/u-boot/arch/arm/cpu/armv8/fsl-layerscape/ |
A D | mp.c | 80 u32 cores, cpu_up_mask = 1; in fsl_layerscape_wake_seconday_cores() local 127 cores = cpu_mask(); in fsl_layerscape_wake_seconday_cores() 148 rst->brrl = cores; in fsl_layerscape_wake_seconday_cores() 180 gur_out32(&gur->brrl, cores); in fsl_layerscape_wake_seconday_cores() 184 scfg_out32(&scfg->corebcr, cores); in fsl_layerscape_wake_seconday_cores() 202 if (hweight32(cpu_up_mask) == hweight32(cores)) in fsl_layerscape_wake_seconday_cores() 208 cores ^ cpu_up_mask); in fsl_layerscape_wake_seconday_cores() 211 printf("CPU: %d cores online\n", hweight32(cores)); in fsl_layerscape_wake_seconday_cores() 250 u32 cores = cpu_pos_mask(); in core_to_pos() local 255 } else if (nr >= hweight32(cores)) { in core_to_pos()
|
/u-boot/drivers/remoteproc/ |
A D | ti_k3_r5f_rproc.c | 119 struct k3_r5f_core *cores[NR_CORES]; member 124 return core == core->cluster->cores[0]; in is_primary_core() 187 reset_assert(&cluster->cores[c]->reset); in k3_r5f_lockstep_release() 269 if (!core->cluster->cores[0]->in_use) { in k3_r5f_core_sanity_check() 403 ret = k3_r5f_core_run(cluster->cores[c]); in k3_r5f_start() 426 k3_r5f_core_halt(cluster->cores[c]); in k3_r5f_start() 507 k3_r5f_core_halt(cluster->cores[c]); in k3_r5f_stop() 765 if (core == cluster->cores[0]) { in k3_r5f_core_adjust_tcm_sizes() 796 if (!cluster->cores[0]) in k3_r5f_probe() 797 cluster->cores[0] = core; in k3_r5f_probe() [all …]
|
/u-boot/doc/ |
A D | README.mpc85xx-spin-table | 6 __secondary_start_page. For other cores to use the spin table, the booting 12 page translation for secondary cores to use this page of memory. Then 4KB 17 that secondary cores can see it. 19 When secondary cores boot up from 0xffff_f000 page, they only have one default 22 with WIMGE =0b00100. Now secondary cores can keep polling the spin table
|
A D | README.Heterogeneous-SoCs | 5 configuration and frequencies of all PowerPC cores and devices 7 SC3900/DSP cores and such devices like CPRI, MAPLE, MAPLE-ULB etc. 19 Code added in this file to print the DSP cores and other device's(CPRI, 25 required cores and devices from RCW and System frequency 29 Added API to get the number of SC cores in running system and Their BIT 44 Global structure updated for dsp cores and other components 73 DSP cores and other device's components have been added in this structure.
|
A D | README.srio-pcie-boot-corenet | 22 the boot location to SRIO or PCIE, and holdoff all the cores. 37 1. Slave's RCW example for boot from SRIO port 1 and all cores in holdoff. 44 2. Slave's RCW example for boot from PCIE port 1 and all cores in holdoff. 70 h) Since all cores of slave in holdoff, slave should be powered on before 85 1. Slave's RCW with SRIO or PCIE boot configurations, and all cores in holdoff
|
A D | README.socfpga | 28 projects must have the IP cores updated as shown below. 42 Then (if necessary) update the IP cores in the project, generate HDL code, and 46 $ qsys-generate soc_system.qsys --upgrade-ip-cores
|
/u-boot/drivers/axi/ |
A D | Kconfig | 7 communication with IP cores in Xilinx FPGAs). 23 IP cores in the FPGA (e.g. video transmitter cores).
|
/u-boot/drivers/cpu/ |
A D | Kconfig | 15 Support CPU cores for SoCs of the MPC83xx series. 21 Support CPU cores for RISC-V architecture.
|
/u-boot/doc/device-tree-bindings/remoteproc/ |
A D | ti,k3-r5f-rproc.txt | 7 or in a Split mode providing two individual compute cores for doubling 15 cores. Each node has a number of required or optional properties that enable 41 - ti,cluster-mode: Configuration Mode for the Dual R5F cores within the R5F 59 "ti,am654-r5f" for the R5F cores in K3 AM65x SoCs 60 "ti,j721e-r5f" for the R5F cores in K3 J721E SOCs 61 "ti,j7200-r5f" for the R5F cores in K3 J7200 SOCs 74 cores. 89 The following properties are optional properties for each of the R5F cores:
|
A D | ti,k3-dsp-rproc.txt | 10 a dedicated local power/sleep controller etc. The DSP processor cores in the 45 cores.
