1 // SPDX-License-Identifier: GPL-2.0+
2
3 /*
4 * Freescale QuadSPI driver.
5 *
6 * Copyright (C) 2013 Freescale Semiconductor, Inc.
7 * Copyright (C) 2018 Bootlin
8 * Copyright (C) 2018 exceet electronics GmbH
9 * Copyright (C) 2018 Kontron Electronics GmbH
10 *
11 * Transition to SPI MEM interface:
12 * Authors:
13 * Boris Brezillon <bbrezillon@kernel.org>
14 * Frieder Schrempf <frieder.schrempf@kontron.de>
15 * Yogesh Gaur <yogeshnarayan.gaur@nxp.com>
16 * Suresh Gupta <suresh.gupta@nxp.com>
17 *
18 * Based on the original fsl-quadspi.c SPI NOR driver:
19 * Author: Freescale Semiconductor, Inc.
20 *
21 */
22
23 #include <linux/bitops.h>
24 #include <linux/clk.h>
25 #include <linux/completion.h>
26 #include <linux/delay.h>
27 #include <linux/err.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/iopoll.h>
32 #include <linux/jiffies.h>
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/mutex.h>
36 #include <linux/of.h>
37 #include <linux/of_device.h>
38 #include <linux/platform_device.h>
39 #include <linux/pm_qos.h>
40 #include <linux/sizes.h>
41
42 #include <linux/spi/spi.h>
43 #include <linux/spi/spi-mem.h>
44
45 /*
46 * The driver only uses one single LUT entry, that is updated on
47 * each call of exec_op(). Index 0 is preset at boot with a basic
48 * read operation, so let's use the last entry (15).
49 */
50 #define SEQID_LUT 15
51
52 /* Registers used by the driver */
53 #define QUADSPI_MCR 0x00
54 #define QUADSPI_MCR_RESERVED_MASK GENMASK(19, 16)
55 #define QUADSPI_MCR_MDIS_MASK BIT(14)
56 #define QUADSPI_MCR_CLR_TXF_MASK BIT(11)
57 #define QUADSPI_MCR_CLR_RXF_MASK BIT(10)
58 #define QUADSPI_MCR_DDR_EN_MASK BIT(7)
59 #define QUADSPI_MCR_END_CFG_MASK GENMASK(3, 2)
60 #define QUADSPI_MCR_SWRSTHD_MASK BIT(1)
61 #define QUADSPI_MCR_SWRSTSD_MASK BIT(0)
62
63 #define QUADSPI_IPCR 0x08
64 #define QUADSPI_IPCR_SEQID(x) ((x) << 24)
65
66 #define QUADSPI_FLSHCR 0x0c
67 #define QUADSPI_FLSHCR_TCSS_MASK GENMASK(3, 0)
68 #define QUADSPI_FLSHCR_TCSH_MASK GENMASK(11, 8)
69 #define QUADSPI_FLSHCR_TDH_MASK GENMASK(17, 16)
70
71 #define QUADSPI_BUF0CR 0x10
72 #define QUADSPI_BUF1CR 0x14
73 #define QUADSPI_BUF2CR 0x18
74 #define QUADSPI_BUFXCR_INVALID_MSTRID 0xe
75
76 #define QUADSPI_BUF3CR 0x1c
77 #define QUADSPI_BUF3CR_ALLMST_MASK BIT(31)
78 #define QUADSPI_BUF3CR_ADATSZ(x) ((x) << 8)
79 #define QUADSPI_BUF3CR_ADATSZ_MASK GENMASK(15, 8)
80
81 #define QUADSPI_BFGENCR 0x20
82 #define QUADSPI_BFGENCR_SEQID(x) ((x) << 12)
83
84 #define QUADSPI_BUF0IND 0x30
85 #define QUADSPI_BUF1IND 0x34
86 #define QUADSPI_BUF2IND 0x38
87 #define QUADSPI_SFAR 0x100
88
89 #define QUADSPI_SMPR 0x108
90 #define QUADSPI_SMPR_DDRSMP_MASK GENMASK(18, 16)
91 #define QUADSPI_SMPR_FSDLY_MASK BIT(6)
92 #define QUADSPI_SMPR_FSPHS_MASK BIT(5)
93 #define QUADSPI_SMPR_HSENA_MASK BIT(0)
94
95 #define QUADSPI_RBCT 0x110
96 #define QUADSPI_RBCT_WMRK_MASK GENMASK(4, 0)
97 #define QUADSPI_RBCT_RXBRD_USEIPS BIT(8)
98
99 #define QUADSPI_TBDR 0x154
100
101 #define QUADSPI_SR 0x15c
