1 /*
2 * Copyright (c) 2015-2020, ARM Limited and Contributors. All rights reserved.
3 *
4 * SPDX-License-Identifier: BSD-3-Clause
5 */
6
7 #include <assert.h>
8 #include <stdbool.h>
9
10 #include <arch.h>
11 #include <common/debug.h>
12 #include <drivers/arm/ccn.h>
13 #include <lib/bakery_lock.h>
14 #include <lib/mmio.h>
15
16 #include "ccn_private.h"
17
18 static const ccn_desc_t *ccn_plat_desc;
19 #if defined(IMAGE_BL31) || (!defined(__aarch64__) && defined(IMAGE_BL32))
20 DEFINE_BAKERY_LOCK(ccn_lock);
21 #endif
22
23 /*******************************************************************************
24 * This function takes the base address of the CCN's programmer's view (PV), a
25 * region ID of one of the 256 regions (0-255) and a register offset within the
26 * region. It converts the first two parameters into a base address and uses it
27 * to read the register at the offset.
28 ******************************************************************************/
ccn_reg_read(uintptr_t periphbase,unsigned int region_id,unsigned int register_offset)29 static inline unsigned long long ccn_reg_read(uintptr_t periphbase,
30 unsigned int region_id,
31 unsigned int register_offset)
32 {
33 uintptr_t region_base;
34
35 assert(periphbase);
36 assert(region_id < REGION_ID_LIMIT);
37
38 region_base = periphbase + region_id_to_base(region_id);
39 return mmio_read_64(region_base + register_offset);
40 }
41
42 /*******************************************************************************
43 * This function takes the base address of the CCN's programmer's view (PV), a
44 * region ID of one of the 256 regions (0-255), a register offset within the
45 * region and a value. It converts the first two parameters into a base address
46 * and uses it to write the value in the register at the offset.
47 ******************************************************************************/
ccn_reg_write(uintptr_t periphbase,unsigned int region_id,unsigned int register_offset,unsigned long long value)48 static inline void ccn_reg_write(uintptr_t periphbase,
49 unsigned int region_id,
50 unsigned int register_offset,
51 unsigned long long value)
52 {
53 uintptr_t region_base;
54
55 assert(periphbase);
56 assert(region_id < REGION_ID_LIMIT);
57
58 region_base = periphbase + region_id_to_base(region_id);
59 mmio_write_64(region_base + register_offset, value);
60 }
61
62 #if ENABLE_ASSERTIONS
63
64 typedef struct rn_info {
65 unsigned char node_desc[MAX_RN_NODES];
66 } rn_info_t;
67
68 /*******************************************************************************
69 * This function takes the base address of the CCN's programmer's view (PV) and
70 * the node ID of a Request Node (RN-D or RN-I). It returns the maximum number
71 * of master interfaces resident on that node. This number is equal to the least
72 * significant two bits of the node type ID + 1.
73 ******************************************************************************/
ccn_get_rni_mcount(uintptr_t periphbase,unsigned int rn_id)74 static unsigned int ccn_get_rni_mcount(uintptr_t periphbase,
75 unsigned int rn_id)
76 {
77 unsigned int rn_type_id;
78
79 /* Use the node id to find the type of RN-I/D node */
80 rn_type_id = get_node_type(ccn_reg_read(periphbase,
81 rn_id + RNI_REGION_ID_START,
82 REGION_ID_OFFSET));
83
84 /* Return the number master interfaces based on node type */
85 return rn_type_id_to_master_cnt(rn_type_id);
86 }
87
88 /*******************************************************************************
89 * This function reads the CCN registers to find the following information about
90 * the ACE/ACELite/ACELite+DVM/CHI interfaces resident on the various types of
91 * Request Nodes (RN-Fs, RN-Is and RN-Ds) in the system:
92 *
93 * 1. The total number of such interfaces that this CCN IP supports. This is the
94 * cumulative number of interfaces across all Request node types. It is
95 * passed back as the return value of this function.
96 *
97 * 2. The maximum number of interfaces of a type resident on a Request node of
98 * one of the three types. This information is populated in the 'info'
99 * array provided by the caller as described next.
