1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 1993 Linus Torvalds
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
6 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
7 * Numa awareness, Christoph Lameter, SGI, June 2005
8 * Improving global KVA allocator, Uladzislau Rezki, Sony, May 2019
9 */
10
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/sched/signal.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/interrupt.h>
19 #include <linux/proc_fs.h>
20 #include <linux/seq_file.h>
21 #include <linux/set_memory.h>
22 #include <linux/debugobjects.h>
23 #include <linux/kallsyms.h>
24 #include <linux/list.h>
25 #include <linux/notifier.h>
26 #include <linux/rbtree.h>
27 #include <linux/xarray.h>
28 #include <linux/io.h>
29 #include <linux/rcupdate.h>
30 #include <linux/pfn.h>
31 #include <linux/kmemleak.h>
32 #include <linux/atomic.h>
33 #include <linux/compiler.h>
34 #include <linux/llist.h>
35 #include <linux/bitops.h>
36 #include <linux/rbtree_augmented.h>
37 #include <linux/overflow.h>
38 #include <linux/pgtable.h>
39 #include <linux/uaccess.h>
40 #include <linux/hugetlb.h>
41 #include <asm/tlbflush.h>
42 #include <asm/shmparam.h>
43
44 #include "internal.h"
45 #include "pgalloc-track.h"
46
47 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
48 static unsigned int __ro_after_init ioremap_max_page_shift = BITS_PER_LONG - 1;
49
set_nohugeiomap(char * str)50 static int __init set_nohugeiomap(char *str)
51 {
52 ioremap_max_page_shift = PAGE_SHIFT;
53 return 0;
54 }
55 early_param("nohugeiomap", set_nohugeiomap);
56 #else /* CONFIG_HAVE_ARCH_HUGE_VMAP */
57 static const unsigned int ioremap_max_page_shift = PAGE_SHIFT;
58 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
59
60 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
61 static bool __ro_after_init vmap_allow_huge = true;
62
set_nohugevmalloc(char * str)63 static int __init set_nohugevmalloc(char *str)
64 {
65 vmap_allow_huge = false;
66 return 0;
67 }
68 early_param("nohugevmalloc", set_nohugevmalloc);
69 #else /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
70 static const bool vmap_allow_huge = false;
71 #endif /* CONFIG_HAVE_ARCH_HUGE_VMALLOC */
72
is_vmalloc_addr(const void * x)73 bool is_vmalloc_addr(const void *x)
74 {
75 unsigned long addr = (unsigned long)x;
76
77 return addr >= VMALLOC_START && addr < VMALLOC_END;
78 }
79 EXPORT_SYMBOL(is_vmalloc_addr);
80
81 struct vfree_deferred {
82 struct llist_head list;
83 struct work_struct wq;
84 };
85 static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
86
87 static void __vunmap(const void *, int);
88
free_work(struct work_struct * w)89 static void free_work(struct work_struct *w)
90 {
91 struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
92 struct llist_node *t, *llnode;
93
94 llist_for_each_safe(llnode, t, llist_del_all(&p->list))
95 __vunmap((void *)llnode, 1);
96 }
97
98 /*** Page table manipulation functions ***/
vmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)99 static int vmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
100 phys_addr_t phys_addr, pgprot_t prot,
101 unsigned int max_page_shift, pgtbl_mod_mask *mask)
102 {
103 pte_t *pte;
104 u64 pfn;
105 unsigned long size = PAGE_SIZE;
106
107 pfn = phys_addr >> PAGE_SHIFT;
108 pte = pte_alloc_kernel_track(pmd, addr, mask);
109 if (!pte)
110 return -ENOMEM;
111 do {
112 BUG_ON(!pte_none(*pte));
113
114 #ifdef CONFIG_HUGETLB_PAGE
115 size = arch_vmap_pte_range_map_size(addr, end, pfn, max_page_shift);
116 if (size != PAGE_SIZE) {
117 pte_t entry = pfn_pte(pfn, prot);
118
119 entry = pte_mkhuge(entry);
120 entry = arch_make_huge_pte(entry, ilog2(size), 0);
121 set_huge_pte_at(&init_mm, addr, pte, entry);
122 pfn += PFN_DOWN(size);
123 continue;
124 }
125 #endif
126 set_pte_at(&init_mm, addr, pte, pfn_pte(pfn, prot));
127 pfn++;
128 } while (pte += PFN_DOWN(size), addr += size, addr != end);
129 *mask |= PGTBL_PTE_MODIFIED;
130 return 0;
131 }
132
vmap_try_huge_pmd(pmd_t * pmd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)133 static int vmap_try_huge_pmd(pmd_t *pmd, unsigned long addr, unsigned long end,
134 phys_addr_t phys_addr, pgprot_t prot,
135 unsigned int max_page_shift)
136 {
137 if (max_page_shift < PMD_SHIFT)
138 return 0;
139
140 if (!arch_vmap_pmd_supported(prot))
141 return 0;
142
143 if ((end - addr) != PMD_SIZE)
144 return 0;
145
146 if (!IS_ALIGNED(addr, PMD_SIZE))
147 return 0;
148
149 if (!IS_ALIGNED(phys_addr, PMD_SIZE))
150 return 0;
151
152 if (pmd_present(*pmd) && !pmd_free_pte_page(pmd, addr))
153 return 0;
154
155 return pmd_set_huge(pmd, phys_addr, prot);
156 }
157
vmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)158 static int vmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
159 phys_addr_t phys_addr, pgprot_t prot,
160 unsigned int max_page_shift, pgtbl_mod_mask *mask)
161 {
162 pmd_t *pmd;
163 unsigned long next;
164
165 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
166 if (!pmd)
167 return -ENOMEM;
168 do {
169 next = pmd_addr_end(addr, end);
170
171 if (vmap_try_huge_pmd(pmd, addr, next, phys_addr, prot,
172 max_page_shift)) {
173 *mask |= PGTBL_PMD_MODIFIED;
174 continue;
175 }
176
177 if (vmap_pte_range(pmd, addr, next, phys_addr, prot, max_page_shift, mask))
178 return -ENOMEM;
179 } while (pmd++, phys_addr += (next - addr), addr = next, addr != end);
180 return 0;
181 }
182
vmap_try_huge_pud(pud_t * pud,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)183 static int vmap_try_huge_pud(pud_t *pud, unsigned long addr, unsigned long end,
184 phys_addr_t phys_addr, pgprot_t prot,
185 unsigned int max_page_shift)
186 {
187 if (max_page_shift < PUD_SHIFT)
188 return 0;
189
190 if (!arch_vmap_pud_supported(prot))
191 return 0;
192
193 if ((end - addr) != PUD_SIZE)
194 return 0;
195
196 if (!IS_ALIGNED(addr, PUD_SIZE))
197 return 0;
198
199 if (!IS_ALIGNED(phys_addr, PUD_SIZE))
200 return 0;
201
202 if (pud_present(*pud) && !pud_free_pmd_page(pud, addr))
203 return 0;
204
205 return pud_set_huge(pud, phys_addr, prot);
206 }
207
vmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)208 static int vmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
209 phys_addr_t phys_addr, pgprot_t prot,
210 unsigned int max_page_shift, pgtbl_mod_mask *mask)
211 {
212 pud_t *pud;
213 unsigned long next;
214
215 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
216 if (!pud)
217 return -ENOMEM;
218 do {
219 next = pud_addr_end(addr, end);
220
221 if (vmap_try_huge_pud(pud, addr, next, phys_addr, prot,
222 max_page_shift)) {
223 *mask |= PGTBL_PUD_MODIFIED;
224 continue;
225 }
226
227 if (vmap_pmd_range(pud, addr, next, phys_addr, prot,
228 max_page_shift, mask))
229 return -ENOMEM;
230 } while (pud++, phys_addr += (next - addr), addr = next, addr != end);
231 return 0;
232 }
233
vmap_try_huge_p4d(p4d_t * p4d,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)234 static int vmap_try_huge_p4d(p4d_t *p4d, unsigned long addr, unsigned long end,
235 phys_addr_t phys_addr, pgprot_t prot,
236 unsigned int max_page_shift)
237 {
238 if (max_page_shift < P4D_SHIFT)
239 return 0;
240
241 if (!arch_vmap_p4d_supported(prot))
242 return 0;
243
244 if ((end - addr) != P4D_SIZE)
245 return 0;
246
247 if (!IS_ALIGNED(addr, P4D_SIZE))
248 return 0;
249
250 if (!IS_ALIGNED(phys_addr, P4D_SIZE))
251 return 0;
252
253 if (p4d_present(*p4d) && !p4d_free_pud_page(p4d, addr))
254 return 0;
255
256 return p4d_set_huge(p4d, phys_addr, prot);
257 }
258
vmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift,pgtbl_mod_mask * mask)259 static int vmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
260 phys_addr_t phys_addr, pgprot_t prot,
261 unsigned int max_page_shift, pgtbl_mod_mask *mask)
262 {
263 p4d_t *p4d;
264 unsigned long next;
265
266 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
267 if (!p4d)
268 return -ENOMEM;
269 do {
270 next = p4d_addr_end(addr, end);
271
272 if (vmap_try_huge_p4d(p4d, addr, next, phys_addr, prot,
273 max_page_shift)) {
274 *mask |= PGTBL_P4D_MODIFIED;
275 continue;
276 }
277
278 if (vmap_pud_range(p4d, addr, next, phys_addr, prot,
279 max_page_shift, mask))
280 return -ENOMEM;
281 } while (p4d++, phys_addr += (next - addr), addr = next, addr != end);
282 return 0;
283 }
284
vmap_range_noflush(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot,unsigned int max_page_shift)285 static int vmap_range_noflush(unsigned long addr, unsigned long end,
286 phys_addr_t phys_addr, pgprot_t prot,
287 unsigned int max_page_shift)
288 {
289 pgd_t *pgd;
290 unsigned long start;
291 unsigned long next;
292 int err;
293 pgtbl_mod_mask mask = 0;
294
295 might_sleep();
296 BUG_ON(addr >= end);
297
298 start = addr;
299 pgd = pgd_offset_k(addr);
300 do {
301 next = pgd_addr_end(addr, end);
302 err = vmap_p4d_range(pgd, addr, next, phys_addr, prot,
303 max_page_shift, &mask);
304 if (err)
305 break;
306 } while (pgd++, phys_addr += (next - addr), addr = next, addr != end);
307
308 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
309 arch_sync_kernel_mappings(start, end);
310
311 return err;
312 }
313
ioremap_page_range(unsigned long addr,unsigned long end,phys_addr_t phys_addr,pgprot_t prot)314 int ioremap_page_range(unsigned long addr, unsigned long end,
315 phys_addr_t phys_addr, pgprot_t prot)
316 {
317 int err;
318
319 err = vmap_range_noflush(addr, end, phys_addr, pgprot_nx(prot),
320 ioremap_max_page_shift);
321 flush_cache_vmap(addr, end);
322 return err;
323 }
324
vunmap_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)325 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
326 pgtbl_mod_mask *mask)
327 {
328 pte_t *pte;
329
330 pte = pte_offset_kernel(pmd, addr);
331 do {
332 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
333 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
334 } while (pte++, addr += PAGE_SIZE, addr != end);
335 *mask |= PGTBL_PTE_MODIFIED;
336 }
337
vunmap_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)338 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end,
339 pgtbl_mod_mask *mask)
340 {
341 pmd_t *pmd;
342 unsigned long next;
343 int cleared;
344
345 pmd = pmd_offset(pud, addr);
346 do {
347 next = pmd_addr_end(addr, end);
348
349 cleared = pmd_clear_huge(pmd);
350 if (cleared || pmd_bad(*pmd))
351 *mask |= PGTBL_PMD_MODIFIED;
352
353 if (cleared)
354 continue;
355 if (pmd_none_or_clear_bad(pmd))
356 continue;
357 vunmap_pte_range(pmd, addr, next, mask);
358
359 cond_resched();
360 } while (pmd++, addr = next, addr != end);
361 }
362
vunmap_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)363 static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end,
364 pgtbl_mod_mask *mask)
365 {
366 pud_t *pud;
367 unsigned long next;
368 int cleared;
369
370 pud = pud_offset(p4d, addr);
371 do {
372 next = pud_addr_end(addr, end);
373
374 cleared = pud_clear_huge(pud);
375 if (cleared || pud_bad(*pud))
376 *mask |= PGTBL_PUD_MODIFIED;
377
378 if (cleared)
379 continue;
380 if (pud_none_or_clear_bad(pud))
381 continue;
382 vunmap_pmd_range(pud, addr, next, mask);
383 } while (pud++, addr = next, addr != end);
384 }
385
vunmap_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgtbl_mod_mask * mask)386 static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end,
387 pgtbl_mod_mask *mask)
388 {
389 p4d_t *p4d;
390 unsigned long next;
391 int cleared;
392
393 p4d = p4d_offset(pgd, addr);
394 do {
395 next = p4d_addr_end(addr, end);
396
397 cleared = p4d_clear_huge(p4d);
398 if (cleared || p4d_bad(*p4d))
399 *mask |= PGTBL_P4D_MODIFIED;
400
401 if (cleared)
402 continue;
403 if (p4d_none_or_clear_bad(p4d))
404 continue;
405 vunmap_pud_range(p4d, addr, next, mask);
406 } while (p4d++, addr = next, addr != end);
407 }
408
409 /*
410 * vunmap_range_noflush is similar to vunmap_range, but does not
411 * flush caches or TLBs.
412 *
413 * The caller is responsible for calling flush_cache_vmap() before calling
414 * this function, and flush_tlb_kernel_range after it has returned
415 * successfully (and before the addresses are expected to cause a page fault
416 * or be re-mapped for something else, if TLB flushes are being delayed or
417 * coalesced).
418 *
419 * This is an internal function only. Do not use outside mm/.
420 */
vunmap_range_noflush(unsigned long start,unsigned long end)421 void vunmap_range_noflush(unsigned long start, unsigned long end)
422 {
423 unsigned long next;
424 pgd_t *pgd;
425 unsigned long addr = start;
426 pgtbl_mod_mask mask = 0;
427
428 BUG_ON(addr >= end);
429 pgd = pgd_offset_k(addr);
430 do {
431 next = pgd_addr_end(addr, end);
432 if (pgd_bad(*pgd))
433 mask |= PGTBL_PGD_MODIFIED;
434 if (pgd_none_or_clear_bad(pgd))
435 continue;
436 vunmap_p4d_range(pgd, addr, next, &mask);
437 } while (pgd++, addr = next, addr != end);
438
439 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
440 arch_sync_kernel_mappings(start, end);
441 }
442
443 /**
444 * vunmap_range - unmap kernel virtual addresses
445 * @addr: start of the VM area to unmap
446 * @end: end of the VM area to unmap (non-inclusive)
447 *
448 * Clears any present PTEs in the virtual address range, flushes TLBs and
449 * caches. Any subsequent access to the address before it has been re-mapped
450 * is a kernel bug.
451 */
vunmap_range(unsigned long addr,unsigned long end)452 void vunmap_range(unsigned long addr, unsigned long end)
453 {
454 flush_cache_vunmap(addr, end);
455 vunmap_range_noflush(addr, end);
456 flush_tlb_kernel_range(addr, end);
457 }
458
vmap_pages_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)459 static int vmap_pages_pte_range(pmd_t *pmd, unsigned long addr,
460 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
461 pgtbl_mod_mask *mask)
462 {
463 pte_t *pte;
464
465 /*
466 * nr is a running index into the array which helps higher level
467 * callers keep track of where we're up to.
468 */
469
470 pte = pte_alloc_kernel_track(pmd, addr, mask);
471 if (!pte)
472 return -ENOMEM;
473 do {
474 struct page *page = pages[*nr];
475
476 if (WARN_ON(!pte_none(*pte)))
477 return -EBUSY;
478 if (WARN_ON(!page))
479 return -ENOMEM;
480 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
481 (*nr)++;
482 } while (pte++, addr += PAGE_SIZE, addr != end);
483 *mask |= PGTBL_PTE_MODIFIED;
484 return 0;
485 }
486
vmap_pages_pmd_range(pud_t * pud,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)487 static int vmap_pages_pmd_range(pud_t *pud, unsigned long addr,
488 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
489 pgtbl_mod_mask *mask)
490 {
491 pmd_t *pmd;
492 unsigned long next;
493
494 pmd = pmd_alloc_track(&init_mm, pud, addr, mask);
495 if (!pmd)
496 return -ENOMEM;
497 do {
498 next = pmd_addr_end(addr, end);
499 if (vmap_pages_pte_range(pmd, addr, next, prot, pages, nr, mask))
500 return -ENOMEM;
501 } while (pmd++, addr = next, addr != end);
502 return 0;
503 }
504
vmap_pages_pud_range(p4d_t * p4d,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)505 static int vmap_pages_pud_range(p4d_t *p4d, unsigned long addr,
506 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
507 pgtbl_mod_mask *mask)
508 {
509 pud_t *pud;
510 unsigned long next;
511
512 pud = pud_alloc_track(&init_mm, p4d, addr, mask);
513 if (!pud)
514 return -ENOMEM;
515 do {
516 next = pud_addr_end(addr, end);
517 if (vmap_pages_pmd_range(pud, addr, next, prot, pages, nr, mask))
518 return -ENOMEM;
519 } while (pud++, addr = next, addr != end);
520 return 0;
521 }
522
vmap_pages_p4d_range(pgd_t * pgd,unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,int * nr,pgtbl_mod_mask * mask)523 static int vmap_pages_p4d_range(pgd_t *pgd, unsigned long addr,
524 unsigned long end, pgprot_t prot, struct page **pages, int *nr,
525 pgtbl_mod_mask *mask)
526 {
527 p4d_t *p4d;
528 unsigned long next;
529
530 p4d = p4d_alloc_track(&init_mm, pgd, addr, mask);
531 if (!p4d)
532 return -ENOMEM;
533 do {
534 next = p4d_addr_end(addr, end);
535 if (vmap_pages_pud_range(p4d, addr, next, prot, pages, nr, mask))
536 return -ENOMEM;
537 } while (p4d++, addr = next, addr != end);
538 return 0;
539 }
540
vmap_small_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages)541 static int vmap_small_pages_range_noflush(unsigned long addr, unsigned long end,
542 pgprot_t prot, struct page **pages)
543 {
544 unsigned long start = addr;
545 pgd_t *pgd;
546 unsigned long next;
547 int err = 0;
548 int nr = 0;
549 pgtbl_mod_mask mask = 0;
550
551 BUG_ON(addr >= end);
552 pgd = pgd_offset_k(addr);
553 do {
554 next = pgd_addr_end(addr, end);
555 if (pgd_bad(*pgd))
556 mask |= PGTBL_PGD_MODIFIED;
557 err = vmap_pages_p4d_range(pgd, addr, next, prot, pages, &nr, &mask);
558 if (err)
559 return err;
560 } while (pgd++, addr = next, addr != end);
561
562 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
563 arch_sync_kernel_mappings(start, end);
564
565 return 0;
566 }
567
568 /*
569 * vmap_pages_range_noflush is similar to vmap_pages_range, but does not
570 * flush caches.