102 #define QUADSPI_SR_IP_ACC_MASK BIT(1)
103 #define QUADSPI_SR_AHB_ACC_MASK BIT(2)
104
105 #define QUADSPI_FR 0x160
106 #define QUADSPI_FR_TFF_MASK BIT(0)
107
108 #define QUADSPI_RSER 0x164
109 #define QUADSPI_RSER_TFIE BIT(0)
110
111 #define QUADSPI_SPTRCLR 0x16c
112 #define QUADSPI_SPTRCLR_IPPTRC BIT(8)
113 #define QUADSPI_SPTRCLR_BFPTRC BIT(0)
114
115 #define QUADSPI_SFA1AD 0x180
116 #define QUADSPI_SFA2AD 0x184
117 #define QUADSPI_SFB1AD 0x188
118 #define QUADSPI_SFB2AD 0x18c
119 #define QUADSPI_RBDR(x) (0x200 + ((x) * 4))
120
121 #define QUADSPI_LUTKEY 0x300
122 #define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
123
124 #define QUADSPI_LCKCR 0x304
125 #define QUADSPI_LCKER_LOCK BIT(0)
126 #define QUADSPI_LCKER_UNLOCK BIT(1)
127
128 #define QUADSPI_LUT_BASE 0x310
129 #define QUADSPI_LUT_OFFSET (SEQID_LUT * 4 * 4)
130 #define QUADSPI_LUT_REG(idx) \
131 (QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4)
132
133 /* Instruction set for the LUT register */
134 #define LUT_STOP 0
135 #define LUT_CMD 1
136 #define LUT_ADDR 2
137 #define LUT_DUMMY 3
138 #define LUT_MODE 4
139 #define LUT_MODE2 5
140 #define LUT_MODE4 6
141 #define LUT_FSL_READ 7
142 #define LUT_FSL_WRITE 8
143 #define LUT_JMP_ON_CS 9
144 #define LUT_ADDR_DDR 10
145 #define LUT_MODE_DDR 11
146 #define LUT_MODE2_DDR 12
147 #define LUT_MODE4_DDR 13
148 #define LUT_FSL_READ_DDR 14
149 #define LUT_FSL_WRITE_DDR 15
150 #define LUT_DATA_LEARN 16
151
152 /*
153 * The PAD definitions for LUT register.
154 *
155 * The pad stands for the number of IO lines [0:3].
156 * For example, the quad read needs four IO lines,
157 * so you should use LUT_PAD(4).
158 */
159 #define LUT_PAD(x) (fls(x) - 1)
160
161 /*
162 * Macro for constructing the LUT entries with the following
163 * register layout:
164 *
165 * ---------------------------------------------------
166 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
167 * ---------------------------------------------------
168 */
169 #define LUT_DEF(idx, ins, pad, opr) \
170 ((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16))
171
172 /* Controller needs driver to swap endianness */
173 #define QUADSPI_QUIRK_SWAP_ENDIAN BIT(0)
174
175 /* Controller needs 4x internal clock */
176 #define QUADSPI_QUIRK_4X_INT_CLK BIT(1)
177
178 /*
179 * TKT253890, the controller needs the driver to fill the txfifo with
180 * 16 bytes at least to trigger a data transfer, even though the extra
181 * data won't be transferred.
182 */
183 #define QUADSPI_QUIRK_TKT253890 BIT(2)
184
185 /* TKT245618, the controller cannot wake up from wait mode */
186 #define QUADSPI_QUIRK_TKT245618 BIT(3)
187
188 /*
189 * Controller adds QSPI_AMBA_BASE (base address of the mapped memory)
190 * internally. No need to add it when setting SFXXAD and SFAR registers
191 */
192 #define QUADSPI_QUIRK_BASE_INTERNAL BIT(4)
193
194 /*
195 * Controller uses TDH bits in register QUADSPI_FLSHCR.
196 * They need to be set in accordance with the DDR/SDR mode.