|
/u-boot/arch/x86/cpu/intel_common/ |
A D | cpu.c | 300 int cores = 1; in cpu_get_cores_per_package() local 306 cores = result.ebx & 0xff; in cpu_get_cores_per_package() 308 return cores; in cpu_get_cores_per_package()
|
/u-boot/board/freescale/ls1028a/ |
A D | README | 31 Two Arm Cortex- A72 processor cores: 34 - Single-threaded cores with 48 KB L1 instruction cache and 32 KB L1 36 - Arranged as a single cluster of two cores sharing a single 1 MB L2 110 Two Arm Cortex- A72 processor cores: 113 - Single-threaded cores with 48 KB L1 instruction cache and 32 KB L1 115 - Arranged as a single cluster of two cores sharing a single 1 MB L2
|
/u-boot/arch/arm/dts/ |
A D | socfpga_arria5.dtsi | 7 /* First 4KB has trampoline code for secondary cores. */
|
A D | socfpga_cyclone5.dtsi | 7 /* First 4KB has trampoline code for secondary cores. */
|
A D | vexpress-v2p-ca15_a7.dts | 360 /* Total current for the two A15 cores */ 367 /* Total current for the three A7 cores */ 381 /* Total power for the two A15 cores */ 388 /* Total power for the three A7 cores */ 395 /* Total energy for the two A15 cores */ 402 /* Total energy for the three A7 cores */
|
A D | fsl-imx8-ca35.dtsi | 14 /* We have 1 clusters having 4 Cortex-A35 cores */
|
/u-boot/arch/mips/mach-octeon/ |
A D | cvmx-coremask.c | 181 u64 cores; in octeon_get_available_coremask() local 206 cores = __builtin_popcountll(ciu_fuse); in octeon_get_available_coremask() 208 cvmx_coremask_set_cores(pcm, 0, cores); in octeon_get_available_coremask()
|
/u-boot/doc/device-tree-bindings/axi/ |
A D | gdsys,ihs_axi.txt | 4 the connected devices (usually IP cores) can be controlled via software.
|
/u-boot/arch/arm/cpu/armv7/ls102xa/ |
A D | Kconfig | 40 cores, count the reserved ports. This will allocate enough memory 41 in spin table to properly handle all cores.
|
/u-boot/arch/arm/cpu/armv8/ |
A D | Kconfig | 18 bool "Enable data coherency with other cores in cluster" 23 For A53, it enables data coherency with other cores in the 26 Cortex A53/57/72 cores require CPUECTLR_EL1.SMPEN set even 153 of CPU cores, platforms with asymmetric clusters don't apply here.
|
/u-boot/doc/board/freescale/ |
A D | b4860qds.rst | 12 StarCore and Power Architecture® cores. It targets the broadband wireless 33 e6500 cores, SC3900 FVP cores, memories and external interfaces. 43 buffer management, and allocation tasks from the cores 125 1. Less e6500 cores: 1 cluster with 2 e6500 cores 126 2. Less SC3900 cores/clusters: 1 cluster with 2 SC3900 cores per cluster
|
/u-boot/arch/arm/cpu/armv8/fsl-layerscape/doc/ |
A D | README.soc | 17 processor cores with datapath acceleration optimized for L2/3 packet 55 architecture combining eight ARM A53 processor cores 65 - Cores are in 2 cluster of 4-cores each 87 processor cores with high-performance data path acceleration logic and network 173 processor cores with datapath acceleration optimized for L2/3 packet 214 processor cores with high-performance data path acceleration logic and network 282 cores with advanced, high-performance datapath acceleration and 337 The QorIQ LS1028A processor integrates two 64-bit Arm Cortex-A72 cores with 341 The high performance Cortex-A72 cores, performing above 16,000 CoreMarks, 387 combining sixteen ARM A72 processor cores with advanced, high-performance
|
/u-boot/doc/arch/ |
A D | arc.rst | 10 More information on ARC cores avaialble here:
|
/u-boot/arch/arc/ |
A D | Kconfig | 18 The original ARC ISA of ARC600/700 cores 23 ISA for the Next Generation ARC-HS cores
|
/u-boot/arch/arm/mach-rockchip/rk3368/ |
A D | Kconfig | 14 - 8x Cortex-A53 (in 2 clusters of 4 cores each)
|