Searched refs:K1 (Results 1 – 4 of 4) sorted by relevance
/optee_os/lib/libmbedtls/mbedtls/library/ |
A D | cmac.c | 120 unsigned char* K1, unsigned char* K2 ) in cmac_generate_subkeys() argument 137 if( ( ret = cmac_multiply_by_u( K1, L , block_size ) ) != 0 ) in cmac_generate_subkeys() 140 if( ( ret = cmac_multiply_by_u( K2, K1 , block_size ) ) != 0 ) in cmac_generate_subkeys() 307 unsigned char K1[MBEDTLS_CIPHER_BLKSIZE_MAX]; in mbedtls_cipher_cmac_finish() local 321 mbedtls_platform_zeroize( K1, sizeof( K1 ) ); in mbedtls_cipher_cmac_finish() 323 cmac_generate_subkeys( ctx, K1, K2 ); in mbedtls_cipher_cmac_finish() 336 cmac_xor_block( M_last, last_block, K1, block_size ); in mbedtls_cipher_cmac_finish() 352 mbedtls_platform_zeroize( K1, sizeof( K1 ) ); in mbedtls_cipher_cmac_finish() 765 unsigned char K1[MBEDTLS_CIPHER_BLKSIZE_MAX]; in cmac_test_subkeys() local 811 ret = cmac_generate_subkeys( &ctx, K1, K2 ); in cmac_test_subkeys() [all …]
|
/optee_os/core/lib/libtomcrypt/src/ciphers/ |
A D | anubis.c | 894 ulong32 v, K0, K1, K2, K3; in _anubis_setup() local 939 K1 = T4[(kappa[N - 1] >> 16) & 0xff]; in _anubis_setup() 948 K1 = T4[(kappa[i] >> 16) & 0xff] ^ in _anubis_setup() 949 (T5[(K1 >> 24) & 0xff] & 0xff000000U) ^ in _anubis_setup() 950 (T5[(K1 >> 16) & 0xff] & 0x00ff0000U) ^ in _anubis_setup() 951 (T5[(K1 >> 8) & 0xff] & 0x0000ff00U) ^ in _anubis_setup() 952 (T5[(K1 ) & 0xff] & 0x000000ffU); in _anubis_setup() 975 skey->anubis.roundKeyEnc[r][1] = K1; in _anubis_setup()
|
A D | khazad.c | 595 ulong64 K2, K1; in khazad_setup() local 621 K1 = in khazad_setup() 639 T0[(int)(K1 >> 56) ] ^ in khazad_setup() 640 T1[(int)(K1 >> 48) & 0xff] ^ in khazad_setup() 641 T2[(int)(K1 >> 40) & 0xff] ^ in khazad_setup() 642 T3[(int)(K1 >> 32) & 0xff] ^ in khazad_setup() 643 T4[(int)(K1 >> 24) & 0xff] ^ in khazad_setup() 644 T5[(int)(K1 >> 16) & 0xff] ^ in khazad_setup() 645 T6[(int)(K1 >> 8) & 0xff] ^ in khazad_setup() 646 T7[(int)(K1 ) & 0xff] ^ in khazad_setup() [all …]
|
A D | kseed.c | 187 #define F(L1, L2, R1, R2, K1, K2) \ argument 188 T2 = G((R1 ^ K1) ^ (R2 ^ K2)); \ 189 T = G( G(T2 + (R1 ^ K1)) + T2); \ 191 L1 ^= (T + G(T2 + (R1 ^ K1))); \
|
Completed in 10 milliseconds