give task.
566  *
567  * Returns true on success and false if none or part of the address space
568  * has been reclaimed and the caller should retry later.
569  */
oom_reap_task_mm(struct task_struct * tsk,struct mm_struct * mm)570 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
571 {
572 	bool ret = true;
573 
574 	if (!mmap_read_trylock(mm)) {
575 		trace_skip_task_reaping(tsk->pid);
576 		return false;
577 	}
578 
579 	/*
580 	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
581 	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
582 	 * under mmap_lock for reading because it serializes against the
583 	 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
584 	 */
585 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
586 		trace_skip_task_reaping(tsk->pid);
587 		goto out_unlock;
588 	}
589 
590 	trace_start_task_reaping(tsk->pid);
591 
592 	/* failed to reap part of the address space. Try again later */
593 	ret = __oom_reap_task_mm(mm);
594 	if (!ret)
595 		goto out_finish;
596 
597 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
598 			task_pid_nr(tsk), tsk->comm,
599 			K(get_mm_counter(mm, MM_ANONPAGES)),
600 			K(get_mm_counter(mm, MM_FILEPAGES)),
601 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
602 out_finish:
603 	trace_finish_task_reaping(tsk->pid);
604 out_unlock:
605 	mmap_read_unlock(mm);
606 
607 	return ret;
608 }
609 
610 #define MAX_OOM_REAP_RETRIES 10
oom_reap_task(struct task_struct * tsk)611 static void oom_reap_task(struct task_struct *tsk)
612 {
613 	int attempts = 0;
614 	struct mm_struct *mm = tsk->signal->oom_mm;
615 
616 	/* Retry the mmap_read_trylock(mm) a few times */
617 	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
618 		schedule_timeout_idle(HZ/10);
619 
620 	if (attempts <= MAX_OOM_REAP_RETRIES ||
621 	    test_bit(MMF_OOM_SKIP, &mm->flags))
622 		goto done;
623 
624 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
625 		task_pid_nr(tsk), tsk->comm);
626 	sched_show_task(tsk);
627 	debug_show_all_locks();
628 
629 done:
630 	tsk->oom_reaper_list = NULL;
631 
632 	/*
633 	 * Hide this mm from OOM killer because it has been either reaped or
634 	 * somebody can't call mmap_write_unlock(mm).
635 	 */
636 	set_bit(MMF_OOM_SKIP, &mm->flags);
637 
638 	/* Drop a reference taken by wake_oom_reaper */
639 	put_task_struct(tsk);
640 }
641 
oom_reaper(void * unused)642 static int oom_reaper(void *unused)
643 {
644 	set_freezable();
645 
646 	while (true) {
647 		struct task_struct *tsk = NULL;
648 
649 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
650 		spin_lock(&oom_reaper_lock);
651 		if (oom_reaper_list != NULL) {
652 			tsk = oom_reaper_list;
653 			oom_reaper_list = tsk->oom_reaper_list;
654 		}
655 		spin_unlock(&oom_reaper_lock);
656 
657 		if (tsk)
658 			oom_reap_task(tsk);
659 	}
660 
661 	return 0;
662 }
663 
wake_oom_reaper(struct task_struct * tsk)664 static void wake_oom_reaper(struct task_struct *tsk)
665 {
666 	/* mm is already queued? */
667 	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
668 		return;
669 
670 	get_task_struct(tsk);
671 
672 	spin_lock(&oom_reaper_lock);
673 	tsk->oom_reaper_list = oom_reaper_list;
674 	oom_reaper_list = tsk;
675 	spin_unlock(&oom_reaper_lock);
676 	trace_wake_reaper(tsk->pid);
677 	wake_up(&oom_reaper_wait);
678 }
679 
oom_init(void)680 static int __init oom_init(void)
681 {
682 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
683 	return 0;
684 }
subsys_initcall(oom_init)685 subsys_initcall(oom_init)
686 #else
687 static inline void wake_oom_reaper(struct task_struct *tsk)
688 {
689 }
690 #endif /* CONFIG_MMU */
691 
692 /**
693  * mark_oom_victim - mark the given task as OOM victim
694  * @tsk: task to mark
695  *
696  * Has to be called with oom_lock held and never after
697  * oom has been disabled already.
