1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Macros for manipulating and testing page->flags
4  */
5 
6 #ifndef PAGE_FLAGS_H
7 #define PAGE_FLAGS_H
8 
9 #include <linux/types.h>
10 #include <linux/bug.h>
11 #include <linux/mmdebug.h>
12 #ifndef __GENERATING_BOUNDS_H
13 #include <linux/mm_types.h>
14 #include <generated/bounds.h>
15 #endif /* !__GENERATING_BOUNDS_H */
16 
17 /*
18  * Various page->flags bits:
19  *
20  * PG_reserved is set for special pages. The "struct page" of such a page
21  * should in general not be touched (e.g. set dirty) except by its owner.
22  * Pages marked as PG_reserved include:
23  * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS,
24  *   initrd, HW tables)
25  * - Pages reserved or allocated early during boot (before the page allocator
26  *   was initialized). This includes (depending on the architecture) the
27  *   initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much
28  *   much more. Once (if ever) freed, PG_reserved is cleared and they will
29  *   be given to the page allocator.
30  * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying
31  *   to read/write these pages might end badly. Don't touch!
32  * - The zero page(s)
33  * - Pages not added to the page allocator when onlining a section because
34  *   they were excluded via the online_page_callback() or because they are
35  *   PG_hwpoison.
36  * - Pages allocated in the context of kexec/kdump (loaded kernel image,
37  *   control pages, vmcoreinfo)
38  * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are
39  *   not marked PG_reserved (as they might be in use by somebody else who does
40  *   not respect the caching strategy).
41  * - Pages part of an offline section (struct pages of offline sections should
42  *   not be trusted as they will be initialized when first onlined).
43  * - MCA pages on ia64
44  * - Pages holding CPU notes for POWER Firmware Assisted Dump
45  * - Device memory (e.g. PMEM, DAX, HMM)
46  * Some PG_reserved pages will be excluded from the hibernation image.
47  * PG_reserved does in general not hinder anybody from dumping or swapping
48  * and is no longer required for remap_pfn_range(). ioremap might require it.
49  * Consequently, PG_reserved for a page mapped into user space can indicate
50  * the zero page, the vDSO, MMIO pages or device memory.
51  *
52  * The PG_private bitflag is set on pagecache pages if they contain filesystem
53  * specific data (which is normally at page->private). It can be used by
54  * private allocations for its own usage.
55  *
56  * During initiation of disk I/O, PG_locked is set. This bit is set before I/O
57  * and cleared when writeback _starts_ or when read _completes_. PG_writeback
58  * is set before writeback starts and cleared when it finishes.
59  *
60  * PG_locked also pins a page in pagecache, and blocks truncation of the file
61  * while it is held.
62  *
63  * page_waitqueue(page) is a wait queue of all tasks waiting for the page
64  * to become unlocked.
65  *
66  * PG_swapbacked is set when a page uses swap as a backing storage.  This are
67  * usually PageAnon or shmem pages but please note that even anonymous pages
68  * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as
69  * a result of MADV_FREE).
70  *
71  * PG_uptodate tells whether the page's contents is valid.  When a read
72  * completes, the page becomes uptodate, unless a disk I/O error happened.
73  *
74  * PG_referenced, PG_reclaim are used for page reclaim for anonymous and
75  * file-backed pagecache (see mm/vmscan.c).
76  *
77  * PG_error is set to indicate that an I/O error occurred on this page.
78  *
79  * PG_arch_1 is an architecture specific page state bit.  The generic code
80  * guarantees that this bit is cleared for a page when it first is entered into
81  * the page cache.
82  *
83  * PG_hwpoison indicates that a page got corrupted in hardware and contains
84  * data with incorrect ECC bits that triggered a machine check. Accessing is
85  * not safe since it may cause another machine check. Don't touch!
86  */
87 
88 /*
89  * Don't use the pageflags directly.  Use the PageFoo macros.
90  *
91  * The page flags field is split into two parts, the main flags area
92  * which extends from the low bits upwards, and the fields area which
93  * extends from the high bits downwards.
94  *
95  *  | FIELD | ... | FLAGS |
96  *  N-1           ^       0
97  *               (NR_PAGEFLAGS)
98  *
99  * The fields area is reserved for fields mapping zone, node (for NUMA) and
100  * SPARSEMEM section (for variants of SPARSEMEM that require section ids like
101  * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP).