197 */
198 #define QUADSPI_QUIRK_USE_TDH_SETTING BIT(5)
199
200 struct fsl_qspi_devtype_data {
201 unsigned int rxfifo;
202 unsigned int txfifo;
203 int invalid_mstrid;
204 unsigned int ahb_buf_size;
205 unsigned int quirks;
206 bool little_endian;
207 };
208
209 static const struct fsl_qspi_devtype_data vybrid_data = {
210 .rxfifo = SZ_128,
211 .txfifo = SZ_64,
212 .invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
213 .ahb_buf_size = SZ_1K,
214 .quirks = QUADSPI_QUIRK_SWAP_ENDIAN,
215 .little_endian = true,
216 };
217
218 static const struct fsl_qspi_devtype_data imx6sx_data = {
219 .rxfifo = SZ_128,
220 .txfifo = SZ_512,
221 .invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
222 .ahb_buf_size = SZ_1K,
223 .quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618,
224 .little_endian = true,
225 };
226
227 static const struct fsl_qspi_devtype_data imx7d_data = {
228 .rxfifo = SZ_128,
229 .txfifo = SZ_512,
230 .invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
231 .ahb_buf_size = SZ_1K,
232 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
233 QUADSPI_QUIRK_USE_TDH_SETTING,
234 .little_endian = true,
235 };
236
237 static const struct fsl_qspi_devtype_data imx6ul_data = {
238 .rxfifo = SZ_128,
239 .txfifo = SZ_512,
240 .invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
241 .ahb_buf_size = SZ_1K,
242 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
243 QUADSPI_QUIRK_USE_TDH_SETTING,
244 .little_endian = true,
245 };
246
247 static const struct fsl_qspi_devtype_data ls1021a_data = {
248 .rxfifo = SZ_128,
249 .txfifo = SZ_64,
250 .invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
251 .ahb_buf_size = SZ_1K,
252 .quirks = 0,
253 .little_endian = false,
254 };
255
256 static const struct fsl_qspi_devtype_data ls2080a_data = {
257 .rxfifo = SZ_128,
258 .txfifo = SZ_64,
259 .ahb_buf_size = SZ_1K,
260 .invalid_mstrid = 0x0,
261 .quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_BASE_INTERNAL,
262 .little_endian = true,
263 };
264
265 struct fsl_qspi {
266 void __iomem *iobase;
267 void __iomem *ahb_addr;
268 u32 memmap_phy;
269 struct clk *clk, *clk_en;
270 struct device *dev;
271 struct completion c;
272 const struct fsl_qspi_devtype_data *devtype_data;
273 struct mutex lock;
274 struct pm_qos_request pm_qos_req;
275 int selected;
276 };
277
needs_swap_endian(struct fsl_qspi * q)278 static inline int needs_swap_endian(struct fsl_qspi *q)
279 {
280 return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN;
281 }
282
needs_4x_clock(struct fsl_qspi * q)283 static inline int needs_4x_clock(struct fsl_qspi *q)
284 {
285 return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK;
286 }
287
needs_fill_txfifo(struct fsl_qspi * q)288 static inline int needs_fill_txfifo(struct fsl_qspi *q)
289 {
290 return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890;
291 }
292
needs_wakeup_wait_mode(struct fsl_qspi * q)293 static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
294 {
295 return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618;
296 }
297
needs_amba_base_offset(struct fsl_qspi * q)298 static inline int needs_amba_base_offset(struct fsl_qspi *q)
299 {
300 return !(q->devtype_data->quirks & QUADSPI_QUIRK_BASE_INTERNAL);
301 }
302
needs_tdh_setting(struct fsl_qspi * q)303 static inline int needs_tdh_setting(struct fsl_qspi *q)
304 {
305 return q->devtype_data->quirks & QUADSPI_QUIRK_USE_TDH_SETTING;
306 }
307
308 /*
309 * An IC bug makes it necessary to rearrange the 32-bit data.
310 * Later chips, such as IMX6SLX, have fixed this bug.
311 */
fsl_qspi_endian_xchg(struct fsl_qspi * q,u32 a)312 static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
313 {
314 return needs_swap_endian(q) ? __swab32(a) : a;
315 }
316
317 /*
318 * R/W functions for big- or little-endian registers:
319 * The QSPI controller's endianness is independent of
320 * the CPU core's endianness. So far, although the CPU
321 * core is little-endian the QSPI controller can use
322 * big-endian or little-endian.