698  *
699  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
700  * under task_lock or operate on the current).
701  */
702 static void mark_oom_victim(struct task_struct *tsk)
703 {
704 	struct mm_struct *mm = tsk->mm;
705 
706 	WARN_ON(oom_killer_disabled);
707 	/* OOM killer might race with memcg OOM */
708 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
709 		return;
710 
711 	/* oom_mm is bound to the signal struct life time. */
712 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
713 		mmgrab(tsk->signal->oom_mm);
714 		set_bit(MMF_OOM_VICTIM, &mm->flags);
715 	}
716 
717 	/*
718 	 * Make sure that the task is woken up from uninterruptible sleep
719 	 * if it is frozen because OOM killer wouldn't be able to free
720 	 * any memory and livelock. freezing_slow_path will tell the freezer
721 	 * that TIF_MEMDIE tasks should be ignored.
722 	 */
723 	__thaw_task(tsk);
724 	atomic_inc(&oom_victims);
725 	trace_mark_victim(tsk->pid);
726 }
727 
728 /**
729  * exit_oom_victim - note the exit of an OOM victim
730  */
exit_oom_victim(void)731 void exit_oom_victim(void)
732 {
733 	clear_thread_flag(TIF_MEMDIE);
734 
735 	if (!atomic_dec_return(&oom_victims))
736 		wake_up_all(&oom_victims_wait);
737 }
738 
739 /**
740  * oom_killer_enable - enable OOM killer
741  */
oom_killer_enable(void)742 void oom_killer_enable(void)
743 {
744 	oom_killer_disabled = false;
745 	pr_info("OOM killer enabled.\n");
746 }
747 
748 /**
749  * oom_killer_disable - disable OOM killer
750  * @timeout: maximum timeout to wait for oom victims in jiffies
751  *
752  * Forces all page allocations to fail rather than trigger OOM killer.
753  * Will block and wait until all OOM victims are killed or the given
754  * timeout expires.
755  *
756  * The function cannot be called when there are runnable user tasks because
757  * the userspace would see unexpected allocation failures as a result. Any
758  * new usage of this function should be consulted with MM people.
759  *
760  * Returns true if successful and false if the OOM killer cannot be
761  * disabled.
762  */
oom_killer_disable(signed long timeout)763 bool oom_killer_disable(signed long timeout)
764 {
765 	signed long ret;
766 
767 	/*
768 	 * Make sure to not race with an ongoing OOM killer. Check that the
769 	 * current is not killed (possibly due to sharing the victim's memory).
770 	 */
771 	if (mutex_lock_killable(&oom_lock))
772 		return false;
773 	oom_killer_disabled = true;
774 	mutex_unlock(&oom_lock);
775 
776 	ret = wait_event_interruptible_timeout(oom_victims_wait,
777 			!atomic_read(&oom_victims), timeout);
778 	if (ret <= 0) {
779 		oom_killer_enable();
780 		return false;
781 	}
782 	pr_info("OOM killer disabled.\n");
783 
784 	return true;
785 }
786 
__task_will_free_mem(struct task_struct * task)787 static inline bool __task_will_free_mem(struct task_struct *task)
788 {
789 	struct signal_struct *sig = task->signal;
790 
791 	/*
792 	 * A coredumping process may sleep for an extended period in
793 	 * coredump_task_exit(), so the oom killer cannot assume that
794 	 * the process will promptly exit and release memory.
795 	 */
796 	if (sig->flags & SIGNAL_GROUP_COREDUMP)
797 		return false;
798 
799 	if (sig->flags & SIGNAL_GROUP_EXIT)
800 		return true;
801 
802 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
803 		return true;
804 
805 	return false;
806 }
807 
808 /*
809  * Checks whether the given task is dying or exiting and likely to
810  * release its address space. This means that all threads and processes
811  * sharing the same mm have to be killed or exiting.
812  * Caller has to make sure that task->mm is stable (hold task_lock or
813  * it operates on the current).
814  */
task_will_free_mem(struct task_struct * task)815 static bool task_will_free_mem(struct task_struct *task)
816 {
817 	struct mm_struct *mm = task->mm;
818 	struct task_struct *p;
819 	bool ret = true;
820 
821 	/*
822 	 * Skip tasks without mm because it might have passed its exit_mm and
823 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
824 	 * on that for now. We can consider find_lock_task_mm in future.