571 *
572 * The caller is responsible for calling flush_cache_vmap() after this
573 * function returns successfully and before the addresses are accessed.
574 *
575 * This is an internal function only. Do not use outside mm/.
576 */
vmap_pages_range_noflush(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)577 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
578 pgprot_t prot, struct page **pages, unsigned int page_shift)
579 {
580 unsigned int i, nr = (end - addr) >> PAGE_SHIFT;
581
582 WARN_ON(page_shift < PAGE_SHIFT);
583
584 if (!IS_ENABLED(CONFIG_HAVE_ARCH_HUGE_VMALLOC) ||
585 page_shift == PAGE_SHIFT)
586 return vmap_small_pages_range_noflush(addr, end, prot, pages);
587
588 for (i = 0; i < nr; i += 1U << (page_shift - PAGE_SHIFT)) {
589 int err;
590
591 err = vmap_range_noflush(addr, addr + (1UL << page_shift),
592 __pa(page_address(pages[i])), prot,
593 page_shift);
594 if (err)
595 return err;
596
597 addr += 1UL << page_shift;
598 }
599
600 return 0;
601 }
602
603 /**
604 * vmap_pages_range - map pages to a kernel virtual address
605 * @addr: start of the VM area to map
606 * @end: end of the VM area to map (non-inclusive)
607 * @prot: page protection flags to use
608 * @pages: pages to map (always PAGE_SIZE pages)
609 * @page_shift: maximum shift that the pages may be mapped with, @pages must
610 * be aligned and contiguous up to at least this shift.
611 *
612 * RETURNS:
613 * 0 on success, -errno on failure.
614 */
vmap_pages_range(unsigned long addr,unsigned long end,pgprot_t prot,struct page ** pages,unsigned int page_shift)615 static int vmap_pages_range(unsigned long addr, unsigned long end,
616 pgprot_t prot, struct page **pages, unsigned int page_shift)
617 {
618 int err;
619
620 err = vmap_pages_range_noflush(addr, end, prot, pages, page_shift);
621 flush_cache_vmap(addr, end);
622 return err;
623 }
624
is_vmalloc_or_module_addr(const void * x)625 int is_vmalloc_or_module_addr(const void *x)
626 {
627 /*
628 * ARM, x86-64 and sparc64 put modules in a special place,
629 * and fall back on vmalloc() if that fails. Others
630 * just put it in the vmalloc space.
631 */
632 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
633 unsigned long addr = (unsigned long)x;
634 if (addr >= MODULES_VADDR && addr < MODULES_END)
635 return 1;
636 #endif
637 return is_vmalloc_addr(x);
638 }
639
640 /*
641 * Walk a vmap address to the struct page it maps. Huge vmap mappings will
642 * return the tail page that corresponds to the base page address, which
643 * matches small vmap mappings.
644 */
vmalloc_to_page(const void * vmalloc_addr)645 struct page *vmalloc_to_page(const void *vmalloc_addr)
646 {
647 unsigned long addr = (unsigned long) vmalloc_addr;
648 struct page *page = NULL;
649 pgd_t *pgd = pgd_offset_k(addr);
650 p4d_t *p4d;
651 pud_t *pud;
652 pmd_t *pmd;
653 pte_t *ptep, pte;
654
655 /*
656 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
657 * architectures that do not vmalloc module space
658 */
659 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
660
661 if (pgd_none(*pgd))
662 return NULL;
663 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
664 return NULL; /* XXX: no allowance for huge pgd */
665 if (WARN_ON_ONCE(pgd_bad(*pgd)))
666 return NULL;
667
668 p4d = p4d_offset(pgd, addr);
669 if (p4d_none(*p4d))
670 return NULL;
671 if (p4d_leaf(*p4d))
672 return p4d_page(*p4d) + ((addr & ~P4D_MASK) >> PAGE_SHIFT);
673 if (WARN_ON_ONCE(p4d_bad(*p4d)))
674 return NULL;
675
676 pud = pud_offset(p4d, addr);
677 if (pud_none(*pud))
678 return NULL;
679 if (pud_leaf(*pud))
680 return pud_page(*pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
681 if (WARN_ON_ONCE(pud_bad(*pud)))
682 return NULL;
683
684 pmd = pmd_offset(pud, addr);
685 if (pmd_none(*pmd))
686 return NULL;
687 if (pmd_leaf(*pmd))
688 return pmd_page(*pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
689 if (WARN_ON_ONCE(pmd_bad(*pmd)))
690 return NULL;
691
692 ptep = pte_offset_map(pmd, addr);
693 pte = *ptep;
694 if (pte_present(pte))
695 page = pte_page(pte);
696 pte_unmap(ptep);
697
698 return page;
699 }
700 EXPORT_SYMBOL(vmalloc_to_page);
701
702 /*
703 * Map a vmalloc()-space virtual address to the physical page frame number.
704 */
vmalloc_to_pfn(const void * vmalloc_addr)705 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
706 {
707 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
708 }
709 EXPORT_SYMBOL(vmalloc_to_pfn);
710
711
712 /*** Global kva allocator ***/
713
714 #define DEBUG_AUGMENT_PROPAGATE_CHECK 0
715 #define DEBUG_AUGMENT_LOWEST_MATCH_CHECK 0
716
717
718 static DEFINE_SPINLOCK(vmap_area_lock);
719 static DEFINE_SPINLOCK(free_vmap_area_lock);
720 /* Export for kexec only */
721 LIST_HEAD(vmap_area_list);
722 static struct rb_root vmap_area_root = RB_ROOT;
723 static bool vmap_initialized __read_mostly;
724
725 static struct rb_root purge_vmap_area_root = RB_ROOT;
726 static LIST_HEAD(purge_vmap_area_list);
727 static DEFINE_SPINLOCK(purge_vmap_area_lock);
728
729 /*
730 * This kmem_cache is used for vmap_area objects. Instead of
731 * allocating from slab we reuse an object from this cache to
732 * make things faster. Especially in "no edge" splitting of
733 * free block.
734 */
735 static struct kmem_cache *vmap_area_cachep;
736
737 /*
738 * This linked list is used in pair with free_vmap_area_root.
739 * It gives O(1) access to prev/next to perform fast coalescing.
740 */
741 static LIST_HEAD(free_vmap_area_list);
742
743 /*
744 * This augment red-black tree represents the free vmap space.
745 * All vmap_area objects in this tree are sorted by va->va_start
746 * address. It is used for allocation and merging when a vmap
747 * object is released.
748 *
749 * Each vmap_area node contains a maximum available free block
750 * of its sub-tree, right or left. Therefore it is possible to
751 * find a lowest match of free area.
752 */
753 static struct rb_root free_vmap_area_root = RB_ROOT;
754
755 /*
756 * Preload a CPU with one object for "no edge" split case. The
757 * aim is to get rid of allocations from the atomic context, thus
758 * to use more permissive allocation masks.
759 */
760 static DEFINE_PER_CPU(struct vmap_area *, ne_fit_preload_node);
761
762 static __always_inline unsigned long
va_size(struct vmap_area * va)763 va_size(struct vmap_area *va)
764 {
765 return (va->va_end - va->va_start);
766 }
767
768 static __always_inline unsigned long
get_subtree_max_size(struct rb_node * node)769 get_subtree_max_size(struct rb_node *node)
770 {
771 struct vmap_area *va;
772
773 va = rb_entry_safe(node, struct vmap_area, rb_node);
774 return va ? va->subtree_max_size : 0;
775 }
776
777 /*
778 * Gets called when remove the node and rotate.
779 */
780 static __always_inline unsigned long
compute_subtree_max_size(struct vmap_area * va)781 compute_subtree_max_size(struct vmap_area *va)
782 {
783 return max3(va_size(va),
784 get_subtree_max_size(va->rb_node.rb_left),
785 get_subtree_max_size(va->rb_node.rb_right));
786 }
787
788 RB_DECLARE_CALLBACKS_MAX(static, free_vmap_area_rb_augment_cb,
789 struct vmap_area, rb_node, unsigned long, subtree_max_size, va_size)
790
791 static void purge_vmap_area_lazy(void);
792 static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
793 static unsigned long lazy_max_pages(void);
794
795 static atomic_long_t nr_vmalloc_pages;
796
vmalloc_nr_pages(void)797 unsigned long vmalloc_nr_pages(void)
798 {
799 return atomic_long_read(&nr_vmalloc_pages);
800 }
801
find_vmap_area_exceed_addr(unsigned long addr)802 static struct vmap_area *find_vmap_area_exceed_addr(unsigned long addr)
803 {
804 struct vmap_area *va = NULL;
805 struct rb_node *n = vmap_area_root.rb_node;
806
807 while (n) {
808 struct vmap_area *tmp;
809
810 tmp = rb_entry(n, struct vmap_area, rb_node);
811 if (tmp->va_end > addr) {
812 va = tmp;
813 if (tmp->va_start <= addr)
814 break;
815
816 n = n->rb_left;
817 } else
818 n = n->rb_right;
819 }
820
821 return va;
822 }
823
__find_vmap_area(unsigned long addr)824 static struct vmap_area *__find_vmap_area(unsigned long addr)
825 {
826 struct rb_node *n = vmap_area_root.rb_node;
827
828 while (n) {
829 struct vmap_area *va;
830
831 va = rb_entry(n, struct vmap_area, rb_node);
832 if (addr < va->va_start)
833 n = n->rb_left;
834 else if (addr >= va->va_end)
835 n = n->rb_right;
836 else
837 return va;
838 }
839
840 return NULL;
841 }
842
843 /*
844 * This function returns back addresses of parent node
845 * and its left or right link for further processing.
846 *
847 * Otherwise NULL is returned. In that case all further
848 * steps regarding inserting of conflicting overlap range
849 * have to be declined and actually considered as a bug.
850 */
851 static __always_inline struct rb_node **
find_va_links(struct vmap_area * va,struct rb_root * root,struct rb_node * from,struct rb_node ** parent)852 find_va_links(struct vmap_area *va,
853 struct rb_root *root, struct rb_node *from,
854 struct rb_node **parent)
855 {
856 struct vmap_area *tmp_va;
857 struct rb_node **link;
858
859 if (root) {
860 link = &root->rb_node;
861 if (unlikely(!*link)) {
862 *parent = NULL;
863 return link;
864 }
865 } else {
866 link = &from;
867 }
868
869 /*
870 * Go to the bottom of the tree. When we hit the last point
871 * we end up with parent rb_node and correct direction, i name
872 * it link, where the new va->rb_node will be attached to.
873 */
874 do {
875 tmp_va = rb_entry(*link, struct vmap_area, rb_node);
876
877 /*
878 * During the traversal we also do some sanity check.
879 * Trigger the BUG() if there are sides(left/right)
880 * or full overlaps.
881 */
882 if (va->va_start < tmp_va->va_end &&
883 va->va_end <= tmp_va->va_start)
884 link = &(*link)->rb_left;
885 else if (va->va_end > tmp_va->va_start &&
886 va->va_start >= tmp_va->va_end)
887 link = &(*link)->rb_right;
888 else {
889 WARN(1, "vmalloc bug: 0x%lx-0x%lx overlaps with 0x%lx-0x%lx\n",
890 va->va_start, va->va_end, tmp_va->va_start, tmp_va->va_end);
891
892 return NULL;
893 }
894 } while (*link);
895
896 *parent = &tmp_va->rb_node;
897 return link;
898 }
899
900 static __always_inline struct list_head *
get_va_next_sibling(struct rb_node * parent,struct rb_node ** link)901 get_va_next_sibling(struct rb_node *parent, struct rb_node **link)
902 {
903 struct list_head *list;
904
905 if (unlikely(!parent))
906 /*
907 * The red-black tree where we try to find VA neighbors
908 * before merging or inserting is empty, i.e. it means
909 * there is no free vmap space. Normally it does not
910 * happen but we handle this case anyway.
911 */
912 return NULL;
913
914 list = &rb_entry(parent, struct vmap_area, rb_node)->list;
915 return (&parent->rb_right == link ? list->next : list);
916 }
917
918 static __always_inline void
link_va(struct vmap_area * va,struct rb_root * root,struct rb_node * parent,struct rb_node ** link,struct list_head * head)919 link_va(struct vmap_area *va, struct rb_root *root,
920 struct rb_node *parent, struct rb_node **link, struct list_head *head)
921 {
922 /*
923 * VA is still not in the list, but we can
924 * identify its future previous list_head node.
925 */
926 if (likely(parent)) {
927 head = &rb_entry(parent, struct vmap_area, rb_node)->list;
928 if (&parent->rb_right != link)
929 head = head->prev;
930 }
931
932 /* Insert to the rb-tree */
933 rb_link_node(&va->rb_node, parent, link);
934 if (root == &free_vmap_area_root) {
935 /*
936 * Some explanation here. Just perform simple insertion
937 * to the tree. We do not set va->subtree_max_size to
938 * its current size before calling rb_insert_augmented().
939 * It is because of we populate the tree from the bottom
940 * to parent levels when the node _is_ in the tree.
941 *
942 * Therefore we set subtree_max_size to zero after insertion,
943 * to let __augment_tree_propagate_from() puts everything to
944 * the correct order later on.
945 */
946 rb_insert_augmented(&va->rb_node,
947 root, &free_vmap_area_rb_augment_cb);
948 va->subtree_max_size = 0;
949 } else {
950 rb_insert_color(&va->rb_node, root);
951 }
952
953 /* Address-sort this list */
954 list_add(&va->list, head);
955 }
956
957 static __always_inline void
unlink_va(struct vmap_area * va,struct rb_root * root)958 unlink_va(struct vmap_area *va, struct rb_root *root)
959 {
960 if (WARN_ON(RB_EMPTY_NODE(&va->rb_node)))
961 return;
962
963 if (root == &free_vmap_area_root)
964 rb_erase_augmented(&va->rb_node,
965 root, &free_vmap_area_rb_augment_cb);
966 else
967 rb_erase(&va->rb_node, root);
968
969 list_del(&va->list);
970 RB_CLEAR_NODE(&va->rb_node);
971 }
972
973 #if DEBUG_AUGMENT_PROPAGATE_CHECK
974 static void
augment_tree_propagate_check(void)975 augment_tree_propagate_check(void)
976 {
977 struct vmap_area *va;
978 unsigned long computed_size;
979
980 list_for_each_entry(va, &free_vmap_area_list, list) {
981 computed_size = compute_subtree_max_size(va);
982 if (computed_size != va->subtree_max_size)
983 pr_emerg("tree is corrupted: %lu, %lu\n",
984 va_size(va), va->subtree_max_size);
985 }
986 }
987 #endif
988
989 /*
990 * This function populates subtree_max_size from bottom to upper
991 * levels starting from VA point. The propagation must be done
992 * when VA size is modified by changing its va_start/va_end. Or
993 * in case of newly inserting of VA to the tree.
994 *
995 * It means that __augment_tree_propagate_from() must be called:
996 * - After VA has been inserted to the tree(free path);
997 * - After VA has been shrunk(allocation path);
998 * - After VA has been increased(merging path).
999 *
1000 * Please note that, it does not mean that upper parent nodes
1001 * and their subtree_max_size are recalculated all the time up
1002 * to the root node.
1003 *
1004 * 4--8
1005 * /\
1006 * / \
1007 * / \
1008 * 2--2 8--8
1009 *
1010 * For example if we modify the node 4, shrinking it to 2, then
1011 * no any modification is required. If we shrink the node 2 to 1
1012 * its subtree_max_size is updated only, and set to 1. If we shrink
1013 * the node 8 to 6, then its subtree_max_size is set to 6 and parent
1014 * node becomes 4--6.
1015 */
1016 static __always_inline void
augment_tree_propagate_from(struct vmap_area * va)1017 augment_tree_propagate_from(struct vmap_area *va)
1018 {
1019 /*
1020 * Populate the tree from bottom towards the root until
1021 * the calculated maximum available size of checked node
1022 * is equal to its current one.