102  */
103 enum pageflags {
104 	PG_locked,		/* Page is locked. Don't touch. */
105 	PG_referenced,
106 	PG_uptodate,
107 	PG_dirty,
108 	PG_lru,
109 	PG_active,
110 	PG_workingset,
111 	PG_waiters,		/* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */
112 	PG_error,
113 	PG_slab,
114 	PG_owner_priv_1,	/* Owner use. If pagecache, fs may use*/
115 	PG_arch_1,
116 	PG_reserved,
117 	PG_private,		/* If pagecache, has fs-private data */
118 	PG_private_2,		/* If pagecache, has fs aux data */
119 	PG_writeback,		/* Page is under writeback */
120 	PG_head,		/* A head page */
121 	PG_mappedtodisk,	/* Has blocks allocated on-disk */
122 	PG_reclaim,		/* To be reclaimed asap */
123 	PG_swapbacked,		/* Page is backed by RAM/swap */
124 	PG_unevictable,		/* Page is "unevictable"  */
125 #ifdef CONFIG_MMU
126 	PG_mlocked,		/* Page is vma mlocked */
127 #endif
128 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
129 	PG_uncached,		/* Page has been mapped as uncached */
130 #endif
131 #ifdef CONFIG_MEMORY_FAILURE
132 	PG_hwpoison,		/* hardware poisoned page. Don't touch */
133 #endif
134 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
135 	PG_young,
136 	PG_idle,
137 #endif
138 #ifdef CONFIG_64BIT
139 	PG_arch_2,
140 #endif
141 #ifdef CONFIG_KASAN_HW_TAGS
142 	PG_skip_kasan_poison,
143 #endif
144 	__NR_PAGEFLAGS,
145 
146 	PG_readahead = PG_reclaim,
147 
148 	/* Filesystems */
149 	PG_checked = PG_owner_priv_1,
150 
151 	/* SwapBacked */
152 	PG_swapcache = PG_owner_priv_1,	/* Swap page: swp_entry_t in private */
153 
154 	/* Two page bits are conscripted by FS-Cache to maintain local caching
155 	 * state.  These bits are set on pages belonging to the netfs's inodes
156 	 * when those inodes are being locally cached.
157 	 */
158 	PG_fscache = PG_private_2,	/* page backed by cache */
159 
160 	/* XEN */
161 	/* Pinned in Xen as a read-only pagetable page. */
162 	PG_pinned = PG_owner_priv_1,
163 	/* Pinned as part of domain save (see xen_mm_pin_all()). */
164 	PG_savepinned = PG_dirty,
165 	/* Has a grant mapping of another (foreign) domain's page. */
166 	PG_foreign = PG_owner_priv_1,
167 	/* Remapped by swiotlb-xen. */
168 	PG_xen_remapped = PG_owner_priv_1,
169 
170 	/* SLOB */
171 	PG_slob_free = PG_private,
172 
173 	/* Compound pages. Stored in first tail page's flags */
174 	PG_double_map = PG_workingset,
175 
176 #ifdef CONFIG_MEMORY_FAILURE
177 	/*
178 	 * Compound pages. Stored in first tail page's flags.
179 	 * Indicates that at least one subpage is hwpoisoned in the
180 	 * THP.
181 	 */
182 	PG_has_hwpoisoned = PG_mappedtodisk,
183 #endif
184 
185 	/* non-lru isolated movable page */
186 	PG_isolated = PG_reclaim,
187 
188 	/* Only valid for buddy pages. Used to track pages that are reported */
189 	PG_reported = PG_uptodate,
190 };
191 
192 #define PAGEFLAGS_MASK		((1UL << NR_PAGEFLAGS) - 1)
193 
194 #ifndef __GENERATING_BOUNDS_H
195 
_compound_head(const struct page * page)196 static inline unsigned long _compound_head(const struct page *page)
197 {
198 	unsigned long head = READ_ONCE(page->compound_head);
199 
200 	if (unlikely(head & 1))
201 		return head - 1;
202 	return (unsigned long)page;
203 }
204 
205 #define compound_head(page)	((typeof(page))_compound_head(page))
206 
207 /**
208  * page_folio - Converts from page to folio.
209  * @p: The page.
210  *
211  * Every page is part of a folio.  This function cannot be called on a
212  * NULL pointer.
213  *
214  * Context: No reference, nor lock is required on @page.  If the caller
215  * does not hold a reference, this call may race with a folio split, so
216  * it should re-check the folio still contains this page after gaining
217  * a reference on the folio.
218  * Return: The folio which contains this page.
219  */
220 #define page_folio(p)		(_Generic((p),				\
221 	const struct page *:	(const struct folio *)_compound_head(p), \
222 	struct page *:		(struct folio *)_compound_head(p)))
223 
224 /**
225  * folio_page - Return a page from a folio.
226  * @folio: The folio.
227  * @n: The page number to return.
228  *
229  * @n is relative to the start of the folio.  This function does not
230  * check that the page number lies within @folio; the caller is presumed
231  * to have a reference to the page.