825 	 */
826 	if (!mm)
827 		return false;
828 
829 	if (!__task_will_free_mem(task))
830 		return false;
831 
832 	/*
833 	 * This task has already been drained by the oom reaper so there are
834 	 * only small chances it will free some more
835 	 */
836 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
837 		return false;
838 
839 	if (atomic_read(&mm->mm_users) <= 1)
840 		return true;
841 
842 	/*
843 	 * Make sure that all tasks which share the mm with the given tasks
844 	 * are dying as well to make sure that a) nobody pins its mm and
845 	 * b) the task is also reapable by the oom reaper.
846 	 */
847 	rcu_read_lock();
848 	for_each_process(p) {
849 		if (!process_shares_mm(p, mm))
850 			continue;
851 		if (same_thread_group(task, p))
852 			continue;
853 		ret = __task_will_free_mem(p);
854 		if (!ret)
855 			break;
856 	}
857 	rcu_read_unlock();
858 
859 	return ret;
860 }
861 
__oom_kill_process(struct task_struct * victim,const char * message)862 static void __oom_kill_process(struct task_struct *victim, const char *message)
863 {
864 	struct task_struct *p;
865 	struct mm_struct *mm;
866 	bool can_oom_reap = true;
867 
868 	p = find_lock_task_mm(victim);
869 	if (!p) {
870 		pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
871 			message, task_pid_nr(victim), victim->comm);
872 		put_task_struct(victim);
873 		return;
874 	} else if (victim != p) {
875 		get_task_struct(p);
876 		put_task_struct(victim);
877 		victim = p;
878 	}
879 
880 	/* Get a reference to safely compare mm after task_unlock(victim) */
881 	mm = victim->mm;
882 	mmgrab(mm);
883 
884 	/* Raise event before sending signal: task reaper must see this */
885 	count_vm_event(OOM_KILL);
886 	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
887 
888 	/*
889 	 * We should send SIGKILL before granting access to memory reserves
890 	 * in order to prevent the OOM victim from depleting the memory
891 	 * reserves from the user space under its control.
892 	 */
893 	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
894 	mark_oom_victim(victim);
895 	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
896 		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
897 		K(get_mm_counter(mm, MM_ANONPAGES)),
898 		K(get_mm_counter(mm, MM_FILEPAGES)),
899 		K(get_mm_counter(mm, MM_SHMEMPAGES)),
900 		from_kuid(&init_user_ns, task_uid(victim)),
901 		mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
902 	task_unlock(victim);
903 
904 	/*
905 	 * Kill all user processes sharing victim->mm in other thread groups, if
906 	 * any.  They don't get access to memory reserves, though, to avoid
907 	 * depletion of all memory.  This prevents mm->mmap_lock livelock when an
908 	 * oom killed thread cannot exit because it requires the semaphore and
909 	 * its contended by another thread trying to allocate memory itself.
910 	 * That thread will now get access to memory reserves since it has a
911 	 * pending fatal signal.
912 	 */
913 	rcu_read_lock();
914 	for_each_process(p) {
915 		if (!process_shares_mm(p, mm))
916 			continue;
917 		if (same_thread_group(p, victim))
918 			continue;
919 		if (is_global_init(p)) {
920 			can_oom_reap = false;
921 			set_bit(MMF_OOM_SKIP, &mm->flags);
922 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
923 					task_pid_nr(victim), victim->comm,
924 					task_pid_nr(p), p->comm);
925 			continue;
926 		}
927 		/*
928 		 * No kthread_use_mm() user needs to read from the userspace so
929 		 * we are ok to reap it.
930 		 */
931 		if (unlikely(p->flags & PF_KTHREAD))
932 			continue;
933 		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
934 	}
935 	rcu_read_unlock();
936 
937 	if (can_oom_reap)
938 		wake_oom_reaper(victim);
939 
940 	mmdrop(mm);
941 	put_task_struct(victim);
942 }
943 #undef K
944 
945 /*
946  * Kill provided task unless it's secured by setting
947  * oom_score_adj to OOM_SCORE_ADJ_MIN.