323 */
qspi_writel(struct fsl_qspi * q,u32 val,void __iomem * addr)324 static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
325 {
326 if (q->devtype_data->little_endian)
327 iowrite32(val, addr);
328 else
329 iowrite32be(val, addr);
330 }
331
qspi_readl(struct fsl_qspi * q,void __iomem * addr)332 static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
333 {
334 if (q->devtype_data->little_endian)
335 return ioread32(addr);
336
337 return ioread32be(addr);
338 }
339
fsl_qspi_irq_handler(int irq,void * dev_id)340 static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
341 {
342 struct fsl_qspi *q = dev_id;
343 u32 reg;
344
345 /* clear interrupt */
346 reg = qspi_readl(q, q->iobase + QUADSPI_FR);
347 qspi_writel(q, reg, q->iobase + QUADSPI_FR);
348
349 if (reg & QUADSPI_FR_TFF_MASK)
350 complete(&q->c);
351
352 dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", 0, reg);
353 return IRQ_HANDLED;
354 }
355
fsl_qspi_check_buswidth(struct fsl_qspi * q,u8 width)356 static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width)
357 {
358 switch (width) {
359 case 1:
360 case 2:
361 case 4:
362 return 0;
363 }
364
365 return -ENOTSUPP;
366 }
367
fsl_qspi_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)368 static bool fsl_qspi_supports_op(struct spi_mem *mem,
369 const struct spi_mem_op *op)
370 {
371 struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
372 int ret;
373
374 ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth);
375
376 if (op->addr.nbytes)
377 ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth);
378
379 if (op->dummy.nbytes)
380 ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth);
381
382 if (op->data.nbytes)
383 ret |= fsl_qspi_check_buswidth(q, op->data.buswidth);
384
385 if (ret)
386 return false;
387
388 /*
389 * The number of instructions needed for the op, needs
390 * to fit into a single LUT entry.
391 */
392 if (op->addr.nbytes +
393 (op->dummy.nbytes ? 1:0) +
394 (op->data.nbytes ? 1:0) > 6)
395 return false;
396
397 /* Max 64 dummy clock cycles supported */
398 if (op->dummy.nbytes &&
399 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
400 return false;
401
402 /* Max data length, check controller limits and alignment */
403 if (op->data.dir == SPI_MEM_DATA_IN &&
404 (op->data.nbytes > q->devtype_data->ahb_buf_size ||
405 (op->data.nbytes > q->devtype_data->rxfifo - 4 &&
406 !IS_ALIGNED(op->data.nbytes, 8))))
407 return false;
408
409 if (op->data.dir == SPI_MEM_DATA_OUT &&
410 op->data.nbytes > q->devtype_data->txfifo)
411 return false;
412
413 return spi_mem_default_supports_op(mem, op);
414 }
415
fsl_qspi_prepare_lut(struct fsl_qspi * q,const struct spi_mem_op * op)416 static void fsl_qspi_prepare_lut(struct fsl_qspi *q,
417 const struct spi_mem_op *op)
418 {
419 void __iomem *base = q->iobase;
420 u32 lutval[4] = {};
421 int lutidx = 1, i;
422
423 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
424 op->cmd.opcode);
425
426 /*
427 * For some unknown reason, using LUT_ADDR doesn't work in some
428 * cases (at least with only one byte long addresses), so
429 * let's use LUT_MODE to write the address bytes one by one
430 */
431 for (i = 0; i < op->addr.nbytes; i++) {
432 u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
433
434 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE,
435 LUT_PAD(op->addr.buswidth),
436 addrbyte);
437 lutidx++;
438 }
439
440 if (op->dummy.nbytes) {
441 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
442 LUT_PAD(op->dummy.buswidth),
443 op->dummy.nbytes * 8 /
444 op->dummy.buswidth);
445 lutidx++;
446 }
447
448 if (op->data.nbytes) {
449 lutval[lutidx / 2] |= LUT_DEF(lutidx,
450 op->data.dir == SPI_MEM_DATA_IN ?
451 LUT_FSL_READ : LUT_FSL_WRITE,
452 LUT_PAD(op->data.buswidth),
453 0);
454 lutidx++;
455 }
456
457 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
458
459 /* unlock LUT */
460 qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
461 qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
462
463 /* fill LUT */
464 for (i = 0; i < ARRAY_SIZE(lutval); i++)
465 qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i));
466
467 /* lock LUT */
468 qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
469 qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
470 }
471
fsl_qspi_clk_prep_enable(struct fsl_qspi * q)472 static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
473 {
474 int ret;
475
476 ret = clk_prepare_enable(q->clk_en);
477 if (ret)
478 return ret;
479
480 ret = clk_prepare_enable(q->clk);
481 if (ret) {
482 clk_disable_unprepare(q->clk_en);
483 return ret;
484 }
485
486 if (needs_wakeup_wait_mode(q))
487 cpu_latency_qos_add_request(&q->pm_qos_req, 0);
488
489 return 0;
490 }
491
fsl_qspi_clk_disable_unprep(struct fsl_qspi * q)492 static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
493 {
494 if (needs_wakeup_wait_mode(q))
495 cpu_latency_qos_remove_request(&q->pm_qos_req);
496
497 clk_disable_unprepare(q->clk);
498 clk_disable_unprepare(q->clk_en);
499 }
500
501 /*
502 * If we have changed the content of the flash by writing or erasing, or if we
503 * read from flash with a different offset into the page buffer, we need to
504 * invalidate the AHB buffer. If we do not do so, we may read out the wrong
505 * data. The spec tells us reset the AHB domain and Serial Flash domain at
506 * the same time.