100 *
101 * The array has 64 entries. Each entry corresponds to a Request node. The
102 * Miscellaneous node's programmer's view has RN-F, RN-I and RN-D ID
103 * registers. For each RN-I and RN-D ID indicated as being present in these
104 * registers, its identification register (offset 0xFF00) is read. This
105 * register specifies the maximum number of master interfaces the node
106 * supports. For RN-Fs it is assumed that there can be only a single fully
107 * coherent master resident on each node. The counts for each type of node
108 * are use to populate the array entry at the index corresponding to the node
109 * ID i.e. rn_info[node ID] = <number of master interfaces>
110 ******************************************************************************/
ccn_get_rn_master_info(uintptr_t periphbase,rn_info_t * info)111 static unsigned int ccn_get_rn_master_info(uintptr_t periphbase,
112 rn_info_t *info)
113 {
114 unsigned int num_masters = 0;
115 rn_types_t rn_type;
116
117 assert (info);
118
119 for (rn_type = RN_TYPE_RNF; rn_type < NUM_RN_TYPES; rn_type++) {
120 unsigned int mn_reg_off, node_id;
121 unsigned long long rn_bitmap;
122
123 /*
124 * RN-F, RN-I, RN-D node registers in the MN region occupy
125 * contiguous 16 byte apart offsets.
126 */
127 mn_reg_off = MN_RNF_NODEID_OFFSET + (rn_type << 4);
128 rn_bitmap = ccn_reg_read(periphbase, MN_REGION_ID, mn_reg_off);
129
130 FOR_EACH_PRESENT_NODE_ID(node_id, rn_bitmap) {
131 unsigned int node_mcount;
132
133 /*
134 * A RN-F does not have a node type since it does not
135 * export a programmer's interface. It can only have a
136 * single fully coherent master residing on it. If the
137 * offset of the MN(Miscellaneous Node) register points
138 * to a RN-I/D node then the master count is set to the
139 * maximum number of master interfaces that can possibly
140 * reside on the node.
141 */
142 node_mcount = (mn_reg_off == MN_RNF_NODEID_OFFSET ? 1 :
143 ccn_get_rni_mcount(periphbase, node_id));
144
145 /*
146 * Use this value to increment the maximum possible
147 * master interfaces in the system.
148 */
149 num_masters += node_mcount;
150
151 /*
152 * Update the entry in 'info' for this node ID with
153 * the maximum number of masters than can sit on
154 * it. This information will be used to validate the
155 * node information passed by the platform later.
156 */
157 info->node_desc[node_id] = node_mcount;
158 }
159 }
160
161 return num_masters;
162 }
163
164 /*******************************************************************************
165 * This function validates parameters passed by the platform (in a debug build).
166 * It collects information about the maximum number of master interfaces that:
167 * a) the CCN IP can accommodate and
168 * b) can exist on each Request node.
169 * It compares this with the information provided by the platform to determine
170 * the validity of the latter.
171 ******************************************************************************/
ccn_validate_plat_params(const ccn_desc_t * plat_desc)172 static void __init ccn_validate_plat_params(const ccn_desc_t *plat_desc)
173 {
174 unsigned int master_id, num_rn_masters;
175 rn_info_t info = { {0} };
176
177 assert(plat_desc);
178 assert(plat_desc->periphbase);
179 assert(plat_desc->master_to_rn_id_map);
180 assert(plat_desc->num_masters);
181 assert(plat_desc->num_masters < CCN_MAX_RN_MASTERS);
182
183 /*
184 * Find the number and properties of fully coherent, IO coherent and IO
185 * coherent + DVM master interfaces
186 */
187 num_rn_masters = ccn_get_rn_master_info(plat_desc->periphbase, &info);
188 assert(plat_desc->num_masters < num_rn_masters);
189
190 /*
191 * Iterate through the Request nodes specified by the platform.
192 * Decrement the count of the masters in the 'info' array for each
193 * Request node encountered. If the count would drop below 0 then the
194 * platform's view of this aspect of CCN configuration is incorrect.
195 */
196 for (master_id = 0; master_id < plat_desc->num_masters; master_id++) {
197 unsigned int node_id;
198
199 node_id = plat_desc->master_to_rn_id_map[master_id];
200 assert(node_id < MAX_RN_NODES);
201 assert(info.node_desc[node_id]);
202 info.node_desc[node_id]--;
203 }
204 }
205 #endif /* ENABLE_ASSERTIONS */
206
207 /*******************************************************************************
208 * This function validates parameters passed by the platform (in a debug build)
209 * and initialises its internal data structures. A lock is required to prevent
210 * simultaneous CCN operations at runtime (only BL31) to add and remove Request
211 * nodes from coherency.