1023 */
1024 free_vmap_area_rb_augment_cb_propagate(&va->rb_node, NULL);
1025
1026 #if DEBUG_AUGMENT_PROPAGATE_CHECK
1027 augment_tree_propagate_check();
1028 #endif
1029 }
1030
1031 static void
insert_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1032 insert_vmap_area(struct vmap_area *va,
1033 struct rb_root *root, struct list_head *head)
1034 {
1035 struct rb_node **link;
1036 struct rb_node *parent;
1037
1038 link = find_va_links(va, root, NULL, &parent);
1039 if (link)
1040 link_va(va, root, parent, link, head);
1041 }
1042
1043 static void
insert_vmap_area_augment(struct vmap_area * va,struct rb_node * from,struct rb_root * root,struct list_head * head)1044 insert_vmap_area_augment(struct vmap_area *va,
1045 struct rb_node *from, struct rb_root *root,
1046 struct list_head *head)
1047 {
1048 struct rb_node **link;
1049 struct rb_node *parent;
1050
1051 if (from)
1052 link = find_va_links(va, NULL, from, &parent);
1053 else
1054 link = find_va_links(va, root, NULL, &parent);
1055
1056 if (link) {
1057 link_va(va, root, parent, link, head);
1058 augment_tree_propagate_from(va);
1059 }
1060 }
1061
1062 /*
1063 * Merge de-allocated chunk of VA memory with previous
1064 * and next free blocks. If coalesce is not done a new
1065 * free area is inserted. If VA has been merged, it is
1066 * freed.
1067 *
1068 * Please note, it can return NULL in case of overlap
1069 * ranges, followed by WARN() report. Despite it is a
1070 * buggy behaviour, a system can be alive and keep
1071 * ongoing.
1072 */
1073 static __always_inline struct vmap_area *
merge_or_add_vmap_area(struct vmap_area * va,struct rb_root * root,struct list_head * head)1074 merge_or_add_vmap_area(struct vmap_area *va,
1075 struct rb_root *root, struct list_head *head)
1076 {
1077 struct vmap_area *sibling;
1078 struct list_head *next;
1079 struct rb_node **link;
1080 struct rb_node *parent;
1081 bool merged = false;
1082
1083 /*
1084 * Find a place in the tree where VA potentially will be
1085 * inserted, unless it is merged with its sibling/siblings.
1086 */
1087 link = find_va_links(va, root, NULL, &parent);
1088 if (!link)
1089 return NULL;
1090
1091 /*
1092 * Get next node of VA to check if merging can be done.
1093 */
1094 next = get_va_next_sibling(parent, link);
1095 if (unlikely(next == NULL))
1096 goto insert;
1097
1098 /*
1099 * start end
1100 * | |
1101 * |<------VA------>|<-----Next----->|
1102 * | |
1103 * start end
1104 */
1105 if (next != head) {
1106 sibling = list_entry(next, struct vmap_area, list);
1107 if (sibling->va_start == va->va_end) {
1108 sibling->va_start = va->va_start;
1109
1110 /* Free vmap_area object. */
1111 kmem_cache_free(vmap_area_cachep, va);
1112
1113 /* Point to the new merged area. */
1114 va = sibling;
1115 merged = true;
1116 }
1117 }
1118
1119 /*
1120 * start end
1121 * | |
1122 * |<-----Prev----->|<------VA------>|
1123 * | |
1124 * start end
1125 */
1126 if (next->prev != head) {
1127 sibling = list_entry(next->prev, struct vmap_area, list);
1128 if (sibling->va_end == va->va_start) {
1129 /*
1130 * If both neighbors are coalesced, it is important
1131 * to unlink the "next" node first, followed by merging
1132 * with "previous" one. Otherwise the tree might not be
1133 * fully populated if a sibling's augmented value is
1134 * "normalized" because of rotation operations.
1135 */
1136 if (merged)
1137 unlink_va(va, root);
1138
1139 sibling->va_end = va->va_end;
1140
1141 /* Free vmap_area object. */
1142 kmem_cache_free(vmap_area_cachep, va);
1143
1144 /* Point to the new merged area. */
1145 va = sibling;
1146 merged = true;
1147 }
1148 }
1149
1150 insert:
1151 if (!merged)
1152 link_va(va, root, parent, link, head);
1153
1154 return va;
1155 }
1156
1157 static __always_inline struct vmap_area *
merge_or_add_vmap_area_augment(struct vmap_area * va,struct rb_root * root,struct list_head * head)1158 merge_or_add_vmap_area_augment(struct vmap_area *va,
1159 struct rb_root *root, struct list_head *head)
1160 {
1161 va = merge_or_add_vmap_area(va, root, head);
1162 if (va)
1163 augment_tree_propagate_from(va);
1164
1165 return va;
1166 }
1167
1168 static __always_inline bool
is_within_this_va(struct vmap_area * va,unsigned long size,unsigned long align,unsigned long vstart)1169 is_within_this_va(struct vmap_area *va, unsigned long size,
1170 unsigned long align, unsigned long vstart)
1171 {
1172 unsigned long nva_start_addr;
1173
1174 if (va->va_start > vstart)
1175 nva_start_addr = ALIGN(va->va_start, align);
1176 else
1177 nva_start_addr = ALIGN(vstart, align);
1178
1179 /* Can be overflowed due to big size or alignment. */
1180 if (nva_start_addr + size < nva_start_addr ||
1181 nva_start_addr < vstart)
1182 return false;
1183
1184 return (nva_start_addr + size <= va->va_end);
1185 }
1186
1187 /*
1188 * Find the first free block(lowest start address) in the tree,
1189 * that will accomplish the request corresponding to passing
1190 * parameters.
1191 */
1192 static __always_inline struct vmap_area *
find_vmap_lowest_match(unsigned long size,unsigned long align,unsigned long vstart)1193 find_vmap_lowest_match(unsigned long size,
1194 unsigned long align, unsigned long vstart)
1195 {
1196 struct vmap_area *va;
1197 struct rb_node *node;
1198
1199 /* Start from the root. */
1200 node = free_vmap_area_root.rb_node;
1201
1202 while (node) {
1203 va = rb_entry(node, struct vmap_area, rb_node);
1204
1205 if (get_subtree_max_size(node->rb_left) >= size &&
1206 vstart < va->va_start) {
1207 node = node->rb_left;
1208 } else {
1209 if (is_within_this_va(va, size, align, vstart))
1210 return va;
1211
1212 /*
1213 * Does not make sense to go deeper towards the right
1214 * sub-tree if it does not have a free block that is
1215 * equal or bigger to the requested search size.
1216 */
1217 if (get_subtree_max_size(node->rb_right) >= size) {
1218 node = node->rb_right;
1219 continue;
1220 }
1221
1222 /*
1223 * OK. We roll back and find the first right sub-tree,
1224 * that will satisfy the search criteria. It can happen
1225 * due to "vstart" restriction or an alignment overhead
1226 * that is bigger then PAGE_SIZE.
1227 */
1228 while ((node = rb_parent(node))) {
1229 va = rb_entry(node, struct vmap_area, rb_node);
1230 if (is_within_this_va(va, size, align, vstart))
1231 return va;
1232
1233 if (get_subtree_max_size(node->rb_right) >= size &&
1234 vstart <= va->va_start) {
1235 /*
1236 * Shift the vstart forward. Please note, we update it with
1237 * parent's start address adding "1" because we do not want
1238 * to enter same sub-tree after it has already been checked
1239 * and no suitable free block found there.
1240 */
1241 vstart = va->va_start + 1;
1242 node = node->rb_right;
1243 break;
1244 }
1245 }
1246 }
1247 }
1248
1249 return NULL;
1250 }
1251
1252 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1253 #include <linux/random.h>
1254
1255 static struct vmap_area *
find_vmap_lowest_linear_match(unsigned long size,unsigned long align,unsigned long vstart)1256 find_vmap_lowest_linear_match(unsigned long size,
1257 unsigned long align, unsigned long vstart)
1258 {
1259 struct vmap_area *va;
1260
1261 list_for_each_entry(va, &free_vmap_area_list, list) {
1262 if (!is_within_this_va(va, size, align, vstart))
1263 continue;
1264
1265 return va;
1266 }
1267
1268 return NULL;
1269 }
1270
1271 static void
find_vmap_lowest_match_check(unsigned long size,unsigned long align)1272 find_vmap_lowest_match_check(unsigned long size, unsigned long align)
1273 {
1274 struct vmap_area *va_1, *va_2;
1275 unsigned long vstart;
1276 unsigned int rnd;
1277
1278 get_random_bytes(&rnd, sizeof(rnd));
1279 vstart = VMALLOC_START + rnd;
1280
1281 va_1 = find_vmap_lowest_match(size, align, vstart);
1282 va_2 = find_vmap_lowest_linear_match(size, align, vstart);
1283
1284 if (va_1 != va_2)
1285 pr_emerg("not lowest: t: 0x%p, l: 0x%p, v: 0x%lx\n",
1286 va_1, va_2, vstart);
1287 }
1288 #endif
1289
1290 enum fit_type {
1291 NOTHING_FIT = 0,
1292 FL_FIT_TYPE = 1, /* full fit */
1293 LE_FIT_TYPE = 2, /* left edge fit */
1294 RE_FIT_TYPE = 3, /* right edge fit */
1295 NE_FIT_TYPE = 4 /* no edge fit */
1296 };
1297
1298 static __always_inline enum fit_type
classify_va_fit_type(struct vmap_area * va,unsigned long nva_start_addr,unsigned long size)1299 classify_va_fit_type(struct vmap_area *va,
1300 unsigned long nva_start_addr, unsigned long size)
1301 {
1302 enum fit_type type;
1303
1304 /* Check if it is within VA. */
1305 if (nva_start_addr < va->va_start ||
1306 nva_start_addr + size > va->va_end)
1307 return NOTHING_FIT;
1308
1309 /* Now classify. */
1310 if (va->va_start == nva_start_addr) {
1311 if (va->va_end == nva_start_addr + size)
1312 type = FL_FIT_TYPE;
1313 else
1314 type = LE_FIT_TYPE;
1315 } else if (va->va_end == nva_start_addr + size) {
1316 type = RE_FIT_TYPE;
1317 } else {
1318 type = NE_FIT_TYPE;
1319 }
1320
1321 return type;
1322 }
1323
1324 static __always_inline int
adjust_va_to_fit_type(struct vmap_area * va,unsigned long nva_start_addr,unsigned long size,enum fit_type type)1325 adjust_va_to_fit_type(struct vmap_area *va,
1326 unsigned long nva_start_addr, unsigned long size,
1327 enum fit_type type)
1328 {
1329 struct vmap_area *lva = NULL;
1330
1331 if (type == FL_FIT_TYPE) {
1332 /*
1333 * No need to split VA, it fully fits.
1334 *
1335 * | |
1336 * V NVA V
1337 * |---------------|
1338 */
1339 unlink_va(va, &free_vmap_area_root);
1340 kmem_cache_free(vmap_area_cachep, va);
1341 } else if (type == LE_FIT_TYPE) {
1342 /*
1343 * Split left edge of fit VA.
1344 *
1345 * | |
1346 * V NVA V R
1347 * |-------|-------|
1348 */
1349 va->va_start += size;
1350 } else if (type == RE_FIT_TYPE) {
1351 /*
1352 * Split right edge of fit VA.
1353 *
1354 * | |
1355 * L V NVA V
1356 * |-------|-------|
1357 */
1358 va->va_end = nva_start_addr;
1359 } else if (type == NE_FIT_TYPE) {
1360 /*
1361 * Split no edge of fit VA.
1362 *
1363 * | |
1364 * L V NVA V R
1365 * |---|-------|---|
1366 */
1367 lva = __this_cpu_xchg(ne_fit_preload_node, NULL);
1368 if (unlikely(!lva)) {
1369 /*
1370 * For percpu allocator we do not do any pre-allocation
1371 * and leave it as it is. The reason is it most likely
1372 * never ends up with NE_FIT_TYPE splitting. In case of
1373 * percpu allocations offsets and sizes are aligned to
1374 * fixed align request, i.e. RE_FIT_TYPE and FL_FIT_TYPE
1375 * are its main fitting cases.
1376 *
1377 * There are a few exceptions though, as an example it is
1378 * a first allocation (early boot up) when we have "one"
1379 * big free space that has to be split.
1380 *
1381 * Also we can hit this path in case of regular "vmap"
1382 * allocations, if "this" current CPU was not preloaded.
1383 * See the comment in alloc_vmap_area() why. If so, then
1384 * GFP_NOWAIT is used instead to get an extra object for
1385 * split purpose. That is rare and most time does not
1386 * occur.
1387 *
1388 * What happens if an allocation gets failed. Basically,
1389 * an "overflow" path is triggered to purge lazily freed
1390 * areas to free some memory, then, the "retry" path is
1391 * triggered to repeat one more time. See more details
1392 * in alloc_vmap_area() function.
1393 */
1394 lva = kmem_cache_alloc(vmap_area_cachep, GFP_NOWAIT);
1395 if (!lva)
1396 return -1;
1397 }
1398
1399 /*
1400 * Build the remainder.
1401 */
1402 lva->va_start = va->va_start;
1403 lva->va_end = nva_start_addr;
1404
1405 /*
1406 * Shrink this VA to remaining size.
1407 */
1408 va->va_start = nva_start_addr + size;
1409 } else {
1410 return -1;
1411 }
1412
1413 if (type != FL_FIT_TYPE) {
1414 augment_tree_propagate_from(va);
1415
1416 if (lva) /* type == NE_FIT_TYPE */
1417 insert_vmap_area_augment(lva, &va->rb_node,
1418 &free_vmap_area_root, &free_vmap_area_list);
1419 }
1420
1421 return 0;
1422 }
1423
1424 /*
1425 * Returns a start address of the newly allocated area, if success.
1426 * Otherwise a vend is returned that indicates failure.
1427 */
1428 static __always_inline unsigned long
__alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend)1429 __alloc_vmap_area(unsigned long size, unsigned long align,
1430 unsigned long vstart, unsigned long vend)
1431 {
1432 unsigned long nva_start_addr;
1433 struct vmap_area *va;
1434 enum fit_type type;
1435 int ret;
1436
1437 va = find_vmap_lowest_match(size, align, vstart);
1438 if (unlikely(!va))
1439 return vend;
1440
1441 if (va->va_start > vstart)
1442 nva_start_addr = ALIGN(va->va_start, align);
1443 else
1444 nva_start_addr = ALIGN(vstart, align);
1445
1446 /* Check the "vend" restriction. */
1447 if (nva_start_addr + size > vend)
1448 return vend;
1449
1450 /* Classify what we have found. */
1451 type = classify_va_fit_type(va, nva_start_addr, size);
1452 if (WARN_ON_ONCE(type == NOTHING_FIT))
1453 return vend;
1454
1455 /* Update the free vmap_area. */
1456 ret = adjust_va_to_fit_type(va, nva_start_addr, size, type);
1457 if (ret)
1458 return vend;
1459
1460 #if DEBUG_AUGMENT_LOWEST_MATCH_CHECK
1461 find_vmap_lowest_match_check(size, align);
1462 #endif
1463
1464 return nva_start_addr;
1465 }
1466
1467 /*
1468 * Free a region of KVA allocated by alloc_vmap_area
1469 */
free_vmap_area(struct vmap_area * va)1470 static void free_vmap_area(struct vmap_area *va)
1471 {
1472 /*
1473 * Remove from the busy tree/list.
1474 */
1475 spin_lock(&vmap_area_lock);
1476 unlink_va(va, &vmap_area_root);
1477 spin_unlock(&vmap_area_lock);
1478
1479 /*
1480 * Insert/Merge it back to the free tree/list.
1481 */
1482 spin_lock(&free_vmap_area_lock);
1483 merge_or_add_vmap_area_augment(va, &free_vmap_area_root, &free_vmap_area_list);
1484 spin_unlock(&free_vmap_area_lock);
1485 }
1486
1487 static inline void
preload_this_cpu_lock(spinlock_t * lock,gfp_t gfp_mask,int node)1488 preload_this_cpu_lock(spinlock_t *lock, gfp_t gfp_mask, int node)
1489 {
1490 struct vmap_area *va = NULL;
1491
1492 /*
1493 * Preload this CPU with one extra vmap_area object. It is used
1494 * when fit type of free area is NE_FIT_TYPE. It guarantees that
1495 * a CPU that does an allocation is preloaded.
1496 *
1497 * We do it in non-atomic context, thus it allows us to use more
1498 * permissive allocation masks to be more stable under low memory
1499 * condition and high memory pressure.
1500 */
1501 if (!this_cpu_read(ne_fit_preload_node))
1502 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1503
1504 spin_lock(lock);
1505
1506 if (va && __this_cpu_cmpxchg(ne_fit_preload_node, NULL, va))
1507 kmem_cache_free(vmap_area_cachep, va);
1508 }
1509
1510 /*
1511 * Allocate a region of KVA of the specified size and alignment, within the
1512 * vstart and vend.
1513 */
alloc_vmap_area(unsigned long size,unsigned long align,unsigned long vstart,unsigned long vend,int node,gfp_t gfp_mask)1514 static struct vmap_area *alloc_vmap_area(unsigned long size,
1515 unsigned long align,
1516 unsigned long vstart, unsigned long vend,
1517 int node, gfp_t gfp_mask)
1518 {
1519 struct vmap_area *va;
1520 unsigned long freed;
1521 unsigned long addr;
1522 int purged = 0;
1523 int ret;
1524
1525 BUG_ON(!size);
1526 BUG_ON(offset_in_page(size));
1527 BUG_ON(!is_power_of_2(align));
1528
1529 if (unlikely(!vmap_initialized))
1530 return ERR_PTR(-EBUSY);
1531
1532 might_sleep();
1533 gfp_mask = gfp_mask & GFP_RECLAIM_MASK;
1534
1535 va = kmem_cache_alloc_node(vmap_area_cachep, gfp_mask, node);
1536 if (unlikely(!va))
1537 return ERR_PTR(-ENOMEM);
1538
1539 /*
1540 * Only scan the relevant parts containing pointers to other objects
1541 * to avoid false negatives.