507 */
fsl_qspi_invalidate(struct fsl_qspi * q)508 static void fsl_qspi_invalidate(struct fsl_qspi *q)
509 {
510 u32 reg;
511
512 reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
513 reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
514 qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
515
516 /*
517 * The minimum delay : 1 AHB + 2 SFCK clocks.
518 * Delay 1 us is enough.
519 */
520 udelay(1);
521
522 reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
523 qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
524 }
525
fsl_qspi_select_mem(struct fsl_qspi * q,struct spi_device * spi)526 static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_device *spi)
527 {
528 unsigned long rate = spi->max_speed_hz;
529 int ret;
530
531 if (q->selected == spi->chip_select)
532 return;
533
534 if (needs_4x_clock(q))
535 rate *= 4;
536
537 fsl_qspi_clk_disable_unprep(q);
538
539 ret = clk_set_rate(q->clk, rate);
540 if (ret)
541 return;
542
543 ret = fsl_qspi_clk_prep_enable(q);
544 if (ret)
545 return;
546
547 q->selected = spi->chip_select;
548
549 fsl_qspi_invalidate(q);
550 }
551
fsl_qspi_read_ahb(struct fsl_qspi * q,const struct spi_mem_op * op)552 static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct spi_mem_op *op)
553 {
554 memcpy_fromio(op->data.buf.in,
555 q->ahb_addr + q->selected * q->devtype_data->ahb_buf_size,
556 op->data.nbytes);
557 }
558
fsl_qspi_fill_txfifo(struct fsl_qspi * q,const struct spi_mem_op * op)559 static void fsl_qspi_fill_txfifo(struct fsl_qspi *q,
560 const struct spi_mem_op *op)
561 {
562 void __iomem *base = q->iobase;
563 int i;
564 u32 val;
565
566 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
567 memcpy(&val, op->data.buf.out + i, 4);
568 val = fsl_qspi_endian_xchg(q, val);
569 qspi_writel(q, val, base + QUADSPI_TBDR);
570 }
571
572 if (i < op->data.nbytes) {
573 memcpy(&val, op->data.buf.out + i, op->data.nbytes - i);
574 val = fsl_qspi_endian_xchg(q, val);
575 qspi_writel(q, val, base + QUADSPI_TBDR);
576 }
577
578 if (needs_fill_txfifo(q)) {
579 for (i = op->data.nbytes; i < 16; i += 4)
580 qspi_writel(q, 0, base + QUADSPI_TBDR);
581 }
582 }
583
fsl_qspi_read_rxfifo(struct fsl_qspi * q,const struct spi_mem_op * op)584 static void fsl_qspi_read_rxfifo(struct fsl_qspi *q,
585 const struct spi_mem_op *op)
586 {
587 void __iomem *base = q->iobase;
588 int i;
589 u8 *buf = op->data.buf.in;
590 u32 val;
591
592 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
593 val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
594 val = fsl_qspi_endian_xchg(q, val);
595 memcpy(buf + i, &val, 4);
596 }
597
598 if (i < op->data.nbytes) {
599 val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
600 val = fsl_qspi_endian_xchg(q, val);
601 memcpy(buf + i, &val, op->data.nbytes - i);
602 }
603 }
604
fsl_qspi_do_op(struct fsl_qspi * q,const struct spi_mem_op * op)605 static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op *op)
606 {
607 void __iomem *base = q->iobase;
608 int err = 0;
609
610 init_completion(&q->c);
611
612 /*
613 * Always start the sequence at the same index since we update
614 * the LUT at each exec_op() call. And also specify the DATA
615 * length, since it's has not been specified in the LUT.
