Home
last modified time | relevance | path

Searched refs:K1 (Results 1 – 4 of 4) sorted by relevance

/optee_os/lib/libmbedtls/mbedtls/library/
A Dcmac.c120 unsigned char* K1, unsigned char* K2 ) in cmac_generate_subkeys() argument
137 if( ( ret = cmac_multiply_by_u( K1, L , block_size ) ) != 0 ) in cmac_generate_subkeys()
140 if( ( ret = cmac_multiply_by_u( K2, K1 , block_size ) ) != 0 ) in cmac_generate_subkeys()
307 unsigned char K1[MBEDTLS_CIPHER_BLKSIZE_MAX]; in mbedtls_cipher_cmac_finish() local
321 mbedtls_platform_zeroize( K1, sizeof( K1 ) ); in mbedtls_cipher_cmac_finish()
323 cmac_generate_subkeys( ctx, K1, K2 ); in mbedtls_cipher_cmac_finish()
336 cmac_xor_block( M_last, last_block, K1, block_size ); in mbedtls_cipher_cmac_finish()
352 mbedtls_platform_zeroize( K1, sizeof( K1 ) ); in mbedtls_cipher_cmac_finish()
765 unsigned char K1[MBEDTLS_CIPHER_BLKSIZE_MAX]; in cmac_test_subkeys() local
811 ret = cmac_generate_subkeys( &ctx, K1, K2 ); in cmac_test_subkeys()
[all …]
/optee_os/core/lib/libtomcrypt/src/ciphers/
A Danubis.c894 ulong32 v, K0, K1, K2, K3; in _anubis_setup() local
939 K1 = T4[(kappa[N - 1] >> 16) & 0xff]; in _anubis_setup()
948 K1 = T4[(kappa[i] >> 16) & 0xff] ^ in _anubis_setup()
949 (T5[(K1 >> 24) & 0xff] & 0xff000000U) ^ in _anubis_setup()
950 (T5[(K1 >> 16) & 0xff] & 0x00ff0000U) ^ in _anubis_setup()
951 (T5[(K1 >> 8) & 0xff] & 0x0000ff00U) ^ in _anubis_setup()
952 (T5[(K1 ) & 0xff] & 0x000000ffU); in _anubis_setup()
975 skey->anubis.roundKeyEnc[r][1] = K1; in _anubis_setup()
A Dkhazad.c595 ulong64 K2, K1; in khazad_setup() local
621 K1 = in khazad_setup()
639 T0[(int)(K1 >> 56) ] ^ in khazad_setup()
640 T1[(int)(K1 >> 48) & 0xff] ^ in khazad_setup()
641 T2[(int)(K1 >> 40) & 0xff] ^ in khazad_setup()
642 T3[(int)(K1 >> 32) & 0xff] ^ in khazad_setup()
643 T4[(int)(K1 >> 24) & 0xff] ^ in khazad_setup()
644 T5[(int)(K1 >> 16) & 0xff] ^ in khazad_setup()
645 T6[(int)(K1 >> 8) & 0xff] ^ in khazad_setup()
646 T7[(int)(K1 ) & 0xff] ^ in khazad_setup()
[all …]
A Dkseed.c187 #define F(L1, L2, R1, R2, K1, K2) \ argument
188 T2 = G((R1 ^ K1) ^ (R2 ^ K2)); \
189 T = G( G(T2 + (R1 ^ K1)) + T2); \
191 L1 ^= (T + G(T2 + (R1 ^ K1))); \

Completed in 10 milliseconds