232  */
233 #define folio_page(folio, n)	nth_page(&(folio)->page, n)
234 
PageTail(struct page * page)235 static __always_inline int PageTail(struct page *page)
236 {
237 	return READ_ONCE(page->compound_head) & 1;
238 }
239 
PageCompound(struct page * page)240 static __always_inline int PageCompound(struct page *page)
241 {
242 	return test_bit(PG_head, &page->flags) || PageTail(page);
243 }
244 
245 #define	PAGE_POISON_PATTERN	-1l
PagePoisoned(const struct page * page)246 static inline int PagePoisoned(const struct page *page)
247 {
248 	return READ_ONCE(page->flags) == PAGE_POISON_PATTERN;
249 }
250 
251 #ifdef CONFIG_DEBUG_VM
252 void page_init_poison(struct page *page, size_t size);
253 #else
page_init_poison(struct page * page,size_t size)254 static inline void page_init_poison(struct page *page, size_t size)
255 {
256 }
257 #endif
258 
folio_flags(struct folio * folio,unsigned n)259 static unsigned long *folio_flags(struct folio *folio, unsigned n)
260 {
261 	struct page *page = &folio->page;
262 
263 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
264 	VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page);
265 	return &page[n].flags;
266 }
267 
268 /*
269  * Page flags policies wrt compound pages
270  *
271  * PF_POISONED_CHECK
272  *     check if this struct page poisoned/uninitialized
273  *
274  * PF_ANY:
275  *     the page flag is relevant for small, head and tail pages.
276  *
277  * PF_HEAD:
278  *     for compound page all operations related to the page flag applied to
279  *     head page.
280  *
281  * PF_ONLY_HEAD:
282  *     for compound page, callers only ever operate on the head page.
283  *
284  * PF_NO_TAIL:
285  *     modifications of the page flag must be done on small or head pages,
286  *     checks can be done on tail pages too.
287  *
288  * PF_NO_COMPOUND:
289  *     the page flag is not relevant for compound pages.
290  *
291  * PF_SECOND:
292  *     the page flag is stored in the first tail page.
293  */
294 #define PF_POISONED_CHECK(page) ({					\
295 		VM_BUG_ON_PGFLAGS(PagePoisoned(page), page);		\
296 		page; })
297 #define PF_ANY(page, enforce)	PF_POISONED_CHECK(page)
298 #define PF_HEAD(page, enforce)	PF_POISONED_CHECK(compound_head(page))
299 #define PF_ONLY_HEAD(page, enforce) ({					\
300 		VM_BUG_ON_PGFLAGS(PageTail(page), page);		\
301 		PF_POISONED_CHECK(page); })
302 #define PF_NO_TAIL(page, enforce) ({					\
303 		VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page);	\
304 		PF_POISONED_CHECK(compound_head(page)); })
305 #define PF_NO_COMPOUND(page, enforce) ({				\
306 		VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page);	\
307 		PF_POISONED_CHECK(page); })
308 #define PF_SECOND(page, enforce) ({					\
309 		VM_BUG_ON_PGFLAGS(!PageHead(page), page);		\
310 		PF_POISONED_CHECK(&page[1]); })
311 
312 /* Which page is the flag stored in */
313 #define FOLIO_PF_ANY		0
314 #define FOLIO_PF_HEAD		0
315 #define FOLIO_PF_ONLY_HEAD	0
316 #define FOLIO_PF_NO_TAIL	0
317 #define FOLIO_PF_NO_COMPOUND	0
318 #define FOLIO_PF_SECOND		1
319 
320 /*
321  * Macros to create function definitions for page flags
322  */
323 #define TESTPAGEFLAG(uname, lname, policy)				\
324 static __always_inline bool folio_test_##lname(struct folio *folio)	\
325 { return test_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
326 static __always_inline int Page##uname(struct page *page)		\
327 { return test_bit(PG_##lname, &policy(page, 0)->flags); }
328 
329 #define SETPAGEFLAG(uname, lname, policy)				\
330 static __always_inline							\
331 void folio_set_##lname(struct folio *folio)				\
332 { set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
333 static __always_inline void SetPage##uname(struct page *page)		\
334 { set_bit(PG_##lname, &policy(page, 1)->flags); }
335 
336 #define CLEARPAGEFLAG(uname, lname, policy)				\
337 static __always_inline							\
338 void folio_clear_##lname(struct folio *folio)				\
339 { clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
340 static __always_inline void ClearPage##uname(struct page *page)		\
341 { clear_bit(PG_##lname, &policy(page, 1)->flags); }
342 
343 #define __SETPAGEFLAG(uname, lname, policy)				\
344 static __always_inline							\
345 void __folio_set_##lname(struct folio *folio)				\
346 { __set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }		\
347 static __always_inline void __SetPage##uname(struct page *page)		\
348 { __set_bit(PG_##lname, &policy(page, 1)->flags); }
349 
350 #define __CLEARPAGEFLAG(uname, lname, policy)				\
351 static __always_inline							\
352 void __folio_clear_##lname(struct folio *folio)				\
353 { __clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); }	\
354 static __always_inline void __ClearPage##uname(struct page *page)	\
355 { __clear_bit(PG_##lname, &policy(page, 1)->flags); }
356 
357 #define TESTSETFLAG(uname, lname, policy)				\
358 static __always_inline							\
359 bool folio_test_set_##lname(struct folio *folio)			\
360 { return test_and_set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
361 static __always_inline int TestSetPage##uname(struct page *page)	\
362 { return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); }
363 
364 #define TESTCLEARFLAG(uname, lname, policy)				\
365 static __always_inline							\