616 */
617 qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT),
618 base + QUADSPI_IPCR);
619
620 /* Wait for the interrupt. */
621 if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000)))
622 err = -ETIMEDOUT;
623
624 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
625 fsl_qspi_read_rxfifo(q, op);
626
627 return err;
628 }
629
fsl_qspi_readl_poll_tout(struct fsl_qspi * q,void __iomem * base,u32 mask,u32 delay_us,u32 timeout_us)630 static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base,
631 u32 mask, u32 delay_us, u32 timeout_us)
632 {
633 u32 reg;
634
635 if (!q->devtype_data->little_endian)
636 mask = (u32)cpu_to_be32(mask);
637
638 return readl_poll_timeout(base, reg, !(reg & mask), delay_us,
639 timeout_us);
640 }
641
fsl_qspi_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)642 static int fsl_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
643 {
644 struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
645 void __iomem *base = q->iobase;
646 u32 addr_offset = 0;
647 int err = 0;
648 int invalid_mstrid = q->devtype_data->invalid_mstrid;
649
650 mutex_lock(&q->lock);
651
652 /* wait for the controller being ready */
653 fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, (QUADSPI_SR_IP_ACC_MASK |
654 QUADSPI_SR_AHB_ACC_MASK), 10, 1000);
655
656 fsl_qspi_select_mem(q, mem->spi);
657
658 if (needs_amba_base_offset(q))
659 addr_offset = q->memmap_phy;
660
661 qspi_writel(q,
662 q->selected * q->devtype_data->ahb_buf_size + addr_offset,
663 base + QUADSPI_SFAR);
664
665 qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) |
666 QUADSPI_MCR_CLR_RXF_MASK | QUADSPI_MCR_CLR_TXF_MASK,
667 base + QUADSPI_MCR);
668
669 qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC,
670 base + QUADSPI_SPTRCLR);
671
672 qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF0CR);
673 qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF1CR);
674 qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF2CR);
675
676 fsl_qspi_prepare_lut(q, op);
677
678 /*
679 * If we have large chunks of data, we read them through the AHB bus
680 * by accessing the mapped memory. In all other cases we use
681 * IP commands to access the flash.
682 */
683 if (op->data.nbytes > (q->devtype_data->rxfifo - 4) &&
684 op->data.dir == SPI_MEM_DATA_IN) {
685 fsl_qspi_read_ahb(q, op);
686 } else {
687 qspi_writel(q, QUADSPI_RBCT_WMRK_MASK |
688 QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT);
689
690 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
691 fsl_qspi_fill_txfifo(q, op);
692
693 err = fsl_qspi_do_op(q, op);
694 }
695
696 /* Invalidate the data in the AHB buffer. */
697 fsl_qspi_invalidate(q);
698
699 mutex_unlock(&q->lock);
700
701 return err;
702 }
703
fsl_qspi_adjust_op_size(struct spi_mem * mem,struct spi_mem_op * op)704 static int fsl_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
705 {
706 struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
707
708 if (op->data.dir == SPI_MEM_DATA_OUT) {
709 if (op->data.nbytes > q->devtype_data->txfifo)
710 op->data.nbytes = q->devtype_data->txfifo;
711 } else {
712 if (op->data.nbytes > q->devtype_data->ahb_buf_size)
713 op->data.nbytes = q->devtype_data->ahb_buf_size;
714 else if (op->data.nbytes > (q->devtype_data->rxfifo - 4))
715 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
716 }
717
718 return 0;
719 }
720
fsl_qspi_default_setup(struct fsl_qspi * q)721 static int fsl_qspi_default_setup(struct fsl_qspi *q)
722 {
723 void __iomem *base = q->iobase;
724 u32 reg, addr_offset = 0;
725 int ret;
726
727 /* disable and unprepare clock to avoid glitch pass to controller */
728 fsl_qspi_clk_disable_unprep(q);
729
730 /* the default frequency, we will change it later if necessary. */
731 ret = clk_set_rate(q->clk, 66000000);
732 if (ret)
733 return ret;
734
735 ret = fsl_qspi_clk_prep_enable(q);
736 if (ret)
737 return ret;
738
739 /* Reset the module */
740 qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
741 base + QUADSPI_MCR);
742 udelay(1);
743
744 /* Disable the module */
745 qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
746 base + QUADSPI_MCR);
747
748 /*
749 * Previous boot stages (BootROM, bootloader) might have used DDR
750 * mode and did not clear the TDH bits. As we currently use SDR mode
751 * only, clear the TDH bits if necessary.