212 ******************************************************************************/
ccn_init(const ccn_desc_t * plat_desc)213 void __init ccn_init(const ccn_desc_t *plat_desc)
214 {
215 #if ENABLE_ASSERTIONS
216 ccn_validate_plat_params(plat_desc);
217 #endif
218
219 ccn_plat_desc = plat_desc;
220 }
221
222 /*******************************************************************************
223 * This function converts a bit map of master interface IDs to a bit map of the
224 * Request node IDs that they reside on.
225 ******************************************************************************/
ccn_master_to_rn_id_map(unsigned long long master_map)226 static unsigned long long ccn_master_to_rn_id_map(unsigned long long master_map)
227 {
228 unsigned long long rn_id_map = 0;
229 unsigned int node_id, iface_id;
230
231 assert(master_map);
232 assert(ccn_plat_desc);
233
234 FOR_EACH_PRESENT_MASTER_INTERFACE(iface_id, master_map) {
235 assert(iface_id < ccn_plat_desc->num_masters);
236
237 /* Convert the master ID into the node ID */
238 node_id = ccn_plat_desc->master_to_rn_id_map[iface_id];
239
240 /* Set the bit corresponding to this node ID */
241 rn_id_map |= (1ULL << node_id);
242 }
243
244 return rn_id_map;
245 }
246
247 /*******************************************************************************
248 * This function executes the necessary operations to add or remove Request node
249 * IDs specified in the 'rn_id_map' bitmap from the snoop/DVM domains specified
250 * in the 'hn_id_map'. The 'region_id' specifies the ID of the first HN-F/MN
251 * on which the operation should be performed. 'op_reg_offset' specifies the
252 * type of operation (add/remove). 'stat_reg_offset' specifies the register
253 * which should be polled to determine if the operation has completed or not.
254 ******************************************************************************/
ccn_snoop_dvm_do_op(unsigned long long rn_id_map,unsigned long long hn_id_map,unsigned int region_id,unsigned int op_reg_offset,unsigned int stat_reg_offset)255 static void ccn_snoop_dvm_do_op(unsigned long long rn_id_map,
256 unsigned long long hn_id_map,
257 unsigned int region_id,
258 unsigned int op_reg_offset,
259 unsigned int stat_reg_offset)
260 {
261 unsigned int start_region_id;
262
263 assert(ccn_plat_desc);
264 assert(ccn_plat_desc->periphbase);
265
266 #if defined(IMAGE_BL31) || (!defined(__aarch64__) && defined(IMAGE_BL32))
267 bakery_lock_get(&ccn_lock);
268 #endif
269 start_region_id = region_id;
270 FOR_EACH_PRESENT_REGION_ID(start_region_id, hn_id_map) {
271 ccn_reg_write(ccn_plat_desc->periphbase,
272 start_region_id,
273 op_reg_offset,
274 rn_id_map);
275 }
276
277 start_region_id = region_id;
278
279 FOR_EACH_PRESENT_REGION_ID(start_region_id, hn_id_map) {
280 WAIT_FOR_DOMAIN_CTRL_OP_COMPLETION(start_region_id,
281 stat_reg_offset,
282 op_reg_offset,
283 rn_id_map);
284 }
285
286 #if defined(IMAGE_BL31) || (!defined(__aarch64__) && defined(IMAGE_BL32))
287 bakery_lock_release(&ccn_lock);
288 #endif
289 }
290
291 /*******************************************************************************
292 * The following functions provide the boot and runtime API to the platform for
293 * adding and removing master interfaces from the snoop/DVM domains. A bitmap of
294 * master interfaces IDs is passed as a parameter. It is converted into a bitmap
295 * of Request node IDs using the mapping provided by the platform while
296 * initialising the driver.
297 * For example, consider a dual cluster system where the clusters have values 0
298 * & 1 in the affinity level 1 field of their respective MPIDRs. While
299 * initialising this driver, the platform provides the mapping between each
300 * cluster and the corresponding Request node. To add or remove a cluster from
301 * the snoop and dvm domain, the bit position corresponding to the cluster ID
302 * should be set in the 'master_iface_map' i.e. to remove both clusters the
303 * bitmap would equal 0x11.