1542 */
1543 kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask);
1544
1545 retry:
1546 preload_this_cpu_lock(&free_vmap_area_lock, gfp_mask, node);
1547 addr = __alloc_vmap_area(size, align, vstart, vend);
1548 spin_unlock(&free_vmap_area_lock);
1549
1550 /*
1551 * If an allocation fails, the "vend" address is
1552 * returned. Therefore trigger the overflow path.
1553 */
1554 if (unlikely(addr == vend))
1555 goto overflow;
1556
1557 va->va_start = addr;
1558 va->va_end = addr + size;
1559 va->vm = NULL;
1560
1561 spin_lock(&vmap_area_lock);
1562 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
1563 spin_unlock(&vmap_area_lock);
1564
1565 BUG_ON(!IS_ALIGNED(va->va_start, align));
1566 BUG_ON(va->va_start < vstart);
1567 BUG_ON(va->va_end > vend);
1568
1569 ret = kasan_populate_vmalloc(addr, size);
1570 if (ret) {
1571 free_vmap_area(va);
1572 return ERR_PTR(ret);
1573 }
1574
1575 return va;
1576
1577 overflow:
1578 if (!purged) {
1579 purge_vmap_area_lazy();
1580 purged = 1;
1581 goto retry;
1582 }
1583
1584 freed = 0;
1585 blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
1586
1587 if (freed > 0) {
1588 purged = 0;
1589 goto retry;
1590 }
1591
1592 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
1593 pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
1594 size);
1595
1596 kmem_cache_free(vmap_area_cachep, va);
1597 return ERR_PTR(-EBUSY);
1598 }
1599
register_vmap_purge_notifier(struct notifier_block * nb)1600 int register_vmap_purge_notifier(struct notifier_block *nb)
1601 {
1602 return blocking_notifier_chain_register(&vmap_notify_list, nb);
1603 }
1604 EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
1605
unregister_vmap_purge_notifier(struct notifier_block * nb)1606 int unregister_vmap_purge_notifier(struct notifier_block *nb)
1607 {
1608 return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
1609 }
1610 EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
1611
1612 /*
1613 * lazy_max_pages is the maximum amount of virtual address space we gather up
1614 * before attempting to purge with a TLB flush.
1615 *
1616 * There is a tradeoff here: a larger number will cover more kernel page tables
1617 * and take slightly longer to purge, but it will linearly reduce the number of
1618 * global TLB flushes that must be performed. It would seem natural to scale
1619 * this number up linearly with the number of CPUs (because vmapping activity
1620 * could also scale linearly with the number of CPUs), however it is likely
1621 * that in practice, workloads might be constrained in other ways that mean
1622 * vmap activity will not scale linearly with CPUs. Also, I want to be
1623 * conservative and not introduce a big latency on huge systems, so go with
1624 * a less aggressive log scale. It will still be an improvement over the old
1625 * code, and it will be simple to change the scale factor if we find that it
1626 * becomes a problem on bigger systems.
1627 */
lazy_max_pages(void)1628 static unsigned long lazy_max_pages(void)
1629 {
1630 unsigned int log;
1631
1632 log = fls(num_online_cpus());
1633
1634 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
1635 }
1636
1637 static atomic_long_t vmap_lazy_nr = ATOMIC_LONG_INIT(0);
1638
1639 /*
1640 * Serialize vmap purging. There is no actual critical section protected
1641 * by this look, but we want to avoid concurrent calls for performance
1642 * reasons and to make the pcpu_get_vm_areas more deterministic.
1643 */
1644 static DEFINE_MUTEX(vmap_purge_lock);
1645
1646 /* for per-CPU blocks */
1647 static void purge_fragmented_blocks_allcpus(void);
1648
1649 #ifdef CONFIG_X86_64
1650 /*
1651 * called before a call to iounmap() if the caller wants vm_area_struct's
1652 * immediately freed.
1653 */
set_iounmap_nonlazy(void)1654 void set_iounmap_nonlazy(void)
1655 {
1656 atomic_long_set(&vmap_lazy_nr, lazy_max_pages()+1);
1657 }
1658 #endif /* CONFIG_X86_64 */
1659
1660 /*
1661 * Purges all lazily-freed vmap areas.
1662 */
__purge_vmap_area_lazy(unsigned long start,unsigned long end)1663 static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
1664 {
1665 unsigned long resched_threshold;
1666 struct list_head local_pure_list;
1667 struct vmap_area *va, *n_va;
1668
1669 lockdep_assert_held(&vmap_purge_lock);
1670
1671 spin_lock(&purge_vmap_area_lock);
1672 purge_vmap_area_root = RB_ROOT;
1673 list_replace_init(&purge_vmap_area_list, &local_pure_list);
1674 spin_unlock(&purge_vmap_area_lock);
1675
1676 if (unlikely(list_empty(&local_pure_list)))
1677 return false;
1678
1679 start = min(start,
1680 list_first_entry(&local_pure_list,
1681 struct vmap_area, list)->va_start);
1682
1683 end = max(end,
1684 list_last_entry(&local_pure_list,
1685 struct vmap_area, list)->va_end);
1686
1687 flush_tlb_kernel_range(start, end);
1688 resched_threshold = lazy_max_pages() << 1;
1689
1690 spin_lock(&free_vmap_area_lock);
1691 list_for_each_entry_safe(va, n_va, &local_pure_list, list) {
1692 unsigned long nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
1693 unsigned long orig_start = va->va_start;
1694 unsigned long orig_end = va->va_end;
1695
1696 /*
1697 * Finally insert or merge lazily-freed area. It is
1698 * detached and there is no need to "unlink" it from
1699 * anything.
1700 */
1701 va = merge_or_add_vmap_area_augment(va, &free_vmap_area_root,
1702 &free_vmap_area_list);
1703
1704 if (!va)
1705 continue;
1706
1707 if (is_vmalloc_or_module_addr((void *)orig_start))
1708 kasan_release_vmalloc(orig_start, orig_end,
1709 va->va_start, va->va_end);
1710
1711 atomic_long_sub(nr, &vmap_lazy_nr);
1712
1713 if (atomic_long_read(&vmap_lazy_nr) < resched_threshold)
1714 cond_resched_lock(&free_vmap_area_lock);
1715 }
1716 spin_unlock(&free_vmap_area_lock);
1717 return true;
1718 }
1719
1720 /*
1721 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
1722 * is already purging.
1723 */
try_purge_vmap_area_lazy(void)1724 static void try_purge_vmap_area_lazy(void)
1725 {
1726 if (mutex_trylock(&vmap_purge_lock)) {
1727 __purge_vmap_area_lazy(ULONG_MAX, 0);
1728 mutex_unlock(&vmap_purge_lock);
1729 }
1730 }
1731
1732 /*
1733 * Kick off a purge of the outstanding lazy areas.
1734 */
purge_vmap_area_lazy(void)1735 static void purge_vmap_area_lazy(void)
1736 {
1737 mutex_lock(&vmap_purge_lock);
1738 purge_fragmented_blocks_allcpus();
1739 __purge_vmap_area_lazy(ULONG_MAX, 0);
1740 mutex_unlock(&vmap_purge_lock);
1741 }
1742
1743 /*
1744 * Free a vmap area, caller ensuring that the area has been unmapped
1745 * and flush_cache_vunmap had been called for the correct range
1746 * previously.
1747 */
free_vmap_area_noflush(struct vmap_area * va)1748 static void free_vmap_area_noflush(struct vmap_area *va)
1749 {
1750 unsigned long nr_lazy;
1751
1752 spin_lock(&vmap_area_lock);
1753 unlink_va(va, &vmap_area_root);
1754 spin_unlock(&vmap_area_lock);
1755
1756 nr_lazy = atomic_long_add_return((va->va_end - va->va_start) >>
1757 PAGE_SHIFT, &vmap_lazy_nr);
1758
1759 /*
1760 * Merge or place it to the purge tree/list.
1761 */
1762 spin_lock(&purge_vmap_area_lock);
1763 merge_or_add_vmap_area(va,
1764 &purge_vmap_area_root, &purge_vmap_area_list);
1765 spin_unlock(&purge_vmap_area_lock);
1766
1767 /* After this point, we may free va at any time */
1768 if (unlikely(nr_lazy > lazy_max_pages()))
1769 try_purge_vmap_area_lazy();
1770 }
1771
1772 /*
1773 * Free and unmap a vmap area
1774 */
free_unmap_vmap_area(struct vmap_area * va)1775 static void free_unmap_vmap_area(struct vmap_area *va)
1776 {
1777 flush_cache_vunmap(va->va_start, va->va_end);
1778 vunmap_range_noflush(va->va_start, va->va_end);
1779 if (debug_pagealloc_enabled_static())
1780 flush_tlb_kernel_range(va->va_start, va->va_end);
1781
1782 free_vmap_area_noflush(va);
1783 }
1784
find_vmap_area(unsigned long addr)1785 static struct vmap_area *find_vmap_area(unsigned long addr)
1786 {
1787 struct vmap_area *va;
1788
1789 spin_lock(&vmap_area_lock);
1790 va = __find_vmap_area(addr);
1791 spin_unlock(&vmap_area_lock);
1792
1793 return va;
1794 }
1795
1796 /*** Per cpu kva allocator ***/
1797
1798 /*
1799 * vmap space is limited especially on 32 bit architectures. Ensure there is
1800 * room for at least 16 percpu vmap blocks per CPU.
1801 */
1802 /*
1803 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
1804 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
1805 * instead (we just need a rough idea)
1806 */
1807 #if BITS_PER_LONG == 32
1808 #define VMALLOC_SPACE (128UL*1024*1024)
1809 #else
1810 #define VMALLOC_SPACE (128UL*1024*1024*1024)
1811 #endif
1812
1813 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
1814 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
1815 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
1816 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
1817 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
1818 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
1819 #define VMAP_BBMAP_BITS \
1820 VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
1821 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
1822 VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
1823
1824 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
1825
1826 struct vmap_block_queue {
1827 spinlock_t lock;
1828 struct list_head free;
1829 };
1830
1831 struct vmap_block {
1832 spinlock_t lock;
1833 struct vmap_area *va;
1834 unsigned long free, dirty;
1835 unsigned long dirty_min, dirty_max; /*< dirty range */
1836 struct list_head free_list;
1837 struct rcu_head rcu_head;
1838 struct list_head purge;
1839 };
1840
1841 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
1842 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
1843
1844 /*
1845 * XArray of vmap blocks, indexed by address, to quickly find a vmap block
1846 * in the free path. Could get rid of this if we change the API to return a
1847 * "cookie" from alloc, to be passed to free. But no big deal yet.
1848 */
1849 static DEFINE_XARRAY(vmap_blocks);
1850
1851 /*
1852 * We should probably have a fallback mechanism to allocate virtual memory
1853 * out of partially filled vmap blocks. However vmap block sizing should be
1854 * fairly reasonable according to the vmalloc size, so it shouldn't be a
1855 * big problem.
1856 */
1857
addr_to_vb_idx(unsigned long addr)1858 static unsigned long addr_to_vb_idx(unsigned long addr)
1859 {
1860 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
1861 addr /= VMAP_BLOCK_SIZE;
1862 return addr;
1863 }
1864
vmap_block_vaddr(unsigned long va_start,unsigned long pages_off)1865 static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
1866 {
1867 unsigned long addr;
1868
1869 addr = va_start + (pages_off << PAGE_SHIFT);
1870 BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
1871 return (void *)addr;
1872 }
1873
1874 /**
1875 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
1876 * block. Of course pages number can't exceed VMAP_BBMAP_BITS
1877 * @order: how many 2^order pages should be occupied in newly allocated block
1878 * @gfp_mask: flags for the page level allocator
1879 *
1880 * Return: virtual address in a newly allocated block or ERR_PTR(-errno)
1881 */
new_vmap_block(unsigned int order,gfp_t gfp_mask)1882 static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
1883 {
1884 struct vmap_block_queue *vbq;
1885 struct vmap_block *vb;
1886 struct vmap_area *va;
1887 unsigned long vb_idx;
1888 int node, err;
1889 void *vaddr;
1890
1891 node = numa_node_id();
1892
1893 vb = kmalloc_node(sizeof(struct vmap_block),
1894 gfp_mask & GFP_RECLAIM_MASK, node);
1895 if (unlikely(!vb))
1896 return ERR_PTR(-ENOMEM);
1897
1898 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
1899 VMALLOC_START, VMALLOC_END,
1900 node, gfp_mask);
1901 if (IS_ERR(va)) {
1902 kfree(vb);
1903 return ERR_CAST(va);
1904 }
1905
1906 vaddr = vmap_block_vaddr(va->va_start, 0);
1907 spin_lock_init(&vb->lock);
1908 vb->va = va;
1909 /* At least something should be left free */
1910 BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
1911 vb->free = VMAP_BBMAP_BITS - (1UL << order);
1912 vb->dirty = 0;
1913 vb->dirty_min = VMAP_BBMAP_BITS;
1914 vb->dirty_max = 0;
1915 INIT_LIST_HEAD(&vb->free_list);
1916
1917 vb_idx = addr_to_vb_idx(va->va_start);
1918 err = xa_insert(&vmap_blocks, vb_idx, vb, gfp_mask);
1919 if (err) {
1920 kfree(vb);
1921 free_vmap_area(va);
1922 return ERR_PTR(err);
1923 }
1924
1925 vbq = &get_cpu_var(vmap_block_queue);
1926 spin_lock(&vbq->lock);
1927 list_add_tail_rcu(&vb->free_list, &vbq->free);
1928 spin_unlock(&vbq->lock);
1929 put_cpu_var(vmap_block_queue);
1930
1931 return vaddr;
1932 }
1933
free_vmap_block(struct vmap_block * vb)1934 static void free_vmap_block(struct vmap_block *vb)
1935 {
1936 struct vmap_block *tmp;
1937
1938 tmp = xa_erase(&vmap_blocks, addr_to_vb_idx(vb->va->va_start));
1939 BUG_ON(tmp != vb);
1940
1941 free_vmap_area_noflush(vb->va);
1942 kfree_rcu(vb, rcu_head);
1943 }
1944
purge_fragmented_blocks(int cpu)1945 static void purge_fragmented_blocks(int cpu)
1946 {
1947 LIST_HEAD(purge);
1948 struct vmap_block *vb;
1949 struct vmap_block *n_vb;
1950 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1951
1952 rcu_read_lock();
1953 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1954
1955 if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
1956 continue;
1957
1958 spin_lock(&vb->lock);
1959 if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
1960 vb->free = 0; /* prevent further allocs after releasing lock */
1961 vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
1962 vb->dirty_min = 0;
1963 vb->dirty_max = VMAP_BBMAP_BITS;
1964 spin_lock(&vbq->lock);
1965 list_del_rcu(&vb->free_list);
1966 spin_unlock(&vbq->lock);
1967 spin_unlock(&vb->lock);
1968 list_add_tail(&vb->purge, &purge);
1969 } else
1970 spin_unlock(&vb->lock);
1971 }
1972 rcu_read_unlock();
1973
1974 list_for_each_entry_safe(vb, n_vb, &purge, purge) {
1975 list_del(&vb->purge);
1976 free_vmap_block(vb);
1977 }
1978 }
1979
purge_fragmented_blocks_allcpus(void)1980 static void purge_fragmented_blocks_allcpus(void)
1981 {
1982 int cpu;
1983
1984 for_each_possible_cpu(cpu)
1985 purge_fragmented_blocks(cpu);
1986 }
1987
vb_alloc(unsigned long size,gfp_t gfp_mask)1988 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
1989 {
1990 struct vmap_block_queue *vbq;
1991 struct vmap_block *vb;
1992 void *vaddr = NULL;
1993 unsigned int order;
1994
1995 BUG_ON(offset_in_page(size));
1996 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1997 if (WARN_ON(size == 0)) {
1998 /*
1999 * Allocating 0 bytes isn't what caller wants since
2000 * get_order(0) returns funny result. Just warn and terminate
2001 * early.