366 bool folio_test_clear_##lname(struct folio *folio)			\
367 { return test_and_clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \
368 static __always_inline int TestClearPage##uname(struct page *page)	\
369 { return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); }
370 
371 #define PAGEFLAG(uname, lname, policy)					\
372 	TESTPAGEFLAG(uname, lname, policy)				\
373 	SETPAGEFLAG(uname, lname, policy)				\
374 	CLEARPAGEFLAG(uname, lname, policy)
375 
376 #define __PAGEFLAG(uname, lname, policy)				\
377 	TESTPAGEFLAG(uname, lname, policy)				\
378 	__SETPAGEFLAG(uname, lname, policy)				\
379 	__CLEARPAGEFLAG(uname, lname, policy)
380 
381 #define TESTSCFLAG(uname, lname, policy)				\
382 	TESTSETFLAG(uname, lname, policy)				\
383 	TESTCLEARFLAG(uname, lname, policy)
384 
385 #define TESTPAGEFLAG_FALSE(uname, lname)				\
386 static inline bool folio_test_##lname(const struct folio *folio) { return 0; } \
387 static inline int Page##uname(const struct page *page) { return 0; }
388 
389 #define SETPAGEFLAG_NOOP(uname, lname)					\
390 static inline void folio_set_##lname(struct folio *folio) { }		\
391 static inline void SetPage##uname(struct page *page) {  }
392 
393 #define CLEARPAGEFLAG_NOOP(uname, lname)				\
394 static inline void folio_clear_##lname(struct folio *folio) { }		\
395 static inline void ClearPage##uname(struct page *page) {  }
396 
397 #define __CLEARPAGEFLAG_NOOP(uname, lname)				\
398 static inline void __folio_clear_##lname(struct folio *folio) { }	\
399 static inline void __ClearPage##uname(struct page *page) {  }
400 
401 #define TESTSETFLAG_FALSE(uname, lname)					\
402 static inline bool folio_test_set_##lname(struct folio *folio)		\
403 { return 0; }								\
404 static inline int TestSetPage##uname(struct page *page) { return 0; }
405 
406 #define TESTCLEARFLAG_FALSE(uname, lname)				\
407 static inline bool folio_test_clear_##lname(struct folio *folio)	\
408 { return 0; }								\
409 static inline int TestClearPage##uname(struct page *page) { return 0; }
410 
411 #define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname)	\
412 	SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname)
413 
414 #define TESTSCFLAG_FALSE(uname, lname)					\
415 	TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname)
416 
417 __PAGEFLAG(Locked, locked, PF_NO_TAIL)
418 PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) __CLEARPAGEFLAG(Waiters, waiters, PF_ONLY_HEAD)
419 PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL)
420 PAGEFLAG(Referenced, referenced, PF_HEAD)
421 	TESTCLEARFLAG(Referenced, referenced, PF_HEAD)
422 	__SETPAGEFLAG(Referenced, referenced, PF_HEAD)
423 PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD)
424 	__CLEARPAGEFLAG(Dirty, dirty, PF_HEAD)
425 PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD)
426 	TESTCLEARFLAG(LRU, lru, PF_HEAD)
427 PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD)
428 	TESTCLEARFLAG(Active, active, PF_HEAD)
429 PAGEFLAG(Workingset, workingset, PF_HEAD)
430 	TESTCLEARFLAG(Workingset, workingset, PF_HEAD)
431 __PAGEFLAG(Slab, slab, PF_NO_TAIL)
432 __PAGEFLAG(SlobFree, slob_free, PF_NO_TAIL)
433 PAGEFLAG(Checked, checked, PF_NO_COMPOUND)	   /* Used by some filesystems */
434 
435 /* Xen */
436 PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND)
437 	TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND)
438 PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND);
439 PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND);
PAGEFLAG(XenRemapped,xen_remapped,PF_NO_COMPOUND)440 PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
441 	TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND)
442 
443 PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
444 	__CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
445 	__SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND)
446 PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
447 	__CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
448 	__SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL)
449 
450 /*
451  * Private page markings that may be used by the filesystem that owns the page
452  * for its own purposes.
453  * - PG_private and PG_private_2 cause releasepage() and co to be invoked
454  */
455 PAGEFLAG(Private, private, PF_ANY)
456 PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY)
457 PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
458 	TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY)
459 
460 /*
461  * Only test-and-set exist for PG_writeback.  The unconditional operators are
462  * risky: they bypass page accounting.
463  */
464 TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL)
465 	TESTSCFLAG(Writeback, writeback, PF_NO_TAIL)
466 PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL)
467 
468 /* PG_readahead is only used for reads; PG_reclaim is only for writes */
469 PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL)
470 	TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL)
471 PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND)
472 	TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND)
473 
474 #ifdef CONFIG_HIGHMEM
475 /*
476  * Must use a macro here due to header dependency issues. page_zone() is not
477  * available at this point.