752 */
753 if (needs_tdh_setting(q))
754 qspi_writel(q, qspi_readl(q, base + QUADSPI_FLSHCR) &
755 ~QUADSPI_FLSHCR_TDH_MASK,
756 base + QUADSPI_FLSHCR);
757
758 reg = qspi_readl(q, base + QUADSPI_SMPR);
759 qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
760 | QUADSPI_SMPR_FSPHS_MASK
761 | QUADSPI_SMPR_HSENA_MASK
762 | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
763
764 /* We only use the buffer3 for AHB read */
765 qspi_writel(q, 0, base + QUADSPI_BUF0IND);
766 qspi_writel(q, 0, base + QUADSPI_BUF1IND);
767 qspi_writel(q, 0, base + QUADSPI_BUF2IND);
768
769 qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT),
770 q->iobase + QUADSPI_BFGENCR);
771 qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT);
772 qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
773 QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / 8),
774 base + QUADSPI_BUF3CR);
775
776 if (needs_amba_base_offset(q))
777 addr_offset = q->memmap_phy;
778
779 /*
780 * In HW there can be a maximum of four chips on two buses with
781 * two chip selects on each bus. We use four chip selects in SW
782 * to differentiate between the four chips.
783 * We use ahb_buf_size for each chip and set SFA1AD, SFA2AD, SFB1AD,
784 * SFB2AD accordingly.
785 */
786 qspi_writel(q, q->devtype_data->ahb_buf_size + addr_offset,
787 base + QUADSPI_SFA1AD);
788 qspi_writel(q, q->devtype_data->ahb_buf_size * 2 + addr_offset,
789 base + QUADSPI_SFA2AD);
790 qspi_writel(q, q->devtype_data->ahb_buf_size * 3 + addr_offset,
791 base + QUADSPI_SFB1AD);
792 qspi_writel(q, q->devtype_data->ahb_buf_size * 4 + addr_offset,
793 base + QUADSPI_SFB2AD);
794
795 q->selected = -1;
796
797 /* Enable the module */
798 qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
799 base + QUADSPI_MCR);
800
801 /* clear all interrupt status */
802 qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
803
804 /* enable the interrupt */
805 qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
806
807 return 0;
808 }
809
fsl_qspi_get_name(struct spi_mem * mem)810 static const char *fsl_qspi_get_name(struct spi_mem *mem)
811 {
812 struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->master);
813 struct device *dev = &mem->spi->dev;
814 const char *name;
815
816 /*
817 * In order to keep mtdparts compatible with the old MTD driver at
818 * mtd/spi-nor/fsl-quadspi.c, we set a custom name derived from the
819 * platform_device of the controller.
820 */
821 if (of_get_available_child_count(q->dev->of_node) == 1)
822 return dev_name(q->dev);
823
824 name = devm_kasprintf(dev, GFP_KERNEL,
825 "%s-%d", dev_name(q->dev),
826 mem->spi->chip_select);
827
828 if (!name) {
829 dev_err(dev, "failed to get memory for custom flash name\n");
830 return ERR_PTR(-ENOMEM);
831 }
832
833 return name;
834 }
835
836 static const struct spi_controller_mem_ops fsl_qspi_mem_ops = {
837 .adjust_op_size = fsl_qspi_adjust_op_size,
838 .supports_op = fsl_qspi_supports_op,
839 .exec_op = fsl_qspi_exec_op,
840 .get_name = fsl_qspi_get_name,
841 };
842
fsl_qspi_probe(struct platform_device * pdev)843 static int fsl_qspi_probe(struct platform_device *pdev)
844 {
845 struct spi_controller *ctlr;
846 struct device *dev = &pdev->dev;
847 struct device_node *np = dev->of_node;
848 struct resource *res;
849 struct fsl_qspi *q;
850 int ret;
851
852 ctlr = spi_alloc_master(&pdev->dev, sizeof(*q));
853 if (!ctlr)
854 return -ENOMEM;
855
856 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD |
857 SPI_TX_DUAL | SPI_TX_QUAD;
858
859 q = spi_controller_get_devdata(ctlr);
860 q->dev = dev;
861 q->devtype_data = of_device_get_match_data(dev);
862 if (!q->devtype_data) {
863 ret = -ENODEV;
864 goto err_put_ctrl;
865 }
866
867 platform_set_drvdata(pdev, q);
868
869 /* find the resources */
870 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