948  */
oom_kill_memcg_member(struct task_struct * task,void * message)949 static int oom_kill_memcg_member(struct task_struct *task, void *message)
950 {
951 	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
952 	    !is_global_init(task)) {
953 		get_task_struct(task);
954 		__oom_kill_process(task, message);
955 	}
956 	return 0;
957 }
958 
oom_kill_process(struct oom_control * oc,const char * message)959 static void oom_kill_process(struct oom_control *oc, const char *message)
960 {
961 	struct task_struct *victim = oc->chosen;
962 	struct mem_cgroup *oom_group;
963 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
964 					      DEFAULT_RATELIMIT_BURST);
965 
966 	/*
967 	 * If the task is already exiting, don't alarm the sysadmin or kill
968 	 * its children or threads, just give it access to memory reserves
969 	 * so it can die quickly
970 	 */
971 	task_lock(victim);
972 	if (task_will_free_mem(victim)) {
973 		mark_oom_victim(victim);
974 		wake_oom_reaper(victim);
975 		task_unlock(victim);
976 		put_task_struct(victim);
977 		return;
978 	}
979 	task_unlock(victim);
980 
981 	if (__ratelimit(&oom_rs))
982 		dump_header(oc, victim);
983 
984 	/*
985 	 * Do we need to kill the entire memory cgroup?
986 	 * Or even one of the ancestor memory cgroups?
987 	 * Check this out before killing the victim task.
988 	 */
989 	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
990 
991 	__oom_kill_process(victim, message);
992 
993 	/*
994 	 * If necessary, kill all tasks in the selected memory cgroup.
995 	 */
996 	if (oom_group) {
997 		mem_cgroup_print_oom_group(oom_group);
998 		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
999 				      (void *)message);
1000 		mem_cgroup_put(oom_group);
1001 	}
1002 }
1003 
1004 /*
1005  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1006  */
check_panic_on_oom(struct oom_control * oc)1007 static void check_panic_on_oom(struct oom_control *oc)
1008 {
1009 	if (likely(!sysctl_panic_on_oom))
1010 		return;
1011 	if (sysctl_panic_on_oom != 2) {
1012 		/*
1013 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1014 		 * does not panic for cpuset, mempolicy, or memcg allocation
1015 		 * failures.
1016 		 */
1017 		if (oc->constraint != CONSTRAINT_NONE)
1018 			return;
1019 	}
1020 	/* Do not panic for oom kills triggered by sysrq */
1021 	if (is_sysrq_oom(oc))
1022 		return;
1023 	dump_header(oc, NULL);
1024 	panic("Out of memory: %s panic_on_oom is enabled\n",
1025 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1026 }
1027 
1028 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1029 
register_oom_notifier(struct notifier_block * nb)1030 int register_oom_notifier(struct notifier_block *nb)
1031 {
1032 	return blocking_notifier_chain_register(&oom_notify_list, nb);
1033 }
1034 EXPORT_SYMBOL_GPL(register_oom_notifier);
1035 
unregister_oom_notifier(struct notifier_block * nb)1036 int unregister_oom_notifier(struct notifier_block *nb)
1037 {
1038 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1039 }
1040 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1041 
1042 /**
1043  * out_of_memory - kill the "best" process when we run out of memory
1044  * @oc: pointer to struct oom_control
1045  *
1046  * If we run out of memory, we have the choice between either
1047  * killing a random task (bad), letting the system crash (worse)
1048  * OR try to be smart about which process to kill. Note that we
1049  * don't have to be perfect here, we just have to be good.
1050  */
out_of_memory(struct oom_control * oc)1051 bool out_of_memory(struct oom_control *oc)
1052 {
1053 	unsigned long freed = 0;
1054 
1055 	if (oom_killer_disabled)
1056 		return false;
1057 
1058 	if (!is_memcg_oom(oc)) {
1059 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1060 		if (freed > 0)
1061 			/* Got some memory back in the last second. */
1062 			return true;
1063 	}
1064 
1065 	/*
1066 	 * If current has a pending SIGKILL or is exiting, then automatically
1067 	 * select it.  The goal is to allow it to allocate so that it may
1068 	 * quickly exit and free its memory.
1069 	 */
1070 	if (task_will_free_mem(current)) {
1071 		mark_oom_victim(current);
1072 		wake_oom_reaper(current);
1073 		return true;
1074 	}
1075 
1076 	/*
1077 	 * The OOM killer does not compensate for IO-less reclaim.