2002 */
2003 return NULL;
2004 }
2005 order = get_order(size);
2006
2007 rcu_read_lock();
2008 vbq = &get_cpu_var(vmap_block_queue);
2009 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2010 unsigned long pages_off;
2011
2012 spin_lock(&vb->lock);
2013 if (vb->free < (1UL << order)) {
2014 spin_unlock(&vb->lock);
2015 continue;
2016 }
2017
2018 pages_off = VMAP_BBMAP_BITS - vb->free;
2019 vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
2020 vb->free -= 1UL << order;
2021 if (vb->free == 0) {
2022 spin_lock(&vbq->lock);
2023 list_del_rcu(&vb->free_list);
2024 spin_unlock(&vbq->lock);
2025 }
2026
2027 spin_unlock(&vb->lock);
2028 break;
2029 }
2030
2031 put_cpu_var(vmap_block_queue);
2032 rcu_read_unlock();
2033
2034 /* Allocate new block if nothing was found */
2035 if (!vaddr)
2036 vaddr = new_vmap_block(order, gfp_mask);
2037
2038 return vaddr;
2039 }
2040
vb_free(unsigned long addr,unsigned long size)2041 static void vb_free(unsigned long addr, unsigned long size)
2042 {
2043 unsigned long offset;
2044 unsigned int order;
2045 struct vmap_block *vb;
2046
2047 BUG_ON(offset_in_page(size));
2048 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
2049
2050 flush_cache_vunmap(addr, addr + size);
2051
2052 order = get_order(size);
2053 offset = (addr & (VMAP_BLOCK_SIZE - 1)) >> PAGE_SHIFT;
2054 vb = xa_load(&vmap_blocks, addr_to_vb_idx(addr));
2055
2056 vunmap_range_noflush(addr, addr + size);
2057
2058 if (debug_pagealloc_enabled_static())
2059 flush_tlb_kernel_range(addr, addr + size);
2060
2061 spin_lock(&vb->lock);
2062
2063 /* Expand dirty range */
2064 vb->dirty_min = min(vb->dirty_min, offset);
2065 vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
2066
2067 vb->dirty += 1UL << order;
2068 if (vb->dirty == VMAP_BBMAP_BITS) {
2069 BUG_ON(vb->free);
2070 spin_unlock(&vb->lock);
2071 free_vmap_block(vb);
2072 } else
2073 spin_unlock(&vb->lock);
2074 }
2075
_vm_unmap_aliases(unsigned long start,unsigned long end,int flush)2076 static void _vm_unmap_aliases(unsigned long start, unsigned long end, int flush)
2077 {
2078 int cpu;
2079
2080 if (unlikely(!vmap_initialized))
2081 return;
2082
2083 might_sleep();
2084
2085 for_each_possible_cpu(cpu) {
2086 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
2087 struct vmap_block *vb;
2088
2089 rcu_read_lock();
2090 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
2091 spin_lock(&vb->lock);
2092 if (vb->dirty && vb->dirty != VMAP_BBMAP_BITS) {
2093 unsigned long va_start = vb->va->va_start;
2094 unsigned long s, e;
2095
2096 s = va_start + (vb->dirty_min << PAGE_SHIFT);
2097 e = va_start + (vb->dirty_max << PAGE_SHIFT);
2098
2099 start = min(s, start);
2100 end = max(e, end);
2101
2102 flush = 1;
2103 }
2104 spin_unlock(&vb->lock);
2105 }
2106 rcu_read_unlock();
2107 }
2108
2109 mutex_lock(&vmap_purge_lock);
2110 purge_fragmented_blocks_allcpus();
2111 if (!__purge_vmap_area_lazy(start, end) && flush)
2112 flush_tlb_kernel_range(start, end);
2113 mutex_unlock(&vmap_purge_lock);
2114 }
2115
2116 /**
2117 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
2118 *
2119 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
2120 * to amortize TLB flushing overheads. What this means is that any page you
2121 * have now, may, in a former life, have been mapped into kernel virtual
2122 * address by the vmap layer and so there might be some CPUs with TLB entries
2123 * still referencing that page (additional to the regular 1:1 kernel mapping).
2124 *
2125 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
2126 * be sure that none of the pages we have control over will have any aliases
2127 * from the vmap layer.
2128 */
vm_unmap_aliases(void)2129 void vm_unmap_aliases(void)
2130 {
2131 unsigned long start = ULONG_MAX, end = 0;
2132 int flush = 0;
2133
2134 _vm_unmap_aliases(start, end, flush);
2135 }
2136 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
2137
2138 /**
2139 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
2140 * @mem: the pointer returned by vm_map_ram
2141 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
2142 */
vm_unmap_ram(const void * mem,unsigned int count)2143 void vm_unmap_ram(const void *mem, unsigned int count)
2144 {
2145 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2146 unsigned long addr = (unsigned long)mem;
2147 struct vmap_area *va;
2148
2149 might_sleep();
2150 BUG_ON(!addr);
2151 BUG_ON(addr < VMALLOC_START);
2152 BUG_ON(addr > VMALLOC_END);
2153 BUG_ON(!PAGE_ALIGNED(addr));
2154
2155 kasan_poison_vmalloc(mem, size);
2156
2157 if (likely(count <= VMAP_MAX_ALLOC)) {
2158 debug_check_no_locks_freed(mem, size);
2159 vb_free(addr, size);
2160 return;
2161 }
2162
2163 va = find_vmap_area(addr);
2164 BUG_ON(!va);
2165 debug_check_no_locks_freed((void *)va->va_start,
2166 (va->va_end - va->va_start));
2167 free_unmap_vmap_area(va);
2168 }
2169 EXPORT_SYMBOL(vm_unmap_ram);
2170
2171 /**
2172 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
2173 * @pages: an array of pointers to the pages to be mapped
2174 * @count: number of pages
2175 * @node: prefer to allocate data structures on this node
2176 *
2177 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
2178 * faster than vmap so it's good. But if you mix long-life and short-life
2179 * objects with vm_map_ram(), it could consume lots of address space through
2180 * fragmentation (especially on a 32bit machine). You could see failures in
2181 * the end. Please use this function for short-lived objects.
2182 *
2183 * Returns: a pointer to the address that has been mapped, or %NULL on failure
2184 */
vm_map_ram(struct page ** pages,unsigned int count,int node)2185 void *vm_map_ram(struct page **pages, unsigned int count, int node)
2186 {
2187 unsigned long size = (unsigned long)count << PAGE_SHIFT;
2188 unsigned long addr;
2189 void *mem;
2190
2191 if (likely(count <= VMAP_MAX_ALLOC)) {
2192 mem = vb_alloc(size, GFP_KERNEL);
2193 if (IS_ERR(mem))
2194 return NULL;
2195 addr = (unsigned long)mem;
2196 } else {
2197 struct vmap_area *va;
2198 va = alloc_vmap_area(size, PAGE_SIZE,
2199 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
2200 if (IS_ERR(va))
2201 return NULL;
2202
2203 addr = va->va_start;
2204 mem = (void *)addr;
2205 }
2206
2207 kasan_unpoison_vmalloc(mem, size);
2208
2209 if (vmap_pages_range(addr, addr + size, PAGE_KERNEL,
2210 pages, PAGE_SHIFT) < 0) {
2211 vm_unmap_ram(mem, count);
2212 return NULL;
2213 }
2214
2215 return mem;
2216 }
2217 EXPORT_SYMBOL(vm_map_ram);
2218
2219 static struct vm_struct *vmlist __initdata;
2220
vm_area_page_order(struct vm_struct * vm)2221 static inline unsigned int vm_area_page_order(struct vm_struct *vm)
2222 {
2223 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2224 return vm->page_order;
2225 #else
2226 return 0;
2227 #endif
2228 }
2229
set_vm_area_page_order(struct vm_struct * vm,unsigned int order)2230 static inline void set_vm_area_page_order(struct vm_struct *vm, unsigned int order)
2231 {
2232 #ifdef CONFIG_HAVE_ARCH_HUGE_VMALLOC
2233 vm->page_order = order;
2234 #else
2235 BUG_ON(order != 0);
2236 #endif
2237 }
2238
2239 /**
2240 * vm_area_add_early - add vmap area early during boot
2241 * @vm: vm_struct to add
2242 *
2243 * This function is used to add fixed kernel vm area to vmlist before
2244 * vmalloc_init() is called. @vm->addr, @vm->size, and @vm->flags
2245 * should contain proper values and the other fields should be zero.
2246 *
2247 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2248 */
vm_area_add_early(struct vm_struct * vm)2249 void __init vm_area_add_early(struct vm_struct *vm)
2250 {
2251 struct vm_struct *tmp, **p;
2252
2253 BUG_ON(vmap_initialized);
2254 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
2255 if (tmp->addr >= vm->addr) {
2256 BUG_ON(tmp->addr < vm->addr + vm->size);
2257 break;
2258 } else
2259 BUG_ON(tmp->addr + tmp->size > vm->addr);
2260 }
2261 vm->next = *p;
2262 *p = vm;
2263 }
2264
2265 /**
2266 * vm_area_register_early - register vmap area early during boot
2267 * @vm: vm_struct to register
2268 * @align: requested alignment
2269 *
2270 * This function is used to register kernel vm area before
2271 * vmalloc_init() is called. @vm->size and @vm->flags should contain
2272 * proper values on entry and other fields should be zero. On return,
2273 * vm->addr contains the allocated address.
2274 *
2275 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
2276 */
vm_area_register_early(struct vm_struct * vm,size_t align)2277 void __init vm_area_register_early(struct vm_struct *vm, size_t align)
2278 {
2279 unsigned long addr = ALIGN(VMALLOC_START, align);
2280 struct vm_struct *cur, **p;
2281
2282 BUG_ON(vmap_initialized);
2283
2284 for (p = &vmlist; (cur = *p) != NULL; p = &cur->next) {
2285 if ((unsigned long)cur->addr - addr >= vm->size)
2286 break;
2287 addr = ALIGN((unsigned long)cur->addr + cur->size, align);
2288 }
2289
2290 BUG_ON(addr > VMALLOC_END - vm->size);
2291 vm->addr = (void *)addr;
2292 vm->next = *p;
2293 *p = vm;
2294 kasan_populate_early_vm_area_shadow(vm->addr, vm->size);
2295 }
2296
vmap_init_free_space(void)2297 static void vmap_init_free_space(void)
2298 {
2299 unsigned long vmap_start = 1;
2300 const unsigned long vmap_end = ULONG_MAX;
2301 struct vmap_area *busy, *free;
2302
2303 /*
2304 * B F B B B F
2305 * -|-----|.....|-----|-----|-----|.....|-
2306 * | The KVA space |
2307 * |<--------------------------------->|
2308 */
2309 list_for_each_entry(busy, &vmap_area_list, list) {
2310 if (busy->va_start - vmap_start > 0) {
2311 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2312 if (!WARN_ON_ONCE(!free)) {
2313 free->va_start = vmap_start;
2314 free->va_end = busy->va_start;
2315
2316 insert_vmap_area_augment(free, NULL,
2317 &free_vmap_area_root,
2318 &free_vmap_area_list);
2319 }
2320 }
2321
2322 vmap_start = busy->va_end;
2323 }
2324
2325 if (vmap_end - vmap_start > 0) {
2326 free = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2327 if (!WARN_ON_ONCE(!free)) {
2328 free->va_start = vmap_start;
2329 free->va_end = vmap_end;
2330
2331 insert_vmap_area_augment(free, NULL,
2332 &free_vmap_area_root,
2333 &free_vmap_area_list);
2334 }
2335 }
2336 }
2337
vmalloc_init(void)2338 void __init vmalloc_init(void)
2339 {
2340 struct vmap_area *va;
2341 struct vm_struct *tmp;
2342 int i;
2343
2344 /*
2345 * Create the cache for vmap_area objects.
2346 */
2347 vmap_area_cachep = KMEM_CACHE(vmap_area, SLAB_PANIC);
2348
2349 for_each_possible_cpu(i) {
2350 struct vmap_block_queue *vbq;
2351 struct vfree_deferred *p;
2352
2353 vbq = &per_cpu(vmap_block_queue, i);
2354 spin_lock_init(&vbq->lock);
2355 INIT_LIST_HEAD(&vbq->free);
2356 p = &per_cpu(vfree_deferred, i);
2357 init_llist_head(&p->list);
2358 INIT_WORK(&p->wq, free_work);
2359 }
2360
2361 /* Import existing vmlist entries. */
2362 for (tmp = vmlist; tmp; tmp = tmp->next) {
2363 va = kmem_cache_zalloc(vmap_area_cachep, GFP_NOWAIT);
2364 if (WARN_ON_ONCE(!va))
2365 continue;
2366
2367 va->va_start = (unsigned long)tmp->addr;
2368 va->va_end = va->va_start + tmp->size;
2369 va->vm = tmp;
2370 insert_vmap_area(va, &vmap_area_root, &vmap_area_list);
2371 }
2372
2373 /*
2374 * Now we can initialize a free vmap space.
2375 */
2376 vmap_init_free_space();
2377 vmap_initialized = true;
2378 }
2379
setup_vmalloc_vm_locked(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)2380 static inline void setup_vmalloc_vm_locked(struct vm_struct *vm,
2381 struct vmap_area *va, unsigned long flags, const void *caller)
2382 {
2383 vm->flags = flags;
2384 vm->addr = (void *)va->va_start;
2385 vm->size = va->va_end - va->va_start;
2386 vm->caller = caller;
2387 va->vm = vm;
2388 }
2389
setup_vmalloc_vm(struct vm_struct * vm,struct vmap_area * va,unsigned long flags,const void * caller)2390 static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
2391 unsigned long flags, const void *caller)
2392 {
2393 spin_lock(&vmap_area_lock);
2394 setup_vmalloc_vm_locked(vm, va, flags, caller);
2395 spin_unlock(&vmap_area_lock);
2396 }
2397
clear_vm_uninitialized_flag(struct vm_struct * vm)2398 static void clear_vm_uninitialized_flag(struct vm_struct *vm)
2399 {
2400 /*
2401 * Before removing VM_UNINITIALIZED,
2402 * we should make sure that vm has proper values.
2403 * Pair with smp_rmb() in show_numa_info().
2404 */
2405 smp_wmb();
2406 vm->flags &= ~VM_UNINITIALIZED;
2407 }
2408
__get_vm_area_node(unsigned long size,unsigned long align,unsigned long shift,unsigned long flags,unsigned long start,unsigned long end,int node,gfp_t gfp_mask,const void * caller)2409 static struct vm_struct *__get_vm_area_node(unsigned long size,
2410 unsigned long align, unsigned long shift, unsigned long flags,
2411 unsigned long start, unsigned long end, int node,
2412 gfp_t gfp_mask, const void *caller)
2413 {
2414 struct vmap_area *va;
2415 struct vm_struct *area;
2416 unsigned long requested_size = size;
2417
2418 BUG_ON(in_interrupt());
2419 size = ALIGN(size, 1ul << shift);
2420 if (unlikely(!size))
2421 return NULL;
2422
2423 if (flags & VM_IOREMAP)
2424 align = 1ul << clamp_t(int, get_count_order_long(size),
2425 PAGE_SHIFT, IOREMAP_MAX_ORDER);
2426
2427 area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
2428 if (unlikely(!area))
2429 return NULL;
2430
2431 if (!(flags & VM_NO_GUARD))
2432 size += PAGE_SIZE;
2433
2434 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
2435 if (IS_ERR(va)) {
2436 kfree(area);
2437 return NULL;
2438 }
2439
2440 kasan_unpoison_vmalloc((void *)va->va_start, requested_size);
2441
2442 setup_vmalloc_vm(area, va, flags, caller);
2443
2444 return area;
2445 }
2446
__get_vm_area_caller(unsigned long size,unsigned long flags,unsigned long start,unsigned long end,const void * caller)2447 struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
2448 unsigned long start, unsigned long end,
2449 const void *caller)
2450 {
2451 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags, start, end,
2452 NUMA_NO_NODE, GFP_KERNEL, caller);
2453 }
2454
2455 /**
2456 * get_vm_area - reserve a contiguous kernel virtual area
2457 * @size: size of the area
2458 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
2459 *
2460 * Search an area of @size in the kernel virtual mapping area,
2461 * and reserved it for out purposes. Returns the area descriptor
2462 * on success or %NULL on failure.
2463 *
2464 * Return: the area descriptor on success or %NULL on failure.
2465 */
get_vm_area(unsigned long size,unsigned long flags)2466 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
2467 {
2468 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2469 VMALLOC_START, VMALLOC_END,
2470 NUMA_NO_NODE, GFP_KERNEL,
2471 __builtin_return_address(0));
2472 }
2473
get_vm_area_caller(unsigned long size,unsigned long flags,const void * caller)2474 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
2475 const void *caller)
2476 {
2477 return __get_vm_area_node(size, 1, PAGE_SHIFT, flags,
2478 VMALLOC_START, VMALLOC_END,
2479 NUMA_NO_NODE, GFP_KERNEL, caller);
2480 }
2481
2482 /**
2483 * find_vm_area - find a continuous kernel virtual area
2484 * @addr: base address
2485 *
2486 * Search for the kernel VM area starting at @addr, and return it.
2487 * It is up to the caller to do all required locking to keep the returned
2488 * pointer valid.
2489 *
2490 * Return: the area descriptor on success or %NULL on failure.
2491 */
find_vm_area(const void * addr)2492 struct vm_struct *find_vm_area(const void *addr)
2493 {
2494 struct vmap_area *va;
2495
2496 va = find_vmap_area((unsigned long)addr);
2497 if (!va)
2498 return NULL;
2499
2500 return va->vm;
2501 }
2502
2503 /**
2504 * remove_vm_area - find and remove a continuous kernel virtual area
2505 * @addr: base address
2506 *
2507 * Search for the kernel VM area starting at @addr, and remove it.
2508 * This function returns the found VM area, but using it is NOT safe
2509 * on SMP machines, except for its size or flags.
2510 *
2511 * Return: the area descriptor on success or %NULL on failure.