871 q->iobase = devm_ioremap_resource(dev, res);
872 if (IS_ERR(q->iobase)) {
873 ret = PTR_ERR(q->iobase);
874 goto err_put_ctrl;
875 }
876
877 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
878 "QuadSPI-memory");
879 q->memmap_phy = res->start;
880 /* Since there are 4 cs, map size required is 4 times ahb_buf_size */
881 q->ahb_addr = devm_ioremap(dev, q->memmap_phy,
882 (q->devtype_data->ahb_buf_size * 4));
883 if (!q->ahb_addr) {
884 ret = -ENOMEM;
885 goto err_put_ctrl;
886 }
887
888 /* find the clocks */
889 q->clk_en = devm_clk_get(dev, "qspi_en");
890 if (IS_ERR(q->clk_en)) {
891 ret = PTR_ERR(q->clk_en);
892 goto err_put_ctrl;
893 }
894
895 q->clk = devm_clk_get(dev, "qspi");
896 if (IS_ERR(q->clk)) {
897 ret = PTR_ERR(q->clk);
898 goto err_put_ctrl;
899 }
900
901 ret = fsl_qspi_clk_prep_enable(q);
902 if (ret) {
903 dev_err(dev, "can not enable the clock\n");
904 goto err_put_ctrl;
905 }
906
907 /* find the irq */
908 ret = platform_get_irq(pdev, 0);
909 if (ret < 0)
910 goto err_disable_clk;
911
912 ret = devm_request_irq(dev, ret,
913 fsl_qspi_irq_handler, 0, pdev->name, q);
914 if (ret) {
915 dev_err(dev, "failed to request irq: %d\n", ret);
916 goto err_disable_clk;
917 }
918
919 mutex_init(&q->lock);
920
921 ctlr->bus_num = -1;
922 ctlr->num_chipselect = 4;
923 ctlr->mem_ops = &fsl_qspi_mem_ops;
924
925 fsl_qspi_default_setup(q);
926
927 ctlr->dev.of_node = np;
928
929 ret = devm_spi_register_controller(dev, ctlr);
930 if (ret)
931 goto err_destroy_mutex;
932
933 return 0;
934
935 err_destroy_mutex:
936 mutex_destroy(&q->lock);
937
938 err_disable_clk:
939 fsl_qspi_clk_disable_unprep(q);
940
941 err_put_ctrl:
942 spi_controller_put(ctlr);
943
944 dev_err(dev, "Freescale QuadSPI probe failed\n");
945 return ret;
946 }
947
fsl_qspi_remove(struct platform_device * pdev)948 static int fsl_qspi_remove(struct platform_device *pdev)
949 {
950 struct fsl_qspi *q = platform_get_drvdata(pdev);
951
952 /* disable the hardware */
953 qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
954 qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
955
956 fsl_qspi_clk_disable_unprep(q);
957
958 mutex_destroy(&q->lock);
959
960 return 0;
961 }
962
fsl_qspi_suspend(struct device * dev)963 static int fsl_qspi_suspend(struct device *dev)
964 {
965 return 0;
966 }
967
fsl_qspi_resume(struct device * dev)968 static int fsl_qspi_resume(struct device *dev)
969 {
970 struct fsl_qspi *q = dev_get_drvdata(dev);
971
972 fsl_qspi_default_setup(q);
973
974 return 0;
975 }
976
977 static const struct of_device_id fsl_qspi_dt_ids[] = {
978 { .compatible = "fsl,vf610-qspi", .data = &vybrid_data, },
979 { .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, },
980 { .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, },
981 { .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, },
982 { .compatible = "fsl,ls1021a-qspi", .data = &ls1021a_data, },
983 { .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, },
984 { /* sentinel */ }
985 };
986 MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
987
988 static const struct dev_pm_ops fsl_qspi_pm_ops = {
989 .suspend = fsl_qspi_suspend,
990 .resume = fsl_qspi_resume,
991 };
992
993 static struct platform_driver fsl_qspi_driver = {
994 .driver = {
995 .name = "fsl-quadspi",
996 .of_match_table = fsl_qspi_dt_ids,
997 .pm = &fsl_qspi_pm_ops,
998 },
999 .probe = fsl_qspi_probe,
1000 .remove = fsl_qspi_remove,
1001 };
1002 module_platform_driver(fsl_qspi_driver);
1003
1004 MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
1005 MODULE_AUTHOR("Freescale Semiconductor Inc.");
1006 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1007 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1008 MODULE_AUTHOR("Yogesh Gaur <yogeshnarayan.gaur@nxp.com>");
1009 MODULE_AUTHOR("Suresh Gupta <suresh.gupta@nxp.com>");
1010 MODULE_LICENSE("GPL v2");
1011