478  */
479 #define PageHighMem(__p) is_highmem_idx(page_zonenum(__p))
480 #else
481 PAGEFLAG_FALSE(HighMem, highmem)
482 #endif
483 
484 #ifdef CONFIG_SWAP
485 static __always_inline bool folio_test_swapcache(struct folio *folio)
486 {
487 	return folio_test_swapbacked(folio) &&
488 			test_bit(PG_swapcache, folio_flags(folio, 0));
489 }
490 
PageSwapCache(struct page * page)491 static __always_inline bool PageSwapCache(struct page *page)
492 {
493 	return folio_test_swapcache(page_folio(page));
494 }
495 
496 SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
497 CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL)
498 #else
499 PAGEFLAG_FALSE(SwapCache, swapcache)
500 #endif
501 
502 PAGEFLAG(Unevictable, unevictable, PF_HEAD)
503 	__CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD)
504 	TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD)
505 
506 #ifdef CONFIG_MMU
507 PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
508 	__CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL)
509 	TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL)
510 #else
511 PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked)
512 	TESTSCFLAG_FALSE(Mlocked, mlocked)
513 #endif
514 
515 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
516 PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND)
517 #else
518 PAGEFLAG_FALSE(Uncached, uncached)
519 #endif
520 
521 #ifdef CONFIG_MEMORY_FAILURE
522 PAGEFLAG(HWPoison, hwpoison, PF_ANY)
523 TESTSCFLAG(HWPoison, hwpoison, PF_ANY)
524 #define __PG_HWPOISON (1UL << PG_hwpoison)
525 extern bool take_page_off_buddy(struct page *page);
526 #else
527 PAGEFLAG_FALSE(HWPoison, hwpoison)
528 #define __PG_HWPOISON 0
529 #endif
530 
531 #if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT)
TESTPAGEFLAG(Young,young,PF_ANY)532 TESTPAGEFLAG(Young, young, PF_ANY)
533 SETPAGEFLAG(Young, young, PF_ANY)
534 TESTCLEARFLAG(Young, young, PF_ANY)
535 PAGEFLAG(Idle, idle, PF_ANY)
536 #endif
537 
538 #ifdef CONFIG_KASAN_HW_TAGS
539 PAGEFLAG(SkipKASanPoison, skip_kasan_poison, PF_HEAD)
540 #else
541 PAGEFLAG_FALSE(SkipKASanPoison, skip_kasan_poison)
542 #endif
543 
544 /*
545  * PageReported() is used to track reported free pages within the Buddy
546  * allocator. We can use the non-atomic version of the test and set
547  * operations as both should be shielded with the zone lock to prevent
548  * any possible races on the setting or clearing of the bit.
549  */
550 __PAGEFLAG(Reported, reported, PF_NO_COMPOUND)
551 
552 /*
553  * On an anonymous page mapped into a user virtual memory area,
554  * page->mapping points to its anon_vma, not to a struct address_space;
555  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h.
556  *
557  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
558  * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON
559  * bit; and then page->mapping points, not to an anon_vma, but to a private
560  * structure which KSM associates with that merged page.  See ksm.h.
561  *
562  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable
563  * page and then page->mapping points a struct address_space.
564  *
565  * Please note that, confusingly, "page_mapping" refers to the inode
566  * address_space which maps the page from disk; whereas "page_mapped"
567  * refers to user virtual address space into which the page is mapped.
568  */
569 #define PAGE_MAPPING_ANON	0x1
570 #define PAGE_MAPPING_MOVABLE	0x2
571 #define PAGE_MAPPING_KSM	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
572 #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE)
573 
574 static __always_inline int PageMappingFlags(struct page *page)
575 {
576 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0;
577 }
578 
folio_test_anon(struct folio * folio)579 static __always_inline bool folio_test_anon(struct folio *folio)
580 {
581 	return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0;
582 }
583 
PageAnon(struct page * page)584 static __always_inline bool PageAnon(struct page *page)
585 {
586 	return folio_test_anon(page_folio(page));
587 }
588 
__PageMovable(struct page * page)589 static __always_inline int __PageMovable(struct page *page)
590 {
591 	return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) ==
592 				PAGE_MAPPING_MOVABLE;
593 }
594 
595 #ifdef CONFIG_KSM
596 /*
597  * A KSM page is one of those write-protected "shared pages" or "merged pages"
598  * which KSM maps into multiple mms, wherever identical anonymous page content
599  * is found in VM_MERGEABLE vmas.  It's a PageAnon page, pointing not to any
600  * anon_vma, but to that page's node of the stable tree.
601  */
folio_test_ksm(struct folio * folio)602 static __always_inline bool folio_test_ksm(struct folio *folio)
603 {
604 	return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) ==
605 				PAGE_MAPPING_KSM;
606 }
607 
PageKsm(struct page * page)608 static __always_inline bool PageKsm(struct page *page)
609 {
610 	return folio_test_ksm(page_folio(page));
611 }
612 #else
613 TESTPAGEFLAG_FALSE(Ksm, ksm)
614 #endif
615 
616 u64 stable_page_flags(struct page *page);
617 
folio_test_uptodate(struct folio * folio)618 static inline bool folio_test_uptodate(struct folio *folio)
619 {
620 	bool ret = test_bit(PG_uptodate, folio_flags(folio, 0));
621 	/*
622 	 * Must ensure that the data we read out of the folio is loaded
623 	 * _after_ we've loaded folio->flags to check the uptodate bit.