2512 */
remove_vm_area(const void * addr)2513 struct vm_struct *remove_vm_area(const void *addr)
2514 {
2515 struct vmap_area *va;
2516
2517 might_sleep();
2518
2519 spin_lock(&vmap_area_lock);
2520 va = __find_vmap_area((unsigned long)addr);
2521 if (va && va->vm) {
2522 struct vm_struct *vm = va->vm;
2523
2524 va->vm = NULL;
2525 spin_unlock(&vmap_area_lock);
2526
2527 kasan_free_shadow(vm);
2528 free_unmap_vmap_area(va);
2529
2530 return vm;
2531 }
2532
2533 spin_unlock(&vmap_area_lock);
2534 return NULL;
2535 }
2536
set_area_direct_map(const struct vm_struct * area,int (* set_direct_map)(struct page * page))2537 static inline void set_area_direct_map(const struct vm_struct *area,
2538 int (*set_direct_map)(struct page *page))
2539 {
2540 int i;
2541
2542 /* HUGE_VMALLOC passes small pages to set_direct_map */
2543 for (i = 0; i < area->nr_pages; i++)
2544 if (page_address(area->pages[i]))
2545 set_direct_map(area->pages[i]);
2546 }
2547
2548 /* Handle removing and resetting vm mappings related to the vm_struct. */
vm_remove_mappings(struct vm_struct * area,int deallocate_pages)2549 static void vm_remove_mappings(struct vm_struct *area, int deallocate_pages)
2550 {
2551 unsigned long start = ULONG_MAX, end = 0;
2552 unsigned int page_order = vm_area_page_order(area);
2553 int flush_reset = area->flags & VM_FLUSH_RESET_PERMS;
2554 int flush_dmap = 0;
2555 int i;
2556
2557 remove_vm_area(area->addr);
2558
2559 /* If this is not VM_FLUSH_RESET_PERMS memory, no need for the below. */
2560 if (!flush_reset)
2561 return;
2562
2563 /*
2564 * If not deallocating pages, just do the flush of the VM area and
2565 * return.
2566 */
2567 if (!deallocate_pages) {
2568 vm_unmap_aliases();
2569 return;
2570 }
2571
2572 /*
2573 * If execution gets here, flush the vm mapping and reset the direct
2574 * map. Find the start and end range of the direct mappings to make sure
2575 * the vm_unmap_aliases() flush includes the direct map.
2576 */
2577 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2578 unsigned long addr = (unsigned long)page_address(area->pages[i]);
2579 if (addr) {
2580 unsigned long page_size;
2581
2582 page_size = PAGE_SIZE << page_order;
2583 start = min(addr, start);
2584 end = max(addr + page_size, end);
2585 flush_dmap = 1;
2586 }
2587 }
2588
2589 /*
2590 * Set direct map to something invalid so that it won't be cached if
2591 * there are any accesses after the TLB flush, then flush the TLB and
2592 * reset the direct map permissions to the default.
2593 */
2594 set_area_direct_map(area, set_direct_map_invalid_noflush);
2595 _vm_unmap_aliases(start, end, flush_dmap);
2596 set_area_direct_map(area, set_direct_map_default_noflush);
2597 }
2598
__vunmap(const void * addr,int deallocate_pages)2599 static void __vunmap(const void *addr, int deallocate_pages)
2600 {
2601 struct vm_struct *area;
2602
2603 if (!addr)
2604 return;
2605
2606 if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
2607 addr))
2608 return;
2609
2610 area = find_vm_area(addr);
2611 if (unlikely(!area)) {
2612 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
2613 addr);
2614 return;
2615 }
2616
2617 debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
2618 debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
2619
2620 kasan_poison_vmalloc(area->addr, get_vm_area_size(area));
2621
2622 vm_remove_mappings(area, deallocate_pages);
2623
2624 if (deallocate_pages) {
2625 unsigned int page_order = vm_area_page_order(area);
2626 int i;
2627
2628 for (i = 0; i < area->nr_pages; i += 1U << page_order) {
2629 struct page *page = area->pages[i];
2630
2631 BUG_ON(!page);
2632 __free_pages(page, page_order);
2633 cond_resched();
2634 }
2635 atomic_long_sub(area->nr_pages, &nr_vmalloc_pages);
2636
2637 kvfree(area->pages);
2638 }
2639
2640 kfree(area);
2641 }
2642
__vfree_deferred(const void * addr)2643 static inline void __vfree_deferred(const void *addr)
2644 {
2645 /*
2646 * Use raw_cpu_ptr() because this can be called from preemptible
2647 * context. Preemption is absolutely fine here, because the llist_add()
2648 * implementation is lockless, so it works even if we are adding to
2649 * another cpu's list. schedule_work() should be fine with this too.
2650 */
2651 struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
2652
2653 if (llist_add((struct llist_node *)addr, &p->list))
2654 schedule_work(&p->wq);
2655 }
2656
2657 /**
2658 * vfree_atomic - release memory allocated by vmalloc()
2659 * @addr: memory base address
2660 *
2661 * This one is just like vfree() but can be called in any atomic context
2662 * except NMIs.
2663 */
vfree_atomic(const void * addr)2664 void vfree_atomic(const void *addr)
2665 {
2666 BUG_ON(in_nmi());
2667
2668 kmemleak_free(addr);
2669
2670 if (!addr)
2671 return;
2672 __vfree_deferred(addr);
2673 }
2674
__vfree(const void * addr)2675 static void __vfree(const void *addr)
2676 {
2677 if (unlikely(in_interrupt()))
2678 __vfree_deferred(addr);
2679 else
2680 __vunmap(addr, 1);
2681 }
2682
2683 /**
2684 * vfree - Release memory allocated by vmalloc()
2685 * @addr: Memory base address
2686 *
2687 * Free the virtually continuous memory area starting at @addr, as obtained
2688 * from one of the vmalloc() family of APIs. This will usually also free the
2689 * physical memory underlying the virtual allocation, but that memory is
2690 * reference counted, so it will not be freed until the last user goes away.
2691 *
2692 * If @addr is NULL, no operation is performed.
2693 *
2694 * Context:
2695 * May sleep if called *not* from interrupt context.
2696 * Must not be called in NMI context (strictly speaking, it could be
2697 * if we have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
2698 * conventions for vfree() arch-dependent would be a really bad idea).
2699 */
vfree(const void * addr)2700 void vfree(const void *addr)
2701 {
2702 BUG_ON(in_nmi());
2703
2704 kmemleak_free(addr);
2705
2706 might_sleep_if(!in_interrupt());
2707
2708 if (!addr)
2709 return;
2710
2711 __vfree(addr);
2712 }
2713 EXPORT_SYMBOL(vfree);
2714
2715 /**
2716 * vunmap - release virtual mapping obtained by vmap()
2717 * @addr: memory base address
2718 *
2719 * Free the virtually contiguous memory area starting at @addr,
2720 * which was created from the page array passed to vmap().
2721 *
2722 * Must not be called in interrupt context.
2723 */
vunmap(const void * addr)2724 void vunmap(const void *addr)
2725 {
2726 BUG_ON(in_interrupt());
2727 might_sleep();
2728 if (addr)
2729 __vunmap(addr, 0);
2730 }
2731 EXPORT_SYMBOL(vunmap);
2732
2733 /**
2734 * vmap - map an array of pages into virtually contiguous space
2735 * @pages: array of page pointers
2736 * @count: number of pages to map
2737 * @flags: vm_area->flags
2738 * @prot: page protection for the mapping
2739 *
2740 * Maps @count pages from @pages into contiguous kernel virtual space.
2741 * If @flags contains %VM_MAP_PUT_PAGES the ownership of the pages array itself
2742 * (which must be kmalloc or vmalloc memory) and one reference per pages in it
2743 * are transferred from the caller to vmap(), and will be freed / dropped when
2744 * vfree() is called on the return value.
2745 *
2746 * Return: the address of the area or %NULL on failure
2747 */
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)2748 void *vmap(struct page **pages, unsigned int count,
2749 unsigned long flags, pgprot_t prot)
2750 {
2751 struct vm_struct *area;
2752 unsigned long addr;
2753 unsigned long size; /* In bytes */
2754
2755 might_sleep();
2756
2757 /*
2758 * Your top guard is someone else's bottom guard. Not having a top
2759 * guard compromises someone else's mappings too.
2760 */
2761 if (WARN_ON_ONCE(flags & VM_NO_GUARD))
2762 flags &= ~VM_NO_GUARD;
2763
2764 if (count > totalram_pages())
2765 return NULL;
2766
2767 size = (unsigned long)count << PAGE_SHIFT;
2768 area = get_vm_area_caller(size, flags, __builtin_return_address(0));
2769 if (!area)
2770 return NULL;
2771
2772 addr = (unsigned long)area->addr;
2773 if (vmap_pages_range(addr, addr + size, pgprot_nx(prot),
2774 pages, PAGE_SHIFT) < 0) {
2775 vunmap(area->addr);
2776 return NULL;
2777 }
2778
2779 if (flags & VM_MAP_PUT_PAGES) {
2780 area->pages = pages;
2781 area->nr_pages = count;
2782 }
2783 return area->addr;
2784 }
2785 EXPORT_SYMBOL(vmap);
2786
2787 #ifdef CONFIG_VMAP_PFN
2788 struct vmap_pfn_data {
2789 unsigned long *pfns;
2790 pgprot_t prot;
2791 unsigned int idx;
2792 };
2793
vmap_pfn_apply(pte_t * pte,unsigned long addr,void * private)2794 static int vmap_pfn_apply(pte_t *pte, unsigned long addr, void *private)
2795 {
2796 struct vmap_pfn_data *data = private;
2797
2798 if (WARN_ON_ONCE(pfn_valid(data->pfns[data->idx])))
2799 return -EINVAL;
2800 *pte = pte_mkspecial(pfn_pte(data->pfns[data->idx++], data->prot));
2801 return 0;
2802 }
2803
2804 /**
2805 * vmap_pfn - map an array of PFNs into virtually contiguous space
2806 * @pfns: array of PFNs
2807 * @count: number of pages to map
2808 * @prot: page protection for the mapping
2809 *
2810 * Maps @count PFNs from @pfns into contiguous kernel virtual space and returns
2811 * the start address of the mapping.
2812 */
vmap_pfn(unsigned long * pfns,unsigned int count,pgprot_t prot)2813 void *vmap_pfn(unsigned long *pfns, unsigned int count, pgprot_t prot)
2814 {
2815 struct vmap_pfn_data data = { .pfns = pfns, .prot = pgprot_nx(prot) };
2816 struct vm_struct *area;
2817
2818 area = get_vm_area_caller(count * PAGE_SIZE, VM_IOREMAP,
2819 __builtin_return_address(0));
2820 if (!area)
2821 return NULL;
2822 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2823 count * PAGE_SIZE, vmap_pfn_apply, &data)) {
2824 free_vm_area(area);
2825 return NULL;
2826 }
2827 return area->addr;
2828 }
2829 EXPORT_SYMBOL_GPL(vmap_pfn);
2830 #endif /* CONFIG_VMAP_PFN */
2831
2832 static inline unsigned int
vm_area_alloc_pages(gfp_t gfp,int nid,unsigned int order,unsigned int nr_pages,struct page ** pages)2833 vm_area_alloc_pages(gfp_t gfp, int nid,
2834 unsigned int order, unsigned int nr_pages, struct page **pages)
2835 {
2836 unsigned int nr_allocated = 0;
2837 struct page *page;
2838 int i;
2839
2840 /*
2841 * For order-0 pages we make use of bulk allocator, if
2842 * the page array is partly or not at all populated due
2843 * to fails, fallback to a single page allocator that is
2844 * more permissive.
2845 */
2846 if (!order) {
2847 while (nr_allocated < nr_pages) {
2848 unsigned int nr, nr_pages_request;
2849
2850 /*
2851 * A maximum allowed request is hard-coded and is 100
2852 * pages per call. That is done in order to prevent a
2853 * long preemption off scenario in the bulk-allocator
2854 * so the range is [1:100].
2855 */
2856 nr_pages_request = min(100U, nr_pages - nr_allocated);
2857
2858 /* memory allocation should consider mempolicy, we can't
2859 * wrongly use nearest node when nid == NUMA_NO_NODE,
2860 * otherwise memory may be allocated in only one node,
2861 * but mempolcy want to alloc memory by interleaving.
2862 */
2863 if (IS_ENABLED(CONFIG_NUMA) && nid == NUMA_NO_NODE)
2864 nr = alloc_pages_bulk_array_mempolicy(gfp,
2865 nr_pages_request,
2866 pages + nr_allocated);
2867
2868 else
2869 nr = alloc_pages_bulk_array_node(gfp, nid,
2870 nr_pages_request,
2871 pages + nr_allocated);
2872
2873 nr_allocated += nr;
2874 cond_resched();
2875
2876 /*
2877 * If zero or pages were obtained partly,
2878 * fallback to a single page allocator.
2879 */
2880 if (nr != nr_pages_request)
2881 break;
2882 }
2883 } else
2884 /*
2885 * Compound pages required for remap_vmalloc_page if
2886 * high-order pages.
2887 */
2888 gfp |= __GFP_COMP;
2889
2890 /* High-order pages or fallback path if "bulk" fails. */
2891
2892 while (nr_allocated < nr_pages) {
2893 if (fatal_signal_pending(current))
2894 break;
2895
2896 if (nid == NUMA_NO_NODE)
2897 page = alloc_pages(gfp, order);
2898 else
2899 page = alloc_pages_node(nid, gfp, order);
2900 if (unlikely(!page))
2901 break;
2902
2903 /*
2904 * Careful, we allocate and map page-order pages, but
2905 * tracking is done per PAGE_SIZE page so as to keep the
2906 * vm_struct APIs independent of the physical/mapped size.
2907 */
2908 for (i = 0; i < (1U << order); i++)
2909 pages[nr_allocated + i] = page + i;
2910
2911 cond_resched();
2912 nr_allocated += 1U << order;
2913 }
2914
2915 return nr_allocated;
2916 }
2917
__vmalloc_area_node(struct vm_struct * area,gfp_t gfp_mask,pgprot_t prot,unsigned int page_shift,int node)2918 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
2919 pgprot_t prot, unsigned int page_shift,
2920 int node)
2921 {
2922 const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
2923 const gfp_t orig_gfp_mask = gfp_mask;
2924 unsigned long addr = (unsigned long)area->addr;
2925 unsigned long size = get_vm_area_size(area);
2926 unsigned long array_size;
2927 unsigned int nr_small_pages = size >> PAGE_SHIFT;
2928 unsigned int page_order;
2929
2930 array_size = (unsigned long)nr_small_pages * sizeof(struct page *);
2931 gfp_mask |= __GFP_NOWARN;
2932 if (!(gfp_mask & (GFP_DMA | GFP_DMA32)))
2933 gfp_mask |= __GFP_HIGHMEM;
2934
2935 /* Please note that the recursion is strictly bounded. */
2936 if (array_size > PAGE_SIZE) {
2937 area->pages = __vmalloc_node(array_size, 1, nested_gfp, node,
2938 area->caller);
2939 } else {
2940 area->pages = kmalloc_node(array_size, nested_gfp, node);
2941 }
2942
2943 if (!area->pages) {
2944 warn_alloc(orig_gfp_mask, NULL,
2945 "vmalloc error: size %lu, failed to allocated page array size %lu",
2946 nr_small_pages * PAGE_SIZE, array_size);
2947 free_vm_area(area);
2948 return NULL;
2949 }
2950
2951 set_vm_area_page_order(area, page_shift - PAGE_SHIFT);
2952 page_order = vm_area_page_order(area);
2953
2954 area->nr_pages = vm_area_alloc_pages(gfp_mask, node,
2955 page_order, nr_small_pages, area->pages);
2956
2957 atomic_long_add(area->nr_pages, &nr_vmalloc_pages);
2958
2959 /*
2960 * If not enough pages were obtained to accomplish an
2961 * allocation request, free them via __vfree() if any.
2962 */
2963 if (area->nr_pages != nr_small_pages) {
2964 warn_alloc(orig_gfp_mask, NULL,
2965 "vmalloc error: size %lu, page order %u, failed to allocate pages",
2966 area->nr_pages * PAGE_SIZE, page_order);
2967 goto fail;
2968 }
2969
2970 if (vmap_pages_range(addr, addr + size, prot, area->pages,
2971 page_shift) < 0) {
2972 warn_alloc(orig_gfp_mask, NULL,
2973 "vmalloc error: size %lu, failed to map pages",
2974 area->nr_pages * PAGE_SIZE);
2975 goto fail;
2976 }
2977
2978 return area->addr;
2979
2980 fail:
2981 __vfree(area->addr);
2982 return NULL;
2983 }
2984
2985 /**
2986 * __vmalloc_node_range - allocate virtually contiguous memory
2987 * @size: allocation size
2988 * @align: desired alignment
2989 * @start: vm area range start
2990 * @end: vm area range end
2991 * @gfp_mask: flags for the page level allocator
2992 * @prot: protection mask for the allocated pages
2993 * @vm_flags: additional vm area flags (e.g. %VM_NO_GUARD)
2994 * @node: node to use for allocation or NUMA_NO_NODE
2995 * @caller: caller's return address
2996 *
2997 * Allocate enough pages to cover @size from the page level
2998 * allocator with @gfp_mask flags. Please note that the full set of gfp
2999 * flags are not supported. GFP_KERNEL would be a preferred allocation mode
3000 * but GFP_NOFS and GFP_NOIO are supported as well. Zone modifiers are not
3001 * supported. From the reclaim modifiers__GFP_DIRECT_RECLAIM is required (aka
3002 * GFP_NOWAIT is not supported) and only __GFP_NOFAIL is supported (aka
3003 * __GFP_NORETRY and __GFP_RETRY_MAYFAIL are not supported).
3004 * __GFP_NOWARN can be used to suppress error messages about failures.
3005 *
3006 * Map them into contiguous kernel virtual space, using a pagetable
3007 * protection of @prot.