304 ******************************************************************************/
ccn_enter_snoop_dvm_domain(unsigned long long master_iface_map)305 void ccn_enter_snoop_dvm_domain(unsigned long long master_iface_map)
306 {
307 unsigned long long rn_id_map;
308
309 rn_id_map = ccn_master_to_rn_id_map(master_iface_map);
310 ccn_snoop_dvm_do_op(rn_id_map,
311 CCN_GET_HN_NODEID_MAP(ccn_plat_desc->periphbase,
312 MN_HNF_NODEID_OFFSET),
313 HNF_REGION_ID_START,
314 HNF_SDC_SET_OFFSET,
315 HNF_SDC_STAT_OFFSET);
316
317 ccn_snoop_dvm_do_op(rn_id_map,
318 CCN_GET_MN_NODEID_MAP(ccn_plat_desc->periphbase),
319 MN_REGION_ID,
320 MN_DDC_SET_OFFSET,
321 MN_DDC_STAT_OFFSET);
322 }
323
ccn_exit_snoop_dvm_domain(unsigned long long master_iface_map)324 void ccn_exit_snoop_dvm_domain(unsigned long long master_iface_map)
325 {
326 unsigned long long rn_id_map;
327
328 rn_id_map = ccn_master_to_rn_id_map(master_iface_map);
329 ccn_snoop_dvm_do_op(rn_id_map,
330 CCN_GET_HN_NODEID_MAP(ccn_plat_desc->periphbase,
331 MN_HNF_NODEID_OFFSET),
332 HNF_REGION_ID_START,
333 HNF_SDC_CLR_OFFSET,
334 HNF_SDC_STAT_OFFSET);
335
336 ccn_snoop_dvm_do_op(rn_id_map,
337 CCN_GET_MN_NODEID_MAP(ccn_plat_desc->periphbase),
338 MN_REGION_ID,
339 MN_DDC_CLR_OFFSET,
340 MN_DDC_STAT_OFFSET);
341 }
342
ccn_enter_dvm_domain(unsigned long long master_iface_map)343 void ccn_enter_dvm_domain(unsigned long long master_iface_map)
344 {
345 unsigned long long rn_id_map;
346
347 rn_id_map = ccn_master_to_rn_id_map(master_iface_map);
348 ccn_snoop_dvm_do_op(rn_id_map,
349 CCN_GET_MN_NODEID_MAP(ccn_plat_desc->periphbase),
350 MN_REGION_ID,
351 MN_DDC_SET_OFFSET,
352 MN_DDC_STAT_OFFSET);
353 }
354
ccn_exit_dvm_domain(unsigned long long master_iface_map)355 void ccn_exit_dvm_domain(unsigned long long master_iface_map)
356 {
357 unsigned long long rn_id_map;
358
359 rn_id_map = ccn_master_to_rn_id_map(master_iface_map);
360 ccn_snoop_dvm_do_op(rn_id_map,
361 CCN_GET_MN_NODEID_MAP(ccn_plat_desc->periphbase),
362 MN_REGION_ID,
363 MN_DDC_CLR_OFFSET,
364 MN_DDC_STAT_OFFSET);
365 }
366
367 /*******************************************************************************
368 * This function returns the run mode of all the L3 cache partitions in the
369 * system. The state is expected to be one of NO_L3, SF_ONLY, L3_HAM or
370 * L3_FAM. Instead of comparing the states reported by all HN-Fs, the state of
371 * the first present HN-F node is reported. Since the driver does not export an
372 * interface to program them separately, there is no reason to perform this
373 * check. An HN-F could report that the L3 cache is transitioning from one mode
374 * to another e.g. HNF_PM_NOL3_2_SFONLY. In this case, the function waits for
375 * the transition to complete and reports the final state.
376 ******************************************************************************/
ccn_get_l3_run_mode(void)377 unsigned int ccn_get_l3_run_mode(void)
378 {
379 unsigned long long hnf_pstate_stat;
380
381 assert(ccn_plat_desc);
382 assert(ccn_plat_desc->periphbase);
383
384 /*
385 * Wait for a L3 cache partition to enter any run mode. The pstate
386 * parameter is read from an HN-F P-state status register. A non-zero
387 * value in bits[1:0] means that the cache is transitioning to a run
388 * mode.
389 */
390 do {
391 hnf_pstate_stat = ccn_reg_read(ccn_plat_desc->periphbase,
392 HNF_REGION_ID_START,
393 HNF_PSTATE_STAT_OFFSET);
394 } while (hnf_pstate_stat & 0x3);
395
396 return PSTATE_TO_RUN_MODE(hnf_pstate_stat);
397 }
398
399 /*******************************************************************************
400 * This function sets the run mode of all the L3 cache partitions in the
401 * system to one of NO_L3, SF_ONLY, L3_HAM or L3_FAM depending upon the state
402 * specified by the 'mode' argument.