624 	 * We can skip the barrier if the folio is not uptodate, because
625 	 * we wouldn't be reading anything from it.
626 	 *
627 	 * See folio_mark_uptodate() for the other side of the story.
628 	 */
629 	if (ret)
630 		smp_rmb();
631 
632 	return ret;
633 }
634 
PageUptodate(struct page * page)635 static inline int PageUptodate(struct page *page)
636 {
637 	return folio_test_uptodate(page_folio(page));
638 }
639 
__folio_mark_uptodate(struct folio * folio)640 static __always_inline void __folio_mark_uptodate(struct folio *folio)
641 {
642 	smp_wmb();
643 	__set_bit(PG_uptodate, folio_flags(folio, 0));
644 }
645 
folio_mark_uptodate(struct folio * folio)646 static __always_inline void folio_mark_uptodate(struct folio *folio)
647 {
648 	/*
649 	 * Memory barrier must be issued before setting the PG_uptodate bit,
650 	 * so that all previous stores issued in order to bring the folio
651 	 * uptodate are actually visible before folio_test_uptodate becomes true.
652 	 */
653 	smp_wmb();
654 	set_bit(PG_uptodate, folio_flags(folio, 0));
655 }
656 
__SetPageUptodate(struct page * page)657 static __always_inline void __SetPageUptodate(struct page *page)
658 {
659 	__folio_mark_uptodate((struct folio *)page);
660 }
661 
SetPageUptodate(struct page * page)662 static __always_inline void SetPageUptodate(struct page *page)
663 {
664 	folio_mark_uptodate((struct folio *)page);
665 }
666 
667 CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL)
668 
669 bool __folio_start_writeback(struct folio *folio, bool keep_write);
670 bool set_page_writeback(struct page *page);
671 
672 #define folio_start_writeback(folio)			\
673 	__folio_start_writeback(folio, false)
674 #define folio_start_writeback_keepwrite(folio)	\
675 	__folio_start_writeback(folio, true)
676 
set_page_writeback_keepwrite(struct page * page)677 static inline void set_page_writeback_keepwrite(struct page *page)
678 {
679 	folio_start_writeback_keepwrite(page_folio(page));
680 }
681 
test_set_page_writeback(struct page * page)682 static inline bool test_set_page_writeback(struct page *page)
683 {
684 	return set_page_writeback(page);
685 }
686 
__PAGEFLAG(Head,head,PF_ANY)687 __PAGEFLAG(Head, head, PF_ANY) CLEARPAGEFLAG(Head, head, PF_ANY)
688 
689 /**
690  * folio_test_large() - Does this folio contain more than one page?
691  * @folio: The folio to test.
692  *
693  * Return: True if the folio is larger than one page.
694  */
695 static inline bool folio_test_large(struct folio *folio)
696 {
697 	return folio_test_head(folio);
698 }
699 
set_compound_head(struct page * page,struct page * head)700 static __always_inline void set_compound_head(struct page *page, struct page *head)
701 {
702 	WRITE_ONCE(page->compound_head, (unsigned long)head + 1);
703 }
704 
clear_compound_head(struct page * page)705 static __always_inline void clear_compound_head(struct page *page)
706 {
707 	WRITE_ONCE(page->compound_head, 0);
708 }
709 
710 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
ClearPageCompound(struct page * page)711 static inline void ClearPageCompound(struct page *page)
712 {
713 	BUG_ON(!PageHead(page));
714 	ClearPageHead(page);
715 }
716 #endif
717 
718 #define PG_head_mask ((1UL << PG_head))
719 
720 #ifdef CONFIG_HUGETLB_PAGE
721 int PageHuge(struct page *page);
722 int PageHeadHuge(struct page *page);
folio_test_hugetlb(struct folio * folio)723 static inline bool folio_test_hugetlb(struct folio *folio)
724 {
725 	return PageHeadHuge(&folio->page);
726 }
727 #else
TESTPAGEFLAG_FALSE(Huge,hugetlb)728 TESTPAGEFLAG_FALSE(Huge, hugetlb)
729 TESTPAGEFLAG_FALSE(HeadHuge, headhuge)
730 #endif
731 
732 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
733 /*
734  * PageHuge() only returns true for hugetlbfs pages, but not for
735  * normal or transparent huge pages.
736  *
737  * PageTransHuge() returns true for both transparent huge and
738  * hugetlbfs pages, but not normal pages. PageTransHuge() can only be
739  * called only in the core VM paths where hugetlbfs pages can't exist.
740  */
741 static inline int PageTransHuge(struct page *page)
742 {
743 	VM_BUG_ON_PAGE(PageTail(page), page);
744 	return PageHead(page);
745 }
746 
folio_test_transhuge(struct folio * folio)747 static inline bool folio_test_transhuge(struct folio *folio)
748 {
749 	return folio_test_head(folio);
750 }
751 
752 /*
753  * PageTransCompound returns true for both transparent huge pages
754  * and hugetlbfs pages, so it should only be called when it's known
755  * that hugetlbfs pages aren't involved.