3008 *
3009 * Return: the address of the area or %NULL on failure
3010 */
__vmalloc_node_range(unsigned long size,unsigned long align,unsigned long start,unsigned long end,gfp_t gfp_mask,pgprot_t prot,unsigned long vm_flags,int node,const void * caller)3011 void *__vmalloc_node_range(unsigned long size, unsigned long align,
3012 unsigned long start, unsigned long end, gfp_t gfp_mask,
3013 pgprot_t prot, unsigned long vm_flags, int node,
3014 const void *caller)
3015 {
3016 struct vm_struct *area;
3017 void *addr;
3018 unsigned long real_size = size;
3019 unsigned long real_align = align;
3020 unsigned int shift = PAGE_SHIFT;
3021
3022 if (WARN_ON_ONCE(!size))
3023 return NULL;
3024
3025 if ((size >> PAGE_SHIFT) > totalram_pages()) {
3026 warn_alloc(gfp_mask, NULL,
3027 "vmalloc error: size %lu, exceeds total pages",
3028 real_size);
3029 return NULL;
3030 }
3031
3032 if (vmap_allow_huge && !(vm_flags & VM_NO_HUGE_VMAP)) {
3033 unsigned long size_per_node;
3034
3035 /*
3036 * Try huge pages. Only try for PAGE_KERNEL allocations,
3037 * others like modules don't yet expect huge pages in
3038 * their allocations due to apply_to_page_range not
3039 * supporting them.
3040 */
3041
3042 size_per_node = size;
3043 if (node == NUMA_NO_NODE)
3044 size_per_node /= num_online_nodes();
3045 if (arch_vmap_pmd_supported(prot) && size_per_node >= PMD_SIZE)
3046 shift = PMD_SHIFT;
3047 else
3048 shift = arch_vmap_pte_supported_shift(size_per_node);
3049
3050 align = max(real_align, 1UL << shift);
3051 size = ALIGN(real_size, 1UL << shift);
3052 }
3053
3054 again:
3055 area = __get_vm_area_node(real_size, align, shift, VM_ALLOC |
3056 VM_UNINITIALIZED | vm_flags, start, end, node,
3057 gfp_mask, caller);
3058 if (!area) {
3059 warn_alloc(gfp_mask, NULL,
3060 "vmalloc error: size %lu, vm_struct allocation failed",
3061 real_size);
3062 goto fail;
3063 }
3064
3065 addr = __vmalloc_area_node(area, gfp_mask, prot, shift, node);
3066 if (!addr)
3067 goto fail;
3068
3069 /*
3070 * In this function, newly allocated vm_struct has VM_UNINITIALIZED
3071 * flag. It means that vm_struct is not fully initialized.
3072 * Now, it is fully initialized, so remove this flag here.
3073 */
3074 clear_vm_uninitialized_flag(area);
3075
3076 size = PAGE_ALIGN(size);
3077 kmemleak_vmalloc(area, size, gfp_mask);
3078
3079 return addr;
3080
3081 fail:
3082 if (shift > PAGE_SHIFT) {
3083 shift = PAGE_SHIFT;
3084 align = real_align;
3085 size = real_size;
3086 goto again;
3087 }
3088
3089 return NULL;
3090 }
3091
3092 /**
3093 * __vmalloc_node - allocate virtually contiguous memory
3094 * @size: allocation size
3095 * @align: desired alignment
3096 * @gfp_mask: flags for the page level allocator
3097 * @node: node to use for allocation or NUMA_NO_NODE
3098 * @caller: caller's return address
3099 *
3100 * Allocate enough pages to cover @size from the page level allocator with
3101 * @gfp_mask flags. Map them into contiguous kernel virtual space.
3102 *
3103 * Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
3104 * and __GFP_NOFAIL are not supported
3105 *
3106 * Any use of gfp flags outside of GFP_KERNEL should be consulted
3107 * with mm people.
3108 *
3109 * Return: pointer to the allocated memory or %NULL on error
3110 */
__vmalloc_node(unsigned long size,unsigned long align,gfp_t gfp_mask,int node,const void * caller)3111 void *__vmalloc_node(unsigned long size, unsigned long align,
3112 gfp_t gfp_mask, int node, const void *caller)
3113 {
3114 return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
3115 gfp_mask, PAGE_KERNEL, 0, node, caller);
3116 }
3117 /*
3118 * This is only for performance analysis of vmalloc and stress purpose.
3119 * It is required by vmalloc test module, therefore do not use it other
3120 * than that.
3121 */
3122 #ifdef CONFIG_TEST_VMALLOC_MODULE
3123 EXPORT_SYMBOL_GPL(__vmalloc_node);
3124 #endif
3125
__vmalloc(unsigned long size,gfp_t gfp_mask)3126 void *__vmalloc(unsigned long size, gfp_t gfp_mask)
3127 {
3128 return __vmalloc_node(size, 1, gfp_mask, NUMA_NO_NODE,
3129 __builtin_return_address(0));
3130 }
3131 EXPORT_SYMBOL(__vmalloc);
3132
3133 /**
3134 * vmalloc - allocate virtually contiguous memory
3135 * @size: allocation size
3136 *
3137 * Allocate enough pages to cover @size from the page level
3138 * allocator and map them into contiguous kernel virtual space.
3139 *
3140 * For tight control over page level allocator and protection flags
3141 * use __vmalloc() instead.
3142 *
3143 * Return: pointer to the allocated memory or %NULL on error
3144 */
vmalloc(unsigned long size)3145 void *vmalloc(unsigned long size)
3146 {
3147 return __vmalloc_node(size, 1, GFP_KERNEL, NUMA_NO_NODE,
3148 __builtin_return_address(0));
3149 }
3150 EXPORT_SYMBOL(vmalloc);
3151
3152 /**
3153 * vmalloc_no_huge - allocate virtually contiguous memory using small pages
3154 * @size: allocation size
3155 *
3156 * Allocate enough non-huge pages to cover @size from the page level
3157 * allocator and map them into contiguous kernel virtual space.
3158 *
3159 * Return: pointer to the allocated memory or %NULL on error
3160 */
vmalloc_no_huge(unsigned long size)3161 void *vmalloc_no_huge(unsigned long size)
3162 {
3163 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
3164 GFP_KERNEL, PAGE_KERNEL, VM_NO_HUGE_VMAP,
3165 NUMA_NO_NODE, __builtin_return_address(0));
3166 }
3167 EXPORT_SYMBOL(vmalloc_no_huge);
3168
3169 /**
3170 * vzalloc - allocate virtually contiguous memory with zero fill
3171 * @size: allocation size
3172 *
3173 * Allocate enough pages to cover @size from the page level
3174 * allocator and map them into contiguous kernel virtual space.
3175 * The memory allocated is set to zero.
3176 *
3177 * For tight control over page level allocator and protection flags
3178 * use __vmalloc() instead.
3179 *
3180 * Return: pointer to the allocated memory or %NULL on error
3181 */
vzalloc(unsigned long size)3182 void *vzalloc(unsigned long size)
3183 {
3184 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, NUMA_NO_NODE,
3185 __builtin_return_address(0));
3186 }
3187 EXPORT_SYMBOL(vzalloc);
3188
3189 /**
3190 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
3191 * @size: allocation size
3192 *
3193 * The resulting memory area is zeroed so it can be mapped to userspace
3194 * without leaking data.
3195 *
3196 * Return: pointer to the allocated memory or %NULL on error
3197 */
vmalloc_user(unsigned long size)3198 void *vmalloc_user(unsigned long size)
3199 {
3200 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3201 GFP_KERNEL | __GFP_ZERO, PAGE_KERNEL,
3202 VM_USERMAP, NUMA_NO_NODE,
3203 __builtin_return_address(0));
3204 }
3205 EXPORT_SYMBOL(vmalloc_user);
3206
3207 /**
3208 * vmalloc_node - allocate memory on a specific node
3209 * @size: allocation size
3210 * @node: numa node
3211 *
3212 * Allocate enough pages to cover @size from the page level
3213 * allocator and map them into contiguous kernel virtual space.
3214 *
3215 * For tight control over page level allocator and protection flags
3216 * use __vmalloc() instead.
3217 *
3218 * Return: pointer to the allocated memory or %NULL on error
3219 */
vmalloc_node(unsigned long size,int node)3220 void *vmalloc_node(unsigned long size, int node)
3221 {
3222 return __vmalloc_node(size, 1, GFP_KERNEL, node,
3223 __builtin_return_address(0));
3224 }
3225 EXPORT_SYMBOL(vmalloc_node);
3226
3227 /**
3228 * vzalloc_node - allocate memory on a specific node with zero fill
3229 * @size: allocation size
3230 * @node: numa node
3231 *
3232 * Allocate enough pages to cover @size from the page level
3233 * allocator and map them into contiguous kernel virtual space.
3234 * The memory allocated is set to zero.
3235 *
3236 * Return: pointer to the allocated memory or %NULL on error
3237 */
vzalloc_node(unsigned long size,int node)3238 void *vzalloc_node(unsigned long size, int node)
3239 {
3240 return __vmalloc_node(size, 1, GFP_KERNEL | __GFP_ZERO, node,
3241 __builtin_return_address(0));
3242 }
3243 EXPORT_SYMBOL(vzalloc_node);
3244
3245 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
3246 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3247 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
3248 #define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
3249 #else
3250 /*
3251 * 64b systems should always have either DMA or DMA32 zones. For others
3252 * GFP_DMA32 should do the right thing and use the normal zone.
3253 */
3254 #define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
3255 #endif
3256
3257 /**
3258 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
3259 * @size: allocation size
3260 *
3261 * Allocate enough 32bit PA addressable pages to cover @size from the
3262 * page level allocator and map them into contiguous kernel virtual space.
3263 *
3264 * Return: pointer to the allocated memory or %NULL on error
3265 */
vmalloc_32(unsigned long size)3266 void *vmalloc_32(unsigned long size)
3267 {
3268 return __vmalloc_node(size, 1, GFP_VMALLOC32, NUMA_NO_NODE,
3269 __builtin_return_address(0));
3270 }
3271 EXPORT_SYMBOL(vmalloc_32);
3272
3273 /**
3274 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
3275 * @size: allocation size
3276 *
3277 * The resulting memory area is 32bit addressable and zeroed so it can be
3278 * mapped to userspace without leaking data.
3279 *
3280 * Return: pointer to the allocated memory or %NULL on error
3281 */
vmalloc_32_user(unsigned long size)3282 void *vmalloc_32_user(unsigned long size)
3283 {
3284 return __vmalloc_node_range(size, SHMLBA, VMALLOC_START, VMALLOC_END,
3285 GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
3286 VM_USERMAP, NUMA_NO_NODE,
3287 __builtin_return_address(0));
3288 }
3289 EXPORT_SYMBOL(vmalloc_32_user);
3290
3291 /*
3292 * small helper routine , copy contents to buf from addr.
3293 * If the page is not present, fill zero.
3294 */
3295
aligned_vread(char * buf,char * addr,unsigned long count)3296 static int aligned_vread(char *buf, char *addr, unsigned long count)
3297 {
3298 struct page *p;
3299 int copied = 0;
3300
3301 while (count) {
3302 unsigned long offset, length;
3303
3304 offset = offset_in_page(addr);
3305 length = PAGE_SIZE - offset;
3306 if (length > count)
3307 length = count;
3308 p = vmalloc_to_page(addr);
3309 /*
3310 * To do safe access to this _mapped_ area, we need
3311 * lock. But adding lock here means that we need to add
3312 * overhead of vmalloc()/vfree() calls for this _debug_
3313 * interface, rarely used. Instead of that, we'll use
3314 * kmap() and get small overhead in this access function.
3315 */
3316 if (p) {
3317 /* We can expect USER0 is not used -- see vread() */
3318 void *map = kmap_atomic(p);
3319 memcpy(buf, map + offset, length);
3320 kunmap_atomic(map);
3321 } else
3322 memset(buf, 0, length);
3323
3324 addr += length;
3325 buf += length;
3326 copied += length;
3327 count -= length;
3328 }
3329 return copied;
3330 }
3331
3332 /**
3333 * vread() - read vmalloc area in a safe way.
3334 * @buf: buffer for reading data
3335 * @addr: vm address.
3336 * @count: number of bytes to be read.
3337 *
3338 * This function checks that addr is a valid vmalloc'ed area, and
3339 * copy data from that area to a given buffer. If the given memory range
3340 * of [addr...addr+count) includes some valid address, data is copied to
3341 * proper area of @buf. If there are memory holes, they'll be zero-filled.
3342 * IOREMAP area is treated as memory hole and no copy is done.
3343 *
3344 * If [addr...addr+count) doesn't includes any intersects with alive
3345 * vm_struct area, returns 0. @buf should be kernel's buffer.
3346 *
3347 * Note: In usual ops, vread() is never necessary because the caller
3348 * should know vmalloc() area is valid and can use memcpy().
3349 * This is for routines which have to access vmalloc area without
3350 * any information, as /proc/kcore.
3351 *
3352 * Return: number of bytes for which addr and buf should be increased
3353 * (same number as @count) or %0 if [addr...addr+count) doesn't
3354 * include any intersection with valid vmalloc area
3355 */
vread(char * buf,char * addr,unsigned long count)3356 long vread(char *buf, char *addr, unsigned long count)
3357 {
3358 struct vmap_area *va;
3359 struct vm_struct *vm;
3360 char *vaddr, *buf_start = buf;
3361 unsigned long buflen = count;
3362 unsigned long n;
3363
3364 /* Don't allow overflow */
3365 if ((unsigned long) addr + count < count)
3366 count = -(unsigned long) addr;
3367
3368 spin_lock(&vmap_area_lock);
3369 va = find_vmap_area_exceed_addr((unsigned long)addr);
3370 if (!va)
3371 goto finished;
3372
3373 /* no intersects with alive vmap_area */
3374 if ((unsigned long)addr + count <= va->va_start)
3375 goto finished;
3376
3377 list_for_each_entry_from(va, &vmap_area_list, list) {
3378 if (!count)
3379 break;
3380
3381 if (!va->vm)
3382 continue;
3383
3384 vm = va->vm;
3385 vaddr = (char *) vm->addr;
3386 if (addr >= vaddr + get_vm_area_size(vm))
3387 continue;
3388 while (addr < vaddr) {
3389 if (count == 0)
3390 goto finished;
3391 *buf = '\0';
3392 buf++;
3393 addr++;
3394 count--;
3395 }
3396 n = vaddr + get_vm_area_size(vm) - addr;
3397 if (n > count)
3398 n = count;
3399 if (!(vm->flags & VM_IOREMAP))
3400 aligned_vread(buf, addr, n);
3401 else /* IOREMAP area is treated as memory hole */
3402 memset(buf, 0, n);
3403 buf += n;
3404 addr += n;
3405 count -= n;
3406 }
3407 finished:
3408 spin_unlock(&vmap_area_lock);
3409
3410 if (buf == buf_start)
3411 return 0;
3412 /* zero-fill memory holes */
3413 if (buf != buf_start + buflen)
3414 memset(buf, 0, buflen - (buf - buf_start));
3415
3416 return buflen;
3417 }
3418
3419 /**
3420 * remap_vmalloc_range_partial - map vmalloc pages to userspace
3421 * @vma: vma to cover
3422 * @uaddr: target user address to start at
3423 * @kaddr: virtual address of vmalloc kernel memory
3424 * @pgoff: offset from @kaddr to start at
3425 * @size: size of map area
3426 *
3427 * Returns: 0 for success, -Exxx on failure
3428 *
3429 * This function checks that @kaddr is a valid vmalloc'ed area,
3430 * and that it is big enough to cover the range starting at
3431 * @uaddr in @vma. Will return failure if that criteria isn't
3432 * met.
3433 *
3434 * Similar to remap_pfn_range() (see mm/memory.c)
3435 */
remap_vmalloc_range_partial(struct vm_area_struct * vma,unsigned long uaddr,void * kaddr,unsigned long pgoff,unsigned long size)3436 int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
3437 void *kaddr, unsigned long pgoff,
3438 unsigned long size)
3439 {
3440 struct vm_struct *area;
3441 unsigned long off;
3442 unsigned long end_index;
3443
3444 if (check_shl_overflow(pgoff, PAGE_SHIFT, &off))
3445 return -EINVAL;
3446
3447 size = PAGE_ALIGN(size);
3448
3449 if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
3450 return -EINVAL;
3451
3452 area = find_vm_area(kaddr);
3453 if (!area)
3454 return -EINVAL;
3455
3456 if (!(area->flags & (VM_USERMAP | VM_DMA_COHERENT)))
3457 return -EINVAL;
3458
3459 if (check_add_overflow(size, off, &end_index) ||
3460 end_index > get_vm_area_size(area))
3461 return -EINVAL;
3462 kaddr += off;
3463
3464 do {
3465 struct page *page = vmalloc_to_page(kaddr);
3466 int ret;
3467
3468 ret = vm_insert_page(vma, uaddr, page);
3469 if (ret)
3470 return ret;
3471
3472 uaddr += PAGE_SIZE;
3473 kaddr += PAGE_SIZE;
3474 size -= PAGE_SIZE;
3475 } while (size > 0);
3476
3477 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
3478
3479 return 0;
3480 }
3481
3482 /**
3483 * remap_vmalloc_range - map vmalloc pages to userspace
3484 * @vma: vma to cover (map full range of vma)
3485 * @addr: vmalloc memory
3486 * @pgoff: number of pages into addr before first page to map
3487 *
3488 * Returns: 0 for success, -Exxx on failure
3489 *
3490 * This function checks that addr is a valid vmalloc'ed area, and
3491 * that it is big enough to cover the vma. Will return failure if
3492 * that criteria isn't met.