403 ******************************************************************************/
ccn_set_l3_run_mode(unsigned int mode)404 void ccn_set_l3_run_mode(unsigned int mode)
405 {
406 unsigned long long mn_hnf_id_map, hnf_pstate_stat;
407 unsigned int region_id;
408
409 assert(ccn_plat_desc);
410 assert(ccn_plat_desc->periphbase);
411 assert(mode <= CCN_L3_RUN_MODE_FAM);
412
413 mn_hnf_id_map = ccn_reg_read(ccn_plat_desc->periphbase,
414 MN_REGION_ID,
415 MN_HNF_NODEID_OFFSET);
416 region_id = HNF_REGION_ID_START;
417
418 /* Program the desired run mode */
419 FOR_EACH_PRESENT_REGION_ID(region_id, mn_hnf_id_map) {
420 ccn_reg_write(ccn_plat_desc->periphbase,
421 region_id,
422 HNF_PSTATE_REQ_OFFSET,
423 mode);
424 }
425
426 /* Wait for the caches to transition to the run mode */
427 region_id = HNF_REGION_ID_START;
428 FOR_EACH_PRESENT_REGION_ID(region_id, mn_hnf_id_map) {
429 /*
430 * Wait for a L3 cache partition to enter a target run
431 * mode. The pstate parameter is read from an HN-F P-state
432 * status register.
433 */
434 do {
435 hnf_pstate_stat = ccn_reg_read(ccn_plat_desc->periphbase,
436 region_id,
437 HNF_PSTATE_STAT_OFFSET);
438 } while (((hnf_pstate_stat & HNF_PSTATE_MASK) >> 2) != mode);
439 }
440 }
441
442 /*******************************************************************************
443 * This function configures system address map and provides option to enable the
444 * 3SN striping mode of Slave node operation. The Slave node IDs and the Top
445 * Address bit1 and bit0 are provided as parameters to this function. This
446 * configuration is needed only if network contains a single SN-F or 3 SN-F and
447 * must be completed before the first request by the system to normal memory.
448 ******************************************************************************/
ccn_program_sys_addrmap(unsigned int sn0_id,unsigned int sn1_id,unsigned int sn2_id,unsigned int top_addr_bit0,unsigned int top_addr_bit1,unsigned char three_sn_en)449 void ccn_program_sys_addrmap(unsigned int sn0_id,
450 unsigned int sn1_id,
451 unsigned int sn2_id,
452 unsigned int top_addr_bit0,
453 unsigned int top_addr_bit1,
454 unsigned char three_sn_en)
455 {
456 unsigned long long mn_hnf_id_map, hnf_sam_ctrl_value;
457 unsigned int region_id;
458
459 assert(ccn_plat_desc);
460 assert(ccn_plat_desc->periphbase);
461
462 mn_hnf_id_map = ccn_reg_read(ccn_plat_desc->periphbase,
463 MN_REGION_ID,
464 MN_HNF_NODEID_OFFSET);
465 region_id = HNF_REGION_ID_START;
466 hnf_sam_ctrl_value = MAKE_HNF_SAM_CTRL_VALUE(sn0_id,
467 sn1_id,
468 sn2_id,
469 top_addr_bit0,
470 top_addr_bit1,
471 three_sn_en);
472
473 FOR_EACH_PRESENT_REGION_ID(region_id, mn_hnf_id_map) {
474
475 /* Program the SAM control register */
476 ccn_reg_write(ccn_plat_desc->periphbase,
477 region_id,
478 HNF_SAM_CTRL_OFFSET,
479 hnf_sam_ctrl_value);
480 }
481
482 }
483
484 /*******************************************************************************
485 * This function returns the part0 id from the peripheralID 0 register
486 * in CCN. This id can be used to distinguish the CCN variant present in the
487 * system.
488 ******************************************************************************/
ccn_get_part0_id(uintptr_t periphbase)489 int ccn_get_part0_id(uintptr_t periphbase)
490 {
491 assert(periphbase);
492 return (int)(mmio_read_64(periphbase
493 + MN_PERIPH_ID_0_1_OFFSET) & 0xFF);
494 }
495
496 /*******************************************************************************
497 * This function returns the region id corresponding to a node_id of node_type.