756  */
PageTransCompound(struct page * page)757 static inline int PageTransCompound(struct page *page)
758 {
759 	return PageCompound(page);
760 }
761 
762 /*
763  * PageTransTail returns true for both transparent huge pages
764  * and hugetlbfs pages, so it should only be called when it's known
765  * that hugetlbfs pages aren't involved.
766  */
PageTransTail(struct page * page)767 static inline int PageTransTail(struct page *page)
768 {
769 	return PageTail(page);
770 }
771 
772 /*
773  * PageDoubleMap indicates that the compound page is mapped with PTEs as well
774  * as PMDs.
775  *
776  * This is required for optimization of rmap operations for THP: we can postpone
777  * per small page mapcount accounting (and its overhead from atomic operations)
778  * until the first PMD split.
779  *
780  * For the page PageDoubleMap means ->_mapcount in all sub-pages is offset up
781  * by one. This reference will go away with last compound_mapcount.
782  *
783  * See also __split_huge_pmd_locked() and page_remove_anon_compound_rmap().
784  */
PAGEFLAG(DoubleMap,double_map,PF_SECOND)785 PAGEFLAG(DoubleMap, double_map, PF_SECOND)
786 	TESTSCFLAG(DoubleMap, double_map, PF_SECOND)
787 #else
788 TESTPAGEFLAG_FALSE(TransHuge, transhuge)
789 TESTPAGEFLAG_FALSE(TransCompound, transcompound)
790 TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap)
791 TESTPAGEFLAG_FALSE(TransTail, transtail)
792 PAGEFLAG_FALSE(DoubleMap, double_map)
793 	TESTSCFLAG_FALSE(DoubleMap, double_map)
794 #endif
795 
796 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
797 /*
798  * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the
799  * compound page.
800  *
801  * This flag is set by hwpoison handler.  Cleared by THP split or free page.
802  */
803 PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
804 	TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND)
805 #else
806 PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
807 	TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned)
808 #endif
809 
810 /*
811  * Check if a page is currently marked HWPoisoned. Note that this check is
812  * best effort only and inherently racy: there is no way to synchronize with
813  * failing hardware.
814  */
815 static inline bool is_page_hwpoison(struct page *page)
816 {
817 	if (PageHWPoison(page))
818 		return true;
819 	return PageHuge(page) && PageHWPoison(compound_head(page));
820 }
821 
822 /*
823  * For pages that are never mapped to userspace (and aren't PageSlab),
824  * page_type may be used.  Because it is initialised to -1, we invert the
825  * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and
826  * __ClearPageFoo *sets* the bit used for PageFoo.  We reserve a few high and
827  * low bits so that an underflow or overflow of page_mapcount() won't be
828  * mistaken for a page type value.
829  */
830 
831 #define PAGE_TYPE_BASE	0xf0000000
832 /* Reserve		0x0000007f to catch underflows of page_mapcount */
833 #define PAGE_MAPCOUNT_RESERVE	-128
834 #define PG_buddy	0x00000080
835 #define PG_offline	0x00000100
836 #define PG_table	0x00000200
837 #define PG_guard	0x00000400
838 
839 #define PageType(page, flag)						\
840 	((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE)
841 
page_has_type(struct page * page)842 static inline int page_has_type(struct page *page)
843 {
844 	return (int)page->page_type < PAGE_MAPCOUNT_RESERVE;
845 }
846 
847 #define PAGE_TYPE_OPS(uname, lname)					\
848 static __always_inline int Page##uname(struct page *page)		\
849 {									\
850 	return PageType(page, PG_##lname);				\
851 }									\
852 static __always_inline void __SetPage##uname(struct page *page)		\
853 {									\
854 	VM_BUG_ON_PAGE(!PageType(page, 0), page);			\
855 	page->page_type &= ~PG_##lname;					\
856 }									\
857 static __always_inline void __ClearPage##uname(struct page *page)	\
858 {									\
859 	VM_BUG_ON_PAGE(!Page##uname(page), page);			\
860 	page->page_type |= PG_##lname;					\
861 }
862 
863 /*
864  * PageBuddy() indicates that the page is free and in the buddy system
865  * (see mm/page_alloc.c).
866  */
867 PAGE_TYPE_OPS(Buddy, buddy)
868 
869 /*
870  * PageOffline() indicates that the page is logically offline although the
871  * containing section is online. (e.g. inflated in a balloon driver or
872  * not onlined when onlining the section).
873  * The content of these pages is effectively stale. Such pages should not
874  * be touched (read/write/dump/save) except by their owner.