3493 *
3494 * Similar to remap_pfn_range() (see mm/memory.c)
3495 */
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)3496 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
3497 unsigned long pgoff)
3498 {
3499 return remap_vmalloc_range_partial(vma, vma->vm_start,
3500 addr, pgoff,
3501 vma->vm_end - vma->vm_start);
3502 }
3503 EXPORT_SYMBOL(remap_vmalloc_range);
3504
free_vm_area(struct vm_struct * area)3505 void free_vm_area(struct vm_struct *area)
3506 {
3507 struct vm_struct *ret;
3508 ret = remove_vm_area(area->addr);
3509 BUG_ON(ret != area);
3510 kfree(area);
3511 }
3512 EXPORT_SYMBOL_GPL(free_vm_area);
3513
3514 #ifdef CONFIG_SMP
node_to_va(struct rb_node * n)3515 static struct vmap_area *node_to_va(struct rb_node *n)
3516 {
3517 return rb_entry_safe(n, struct vmap_area, rb_node);
3518 }
3519
3520 /**
3521 * pvm_find_va_enclose_addr - find the vmap_area @addr belongs to
3522 * @addr: target address
3523 *
3524 * Returns: vmap_area if it is found. If there is no such area
3525 * the first highest(reverse order) vmap_area is returned
3526 * i.e. va->va_start < addr && va->va_end < addr or NULL
3527 * if there are no any areas before @addr.
3528 */
3529 static struct vmap_area *
pvm_find_va_enclose_addr(unsigned long addr)3530 pvm_find_va_enclose_addr(unsigned long addr)
3531 {
3532 struct vmap_area *va, *tmp;
3533 struct rb_node *n;
3534
3535 n = free_vmap_area_root.rb_node;
3536 va = NULL;
3537
3538 while (n) {
3539 tmp = rb_entry(n, struct vmap_area, rb_node);
3540 if (tmp->va_start <= addr) {
3541 va = tmp;
3542 if (tmp->va_end >= addr)
3543 break;
3544
3545 n = n->rb_right;
3546 } else {
3547 n = n->rb_left;
3548 }
3549 }
3550
3551 return va;
3552 }
3553
3554 /**
3555 * pvm_determine_end_from_reverse - find the highest aligned address
3556 * of free block below VMALLOC_END
3557 * @va:
3558 * in - the VA we start the search(reverse order);
3559 * out - the VA with the highest aligned end address.
3560 * @align: alignment for required highest address
3561 *
3562 * Returns: determined end address within vmap_area
3563 */
3564 static unsigned long
pvm_determine_end_from_reverse(struct vmap_area ** va,unsigned long align)3565 pvm_determine_end_from_reverse(struct vmap_area **va, unsigned long align)
3566 {
3567 unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3568 unsigned long addr;
3569
3570 if (likely(*va)) {
3571 list_for_each_entry_from_reverse((*va),
3572 &free_vmap_area_list, list) {
3573 addr = min((*va)->va_end & ~(align - 1), vmalloc_end);
3574 if ((*va)->va_start < addr)
3575 return addr;
3576 }
3577 }
3578
3579 return 0;
3580 }
3581
3582 /**
3583 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
3584 * @offsets: array containing offset of each area
3585 * @sizes: array containing size of each area
3586 * @nr_vms: the number of areas to allocate
3587 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
3588 *
3589 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
3590 * vm_structs on success, %NULL on failure
3591 *
3592 * Percpu allocator wants to use congruent vm areas so that it can
3593 * maintain the offsets among percpu areas. This function allocates
3594 * congruent vmalloc areas for it with GFP_KERNEL. These areas tend to
3595 * be scattered pretty far, distance between two areas easily going up
3596 * to gigabytes. To avoid interacting with regular vmallocs, these
3597 * areas are allocated from top.
3598 *
3599 * Despite its complicated look, this allocator is rather simple. It
3600 * does everything top-down and scans free blocks from the end looking
3601 * for matching base. While scanning, if any of the areas do not fit the
3602 * base address is pulled down to fit the area. Scanning is repeated till
3603 * all the areas fit and then all necessary data structures are inserted
3604 * and the result is returned.
3605 */
pcpu_get_vm_areas(const unsigned long * offsets,const size_t * sizes,int nr_vms,size_t align)3606 struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
3607 const size_t *sizes, int nr_vms,
3608 size_t align)
3609 {
3610 const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
3611 const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
3612 struct vmap_area **vas, *va;
3613 struct vm_struct **vms;
3614 int area, area2, last_area, term_area;
3615 unsigned long base, start, size, end, last_end, orig_start, orig_end;
3616 bool purged = false;
3617 enum fit_type type;
3618
3619 /* verify parameters and allocate data structures */
3620 BUG_ON(offset_in_page(align) || !is_power_of_2(align));
3621 for (last_area = 0, area = 0; area < nr_vms; area++) {
3622 start = offsets[area];
3623 end = start + sizes[area];
3624
3625 /* is everything aligned properly? */
3626 BUG_ON(!IS_ALIGNED(offsets[area], align));
3627 BUG_ON(!IS_ALIGNED(sizes[area], align));
3628
3629 /* detect the area with the highest address */
3630 if (start > offsets[last_area])
3631 last_area = area;
3632
3633 for (area2 = area + 1; area2 < nr_vms; area2++) {
3634 unsigned long start2 = offsets[area2];
3635 unsigned long end2 = start2 + sizes[area2];
3636
3637 BUG_ON(start2 < end && start < end2);
3638 }
3639 }
3640 last_end = offsets[last_area] + sizes[last_area];
3641
3642 if (vmalloc_end - vmalloc_start < last_end) {
3643 WARN_ON(true);
3644 return NULL;
3645 }
3646
3647 vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
3648 vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
3649 if (!vas || !vms)
3650 goto err_free2;
3651
3652 for (area = 0; area < nr_vms; area++) {
3653 vas[area] = kmem_cache_zalloc(vmap_area_cachep, GFP_KERNEL);
3654 vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
3655 if (!vas[area] || !vms[area])
3656 goto err_free;
3657 }
3658 retry:
3659 spin_lock(&free_vmap_area_lock);
3660
3661 /* start scanning - we scan from the top, begin with the last area */
3662 area = term_area = last_area;
3663 start = offsets[area];
3664 end = start + sizes[area];
3665
3666 va = pvm_find_va_enclose_addr(vmalloc_end);
3667 base = pvm_determine_end_from_reverse(&va, align) - end;
3668
3669 while (true) {
3670 /*
3671 * base might have underflowed, add last_end before
3672 * comparing.
3673 */
3674 if (base + last_end < vmalloc_start + last_end)
3675 goto overflow;
3676
3677 /*
3678 * Fitting base has not been found.
3679 */
3680 if (va == NULL)
3681 goto overflow;
3682
3683 /*
3684 * If required width exceeds current VA block, move
3685 * base downwards and then recheck.
3686 */
3687 if (base + end > va->va_end) {
3688 base = pvm_determine_end_from_reverse(&va, align) - end;
3689 term_area = area;
3690 continue;
3691 }
3692
3693 /*
3694 * If this VA does not fit, move base downwards and recheck.
3695 */
3696 if (base + start < va->va_start) {
3697 va = node_to_va(rb_prev(&va->rb_node));
3698 base = pvm_determine_end_from_reverse(&va, align) - end;
3699 term_area = area;
3700 continue;
3701 }
3702
3703 /*
3704 * This area fits, move on to the previous one. If
3705 * the previous one is the terminal one, we're done.
3706 */
3707 area = (area + nr_vms - 1) % nr_vms;
3708 if (area == term_area)
3709 break;
3710
3711 start = offsets[area];
3712 end = start + sizes[area];
3713 va = pvm_find_va_enclose_addr(base + end);
3714 }
3715
3716 /* we've found a fitting base, insert all va's */
3717 for (area = 0; area < nr_vms; area++) {
3718 int ret;
3719
3720 start = base + offsets[area];
3721 size = sizes[area];
3722
3723 va = pvm_find_va_enclose_addr(start);
3724 if (WARN_ON_ONCE(va == NULL))
3725 /* It is a BUG(), but trigger recovery instead. */
3726 goto recovery;
3727
3728 type = classify_va_fit_type(va, start, size);
3729 if (WARN_ON_ONCE(type == NOTHING_FIT))
3730 /* It is a BUG(), but trigger recovery instead. */
3731 goto recovery;
3732
3733 ret = adjust_va_to_fit_type(va, start, size, type);
3734 if (unlikely(ret))
3735 goto recovery;
3736
3737 /* Allocated area. */
3738 va = vas[area];
3739 va->va_start = start;
3740 va->va_end = start + size;
3741 }
3742
3743 spin_unlock(&free_vmap_area_lock);
3744
3745 /* populate the kasan shadow space */
3746 for (area = 0; area < nr_vms; area++) {
3747 if (kasan_populate_vmalloc(vas[area]->va_start, sizes[area]))
3748 goto err_free_shadow;
3749
3750 kasan_unpoison_vmalloc((void *)vas[area]->va_start,
3751 sizes[area]);
3752 }
3753
3754 /* insert all vm's */
3755 spin_lock(&vmap_area_lock);
3756 for (area = 0; area < nr_vms; area++) {
3757 insert_vmap_area(vas[area], &vmap_area_root, &vmap_area_list);
3758
3759 setup_vmalloc_vm_locked(vms[area], vas[area], VM_ALLOC,
3760 pcpu_get_vm_areas);
3761 }
3762 spin_unlock(&vmap_area_lock);
3763
3764 kfree(vas);
3765 return vms;
3766
3767 recovery:
3768 /*
3769 * Remove previously allocated areas. There is no
3770 * need in removing these areas from the busy tree,
3771 * because they are inserted only on the final step
3772 * and when pcpu_get_vm_areas() is success.
3773 */
3774 while (area--) {
3775 orig_start = vas[area]->va_start;
3776 orig_end = vas[area]->va_end;
3777 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3778 &free_vmap_area_list);
3779 if (va)
3780 kasan_release_vmalloc(orig_start, orig_end,
3781 va->va_start, va->va_end);
3782 vas[area] = NULL;
3783 }
3784
3785 overflow:
3786 spin_unlock(&free_vmap_area_lock);
3787 if (!purged) {
3788 purge_vmap_area_lazy();
3789 purged = true;
3790
3791 /* Before "retry", check if we recover. */
3792 for (area = 0; area < nr_vms; area++) {
3793 if (vas[area])
3794 continue;
3795
3796 vas[area] = kmem_cache_zalloc(
3797 vmap_area_cachep, GFP_KERNEL);
3798 if (!vas[area])
3799 goto err_free;
3800 }
3801
3802 goto retry;
3803 }
3804
3805 err_free:
3806 for (area = 0; area < nr_vms; area++) {
3807 if (vas[area])
3808 kmem_cache_free(vmap_area_cachep, vas[area]);
3809
3810 kfree(vms[area]);
3811 }
3812 err_free2:
3813 kfree(vas);
3814 kfree(vms);
3815 return NULL;
3816
3817 err_free_shadow:
3818 spin_lock(&free_vmap_area_lock);
3819 /*
3820 * We release all the vmalloc shadows, even the ones for regions that
3821 * hadn't been successfully added. This relies on kasan_release_vmalloc
3822 * being able to tolerate this case.
3823 */
3824 for (area = 0; area < nr_vms; area++) {
3825 orig_start = vas[area]->va_start;
3826 orig_end = vas[area]->va_end;
3827 va = merge_or_add_vmap_area_augment(vas[area], &free_vmap_area_root,
3828 &free_vmap_area_list);
3829 if (va)
3830 kasan_release_vmalloc(orig_start, orig_end,
3831 va->va_start, va->va_end);
3832 vas[area] = NULL;
3833 kfree(vms[area]);
3834 }
3835 spin_unlock(&free_vmap_area_lock);
3836 kfree(vas);
3837 kfree(vms);
3838 return NULL;
3839 }
3840
3841 /**
3842 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
3843 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
3844 * @nr_vms: the number of allocated areas
3845 *
3846 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
3847 */
pcpu_free_vm_areas(struct vm_struct ** vms,int nr_vms)3848 void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
3849 {
3850 int i;
3851
3852 for (i = 0; i < nr_vms; i++)
3853 free_vm_area(vms[i]);
3854 kfree(vms);
3855 }
3856 #endif /* CONFIG_SMP */
3857
3858 #ifdef CONFIG_PRINTK
vmalloc_dump_obj(void * object)3859 bool vmalloc_dump_obj(void *object)
3860 {
3861 struct vm_struct *vm;
3862 void *objp = (void *)PAGE_ALIGN((unsigned long)object);
3863
3864 vm = find_vm_area(objp);
3865 if (!vm)
3866 return false;
3867 pr_cont(" %u-page vmalloc region starting at %#lx allocated at %pS\n",
3868 vm->nr_pages, (unsigned long)vm->addr, vm->caller);
3869 return true;
3870 }
3871 #endif
3872
3873 #ifdef CONFIG_PROC_FS
s_start(struct seq_file * m,loff_t * pos)3874 static void *s_start(struct seq_file *m, loff_t *pos)
3875 __acquires(&vmap_purge_lock)
3876 __acquires(&vmap_area_lock)
3877 {
3878 mutex_lock(&vmap_purge_lock);
3879 spin_lock(&vmap_area_lock);
3880
3881 return seq_list_start(&vmap_area_list, *pos);
3882 }
3883
s_next(struct seq_file * m,void * p,loff_t * pos)3884 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
3885 {
3886 return seq_list_next(p, &vmap_area_list, pos);
3887 }
3888
s_stop(struct seq_file * m,void * p)3889 static void s_stop(struct seq_file *m, void *p)
3890 __releases(&vmap_area_lock)
3891 __releases(&vmap_purge_lock)
3892 {
3893 spin_unlock(&vmap_area_lock);
3894 mutex_unlock(&vmap_purge_lock);
3895 }
3896
show_numa_info(struct seq_file * m,struct vm_struct * v)3897 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
3898 {
3899 if (IS_ENABLED(CONFIG_NUMA)) {
3900 unsigned int nr, *counters = m->private;
3901 unsigned int step = 1U << vm_area_page_order(v);
3902
3903 if (!counters)
3904 return;
3905
3906 if (v->flags & VM_UNINITIALIZED)
3907 return;
3908 /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
3909 smp_rmb();
3910
3911 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
3912
3913 for (nr = 0; nr < v->nr_pages; nr += step)
3914 counters[page_to_nid(v->pages[nr])] += step;
3915 for_each_node_state(nr, N_HIGH_MEMORY)
3916 if (counters[nr])
3917 seq_printf(m, " N%u=%u", nr, counters[nr]);
3918 }
3919 }
3920
show_purge_info(struct seq_file * m)3921 static void show_purge_info(struct seq_file *m)
3922 {
3923 struct vmap_area *va;
3924
3925 spin_lock(&purge_vmap_area_lock);
3926 list_for_each_entry(va, &purge_vmap_area_list, list) {
3927 seq_printf(m, "0x%pK-0x%pK %7ld unpurged vm_area\n",
3928 (void *)va->va_start, (void *)va->va_end,
3929 va->va_end - va->va_start);
3930 }
3931 spin_unlock(&purge_vmap_area_lock);
3932 }
3933
s_show(struct seq_file * m,void * p)3934 static int s_show(struct seq_file *m, void *p)
3935 {
3936 struct vmap_area *va;
3937 struct vm_struct *v;
3938
3939 va = list_entry(p, struct vmap_area, list);
3940
3941 /*
3942 * s_show can encounter race with remove_vm_area, !vm on behalf
3943 * of vmap area is being tear down or vm_map_ram allocation.
3944 */
3945 if (!va->vm) {
3946 seq_printf(m, "0x%pK-0x%pK %7ld vm_map_ram\n",
3947 (void *)va->va_start, (void *)va->va_end,
3948 va->va_end - va->va_start);
3949
3950 goto final;
3951 }
3952
3953 v = va->vm;
3954
3955 seq_printf(m, "0x%pK-0x%pK %7ld",
3956 v->addr, v->addr + v->size, v->size);
3957
3958 if (v->caller)
3959 seq_printf(m, " %pS", v->caller);
3960
3961 if (v->nr_pages)
3962 seq_printf(m, " pages=%d", v->nr_pages);
3963
3964 if (v->phys_addr)
3965 seq_printf(m, " phys=%pa", &v->phys_addr);
3966
3967 if (v->flags & VM_IOREMAP)
3968 seq_puts(m, " ioremap");
3969
3970 if (v->flags & VM_ALLOC)
3971 seq_puts(m, " vmalloc");
3972
3973 if (v->flags & VM_MAP)
3974 seq_puts(m, " vmap");
3975
3976 if (v->flags & VM_USERMAP)
3977 seq_puts(m, " user");
3978
3979 if (v->flags & VM_DMA_COHERENT)
3980 seq_puts(m, " dma-coherent");
3981
3982 if (is_vmalloc_addr(v->pages))
3983 seq_puts(m, " vpages");
3984
3985 show_numa_info(m, v);
3986 seq_putc(m, '\n');
3987
3988 /*
3989 * As a final step, dump "unpurged" areas.
3990 */
3991 final:
3992 if (list_is_last(&va->list, &vmap_area_list))
3993 show_purge_info(m);
3994
3995 return 0;
3996 }
3997
3998 static const struct seq_operations vmalloc_op = {
3999 .start = s_start,
4000 .next = s_next,
4001 .stop = s_stop,
4002 .show = s_show,
4003 };
4004
proc_vmalloc_init(void)4005 static int __init proc_vmalloc_init(void)
4006 {
4007 if (IS_ENABLED(CONFIG_NUMA))
4008 proc_create_seq_private("vmallocinfo", 0400, NULL,
4009 &vmalloc_op,
4010 nr_node_ids * sizeof(unsigned int), NULL);
4011 else
4012 proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
4013 return 0;
4014 }
4015 module_init(proc_vmalloc_init);
4016
4017 #endif
4018