1078 	 * pagefault_out_of_memory lost its gfp context so we have to
1079 	 * make sure exclude 0 mask - all other users should have at least
1080 	 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1081 	 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1082 	 */
1083 	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1084 		return true;
1085 
1086 	/*
1087 	 * Check if there were limitations on the allocation (only relevant for
1088 	 * NUMA and memcg) that may require different handling.
1089 	 */
1090 	oc->constraint = constrained_alloc(oc);
1091 	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1092 		oc->nodemask = NULL;
1093 	check_panic_on_oom(oc);
1094 
1095 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1096 	    current->mm && !oom_unkillable_task(current) &&
1097 	    oom_cpuset_eligible(current, oc) &&
1098 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1099 		get_task_struct(current);
1100 		oc->chosen = current;
1101 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1102 		return true;
1103 	}
1104 
1105 	select_bad_process(oc);
1106 	/* Found nothing?!?! */
1107 	if (!oc->chosen) {
1108 		dump_header(oc, NULL);
1109 		pr_warn("Out of memory and no killable processes...\n");
1110 		/*
1111 		 * If we got here due to an actual allocation at the
1112 		 * system level, we cannot survive this and will enter
1113 		 * an endless loop in the allocator. Bail out now.
1114 		 */
1115 		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1116 			panic("System is deadlocked on memory\n");
1117 	}
1118 	if (oc->chosen && oc->chosen != (void *)-1UL)
1119 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1120 				 "Memory cgroup out of memory");
1121 	return !!oc->chosen;
1122 }
1123 
1124 /*
1125  * The pagefault handler calls here because some allocation has failed. We have
1126  * to take care of the memcg OOM here because this is the only safe context without
1127  * any locks held but let the oom killer triggered from the allocation context care
1128  * about the global OOM.
1129  */
pagefault_out_of_memory(void)1130 void pagefault_out_of_memory(void)
1131 {
1132 	static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1133 				      DEFAULT_RATELIMIT_BURST);
1134 
1135 	if (mem_cgroup_oom_synchronize(true))
1136 		return;
1137 
1138 	if (fatal_signal_pending(current))
1139 		return;
1140 
1141 	if (__ratelimit(&pfoom_rs))
1142 		pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1143 }
1144 
SYSCALL_DEFINE2(process_mrelease,int,pidfd,unsigned int,flags)1145 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1146 {
1147 #ifdef CONFIG_MMU
1148 	struct mm_struct *mm = NULL;
1149 	struct task_struct *task;
1150 	struct task_struct *p;
1151 	unsigned int f_flags;
1152 	bool reap = false;
1153 	long ret = 0;
1154 
1155 	if (flags)
1156 		return -EINVAL;
1157 
1158 	task = pidfd_get_task(pidfd, &f_flags);
1159 	if (IS_ERR(task))
1160 		return PTR_ERR(task);
1161 
1162 	/*
1163 	 * Make sure to choose a thread which still has a reference to mm
1164 	 * during the group exit
1165 	 */
1166 	p = find_lock_task_mm(task);
1167 	if (!p) {
1168 		ret = -ESRCH;
1169 		goto put_task;
1170 	}
1171 
1172 	if (mmget_not_zero(p->mm)) {
1173 		mm = p->mm;
1174 		if (task_will_free_mem(p))
1175 			reap = true;
1176 		else {
1177 			/* Error only if the work has not been done already */
1178 			if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1179 				ret = -EINVAL;
1180 		}
1181 	}
1182 	task_unlock(p);
1183 
1184 	if (!reap)
1185 		goto drop_mm;
1186 
1187 	if (mmap_read_lock_killable(mm)) {
1188 		ret = -EINTR;
1189 		goto drop_mm;
1190 	}
1191 	if (!__oom_reap_task_mm(mm))
1192 		ret = -EAGAIN;
1193 	mmap_read_unlock(mm);
1194 
1195 drop_mm:
1196 	if (mm)
1197 		mmput(mm);
1198 put_task:
1199 	put_task_struct(task);
1200 	return ret;
1201 #else
1202 	return -ENOSYS;
1203 #endif /* CONFIG_MMU */
1204 }
1205