875  *
876  * If a driver wants to allow to offline unmovable PageOffline() pages without
877  * putting them back to the buddy, it can do so via the memory notifier by
878  * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the
879  * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline()
880  * pages (now with a reference count of zero) are treated like free pages,
881  * allowing the containing memory block to get offlined. A driver that
882  * relies on this feature is aware that re-onlining the memory block will
883  * require to re-set the pages PageOffline() and not giving them to the
884  * buddy via online_page_callback_t.
885  *
886  * There are drivers that mark a page PageOffline() and expect there won't be
887  * any further access to page content. PFN walkers that read content of random
888  * pages should check PageOffline() and synchronize with such drivers using
889  * page_offline_freeze()/page_offline_thaw().
890  */
891 PAGE_TYPE_OPS(Offline, offline)
892 
893 extern void page_offline_freeze(void);
894 extern void page_offline_thaw(void);
895 extern void page_offline_begin(void);
896 extern void page_offline_end(void);
897 
898 /*
899  * Marks pages in use as page tables.
900  */
901 PAGE_TYPE_OPS(Table, table)
902 
903 /*
904  * Marks guardpages used with debug_pagealloc.
905  */
906 PAGE_TYPE_OPS(Guard, guard)
907 
908 extern bool is_free_buddy_page(struct page *page);
909 
910 __PAGEFLAG(Isolated, isolated, PF_ANY);
911 
912 /*
913  * If network-based swap is enabled, sl*b must keep track of whether pages
914  * were allocated from pfmemalloc reserves.
915  */
PageSlabPfmemalloc(struct page * page)916 static inline int PageSlabPfmemalloc(struct page *page)
917 {
918 	VM_BUG_ON_PAGE(!PageSlab(page), page);
919 	return PageActive(page);
920 }
921 
922 /*
923  * A version of PageSlabPfmemalloc() for opportunistic checks where the page
924  * might have been freed under us and not be a PageSlab anymore.
925  */
__PageSlabPfmemalloc(struct page * page)926 static inline int __PageSlabPfmemalloc(struct page *page)
927 {
928 	return PageActive(page);
929 }
930 
SetPageSlabPfmemalloc(struct page * page)931 static inline void SetPageSlabPfmemalloc(struct page *page)
932 {
933 	VM_BUG_ON_PAGE(!PageSlab(page), page);
934 	SetPageActive(page);
935 }
936 
__ClearPageSlabPfmemalloc(struct page * page)937 static inline void __ClearPageSlabPfmemalloc(struct page *page)
938 {
939 	VM_BUG_ON_PAGE(!PageSlab(page), page);
940 	__ClearPageActive(page);
941 }
942 
ClearPageSlabPfmemalloc(struct page * page)943 static inline void ClearPageSlabPfmemalloc(struct page *page)
944 {
945 	VM_BUG_ON_PAGE(!PageSlab(page), page);
946 	ClearPageActive(page);
947 }
948 
949 #ifdef CONFIG_MMU
950 #define __PG_MLOCKED		(1UL << PG_mlocked)
951 #else
952 #define __PG_MLOCKED		0
953 #endif
954 
955 /*
956  * Flags checked when a page is freed.  Pages being freed should not have
957  * these flags set.  If they are, there is a problem.
958  */
959 #define PAGE_FLAGS_CHECK_AT_FREE				\
960 	(1UL << PG_lru		| 1UL << PG_locked	|	\
961 	 1UL << PG_private	| 1UL << PG_private_2	|	\
962 	 1UL << PG_writeback	| 1UL << PG_reserved	|	\
963 	 1UL << PG_slab		| 1UL << PG_active 	|	\
964 	 1UL << PG_unevictable	| __PG_MLOCKED)
965 
966 /*
967  * Flags checked when a page is prepped for return by the page allocator.
968  * Pages being prepped should not have these flags set.  If they are set,
969  * there has been a kernel bug or struct page corruption.
970  *
971  * __PG_HWPOISON is exceptional because it needs to be kept beyond page's
972  * alloc-free cycle to prevent from reusing the page.
973  */
974 #define PAGE_FLAGS_CHECK_AT_PREP	\
975 	(PAGEFLAGS_MASK & ~__PG_HWPOISON)
976 
977 #define PAGE_FLAGS_PRIVATE				\
978 	(1UL << PG_private | 1UL << PG_private_2)
979 /**
980  * page_has_private - Determine if page has private stuff
981  * @page: The page to be checked
982  *
983  * Determine if a page has private stuff, indicating that release routines
984  * should be invoked upon it.
985  */
page_has_private(struct page * page)986 static inline int page_has_private(struct page *page)
987 {
988 	return !!(page->flags & PAGE_FLAGS_PRIVATE);
989 }
990 
folio_has_private(struct folio * folio)991 static inline bool folio_has_private(struct folio *folio)
992 {
993 	return page_has_private(&folio->page);
994 }
995 
996 #undef PF_ANY
997 #undef PF_HEAD
998 #undef PF_ONLY_HEAD
999 #undef PF_NO_TAIL
1000 #undef PF_NO_COMPOUND
1001 #undef PF_SECOND
1002 #endif /* !__GENERATING_BOUNDS_H */
1003 
1004 #endif	/* PAGE_FLAGS_H */
1005