498 ******************************************************************************/
get_region_id_for_node(node_types_t node_type,unsigned int node_id)499 static unsigned int get_region_id_for_node(node_types_t node_type,
500 unsigned int node_id)
501 {
502 unsigned int mn_reg_off, region_id;
503 unsigned long long node_bitmap;
504 unsigned int loc_node_id, node_pos_in_map = 0;
505
506 assert(node_type < NUM_NODE_TYPES);
507 assert(node_id < MAX_RN_NODES);
508
509 switch (node_type) {
510 case NODE_TYPE_RNI:
511 region_id = RNI_REGION_ID_START;
512 break;
513 case NODE_TYPE_HNF:
514 region_id = HNF_REGION_ID_START;
515 break;
516 case NODE_TYPE_HNI:
517 region_id = HNI_REGION_ID_START;
518 break;
519 case NODE_TYPE_SN:
520 region_id = SBSX_REGION_ID_START;
521 break;
522 default:
523 ERROR("Un-supported Node Type = %d.\n", node_type);
524 assert(false);
525 return REGION_ID_LIMIT;
526 }
527 /*
528 * RN-I, HN-F, HN-I, SN node registers in the MN region
529 * occupy contiguous 16 byte apart offsets.
530 *
531 * RN-F and RN-D node are not supported as
532 * none of them exposes any memory map to
533 * configure any of their offset registers.
534 */
535
536 mn_reg_off = MN_RNF_NODEID_OFFSET + (node_type << 4);
537 node_bitmap = ccn_reg_read(ccn_plat_desc->periphbase,
538 MN_REGION_ID, mn_reg_off);
539
540 assert((node_bitmap & (1ULL << (node_id))) != 0U);
541
542
543 FOR_EACH_PRESENT_NODE_ID(loc_node_id, node_bitmap) {
544 INFO("Index = %u with loc_nod=%u and input nod=%u\n",
545 node_pos_in_map, loc_node_id, node_id);
546 if (loc_node_id == node_id)
547 break;
548 node_pos_in_map++;
549 }
550
551 if (node_pos_in_map == CCN_MAX_RN_MASTERS) {
552 ERROR("Node Id = %d, is not found.\n", node_id);
553 assert(false);
554 return REGION_ID_LIMIT;
555 }
556
557 /*
558 * According to section 3.1.1 in CCN specification, region offset for
559 * the RN-I components is calculated as (128 + NodeID of RN-I).
560 */
561 if (node_type == NODE_TYPE_RNI)
562 region_id += node_id;
563 else
564 region_id += node_pos_in_map;
565
566 return region_id;
567 }
568
569 /*******************************************************************************
570 * This function sets the value 'val' to the register at register_offset from
571 * the base address pointed to by the region_id.
572 * where, region id is mapped to a node_id of node_type.
573 ******************************************************************************/
ccn_write_node_reg(node_types_t node_type,unsigned int node_id,unsigned int reg_offset,unsigned long long val)574 void ccn_write_node_reg(node_types_t node_type, unsigned int node_id,
575 unsigned int reg_offset, unsigned long long val)
576 {
577 unsigned int region_id = get_region_id_for_node(node_type, node_id);
578
579 if (reg_offset > REGION_ID_OFFSET) {
580 ERROR("Invalid Register offset 0x%x is provided.\n",
581 reg_offset);
582 assert(false);
583 return;
584 }
585
586 /* Setting the value of Auxiliary Control Register of the Node */
587 ccn_reg_write(ccn_plat_desc->periphbase, region_id, reg_offset, val);
588 VERBOSE("Value is successfully written at address 0x%lx.\n",
589 (ccn_plat_desc->periphbase
590 + region_id_to_base(region_id))
591 + reg_offset);
592 }
593
594 /*******************************************************************************
595 * This function read the value 'val' stored in the register at register_offset
596 * from the base address pointed to by the region_id.
597 * where, region id is mapped to a node_id of node_type.
598 ******************************************************************************/
ccn_read_node_reg(node_types_t node_type,unsigned int node_id,unsigned int reg_offset)599 unsigned long long ccn_read_node_reg(node_types_t node_type,
600 unsigned int node_id,
601 unsigned int reg_offset)
602 {
603 unsigned long long val;
604 unsigned int region_id = get_region_id_for_node(node_type, node_id);
605
606 if (reg_offset > REGION_ID_OFFSET) {
607 ERROR("Invalid Register offset 0x%x is provided.\n",
608 reg_offset);
609 assert(false);
610 return ULL(0);
611 }
612
613 /* Setting the value of Auxiliary Control Register of the Node */
614 val = ccn_reg_read(ccn_plat_desc->periphbase, region_id, reg_offset);
615 VERBOSE("Value is successfully read from address 0x%lx.\n",
616 (ccn_plat_desc->periphbase
617 + region_id_to_base(region_id))
618 + reg_offset);
619
620 return val;
621 }
622