1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Exception handling code
4 *
5 * Copyright (C) 2019 ARM Ltd.
6 */
7
8 #include <linux/context_tracking.h>
9 #include <linux/linkage.h>
10 #include <linux/lockdep.h>
11 #include <linux/ptrace.h>
12 #include <linux/sched.h>
13 #include <linux/sched/debug.h>
14 #include <linux/thread_info.h>
15
16 #include <asm/cpufeature.h>
17 #include <asm/daifflags.h>
18 #include <asm/esr.h>
19 #include <asm/exception.h>
20 #include <asm/irq_regs.h>
21 #include <asm/kprobes.h>
22 #include <asm/mmu.h>
23 #include <asm/processor.h>
24 #include <asm/sdei.h>
25 #include <asm/stacktrace.h>
26 #include <asm/sysreg.h>
27 #include <asm/system_misc.h>
28
29 /*
30 * Handle IRQ/context state management when entering from kernel mode.
31 * Before this function is called it is not safe to call regular kernel code,
32 * intrumentable code, or any code which may trigger an exception.
33 *
34 * This is intended to match the logic in irqentry_enter(), handling the kernel
35 * mode transitions only.
36 */
__enter_from_kernel_mode(struct pt_regs * regs)37 static __always_inline void __enter_from_kernel_mode(struct pt_regs *regs)
38 {
39 regs->exit_rcu = false;
40
41 if (!IS_ENABLED(CONFIG_TINY_RCU) && is_idle_task(current)) {
42 lockdep_hardirqs_off(CALLER_ADDR0);
43 rcu_irq_enter();
44 trace_hardirqs_off_finish();
45
46 regs->exit_rcu = true;
47 return;
48 }
49
50 lockdep_hardirqs_off(CALLER_ADDR0);
51 rcu_irq_enter_check_tick();
52 trace_hardirqs_off_finish();
53 }
54
enter_from_kernel_mode(struct pt_regs * regs)55 static void noinstr enter_from_kernel_mode(struct pt_regs *regs)
56 {
57 __enter_from_kernel_mode(regs);
58 mte_check_tfsr_entry();
59 }
60
61 /*
62 * Handle IRQ/context state management when exiting to kernel mode.
63 * After this function returns it is not safe to call regular kernel code,
64 * intrumentable code, or any code which may trigger an exception.
65 *
66 * This is intended to match the logic in irqentry_exit(), handling the kernel
67 * mode transitions only, and with preemption handled elsewhere.
68 */
__exit_to_kernel_mode(struct pt_regs * regs)69 static __always_inline void __exit_to_kernel_mode(struct pt_regs *regs)
70 {
71 lockdep_assert_irqs_disabled();
72
73 if (interrupts_enabled(regs)) {
74 if (regs->exit_rcu) {
75 trace_hardirqs_on_prepare();
76 lockdep_hardirqs_on_prepare(CALLER_ADDR0);
77 rcu_irq_exit();
78 lockdep_hardirqs_on(CALLER_ADDR0);
79 return;
80 }
81
82 trace_hardirqs_on();
83 } else {
84 if (regs->exit_rcu)
85 rcu_irq_exit();
86 }
87 }
88
exit_to_kernel_mode(struct pt_regs * regs)89 static void noinstr exit_to_kernel_mode(struct pt_regs *regs)
90 {
91 mte_check_tfsr_exit();
92 __exit_to_kernel_mode(regs);
93 }
94
95 /*
96 * Handle IRQ/context state management when entering from user mode.
97 * Before this function is called it is not safe to call regular kernel code,
98 * intrumentable code, or any code which may trigger an exception.
99 */
__enter_from_user_mode(void)100 static __always_inline void __enter_from_user_mode(void)
101 {
102 lockdep_hardirqs_off(CALLER_ADDR0);
103 CT_WARN_ON(ct_state() != CONTEXT_USER);
104 user_exit_irqoff();
105 trace_hardirqs_off_finish();
106 }
107
enter_from_user_mode(struct pt_regs * regs)108 static __always_inline void enter_from_user_mode(struct pt_regs *regs)
109 {
110 __enter_from_user_mode();
111 }
112
113 /*
114 * Handle IRQ/context state management when exiting to user mode.
115 * After this function returns it is not safe to call regular kernel code,
116 * intrumentable code, or any code which may trigger an exception.
117 */
__exit_to_user_mode(void)118 static __always_inline void __exit_to_user_mode(void)
119 {
120 trace_hardirqs_on_prepare();
121 lockdep_hardirqs_on_prepare(CALLER_ADDR0);
122 user_enter_irqoff();
123 lockdep_hardirqs_on(CALLER_ADDR0);
124 }
125
prepare_exit_to_user_mode(struct pt_regs * regs)126 static __always_inline void prepare_exit_to_user_mode(struct pt_regs *regs)
127 {
128 unsigned long flags;
129
130 local_daif_mask();
131
132 flags = READ_ONCE(current_thread_info()->flags);
133 if (unlikely(flags & _TIF_WORK_MASK))
134 do_notify_resume(regs, flags);
135 }
136
exit_to_user_mode(struct pt_regs * regs)137 static __always_inline void exit_to_user_mode(struct pt_regs *regs)
138 {
139 prepare_exit_to_user_mode(regs);
140 mte_check_tfsr_exit();
141 __exit_to_user_mode();
142 }
143
asm_exit_to_user_mode(struct pt_regs * regs)144 asmlinkage void noinstr asm_exit_to_user_mode(struct pt_regs *regs)
145 {
146 exit_to_user_mode(regs);
147 }
148
149 /*
150 * Handle IRQ/context state management when entering an NMI from user/kernel
151 * mode. Before this function is called it is not safe to call regular kernel
152 * code, intrumentable code, or any code which may trigger an exception.
153 */
arm64_enter_nmi(struct pt_regs * regs)154 static void noinstr arm64_enter_nmi(struct pt_regs *regs)
155 {
156 regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
157
158 __nmi_enter();
159 lockdep_hardirqs_off(CALLER_ADDR0);
160 lockdep_hardirq_enter();
161 rcu_nmi_enter();
162
163 trace_hardirqs_off_finish();
164 ftrace_nmi_enter();
165 }
166
167 /*
168 * Handle IRQ/context state management when exiting an NMI from user/kernel
169 * mode. After this function returns it is not safe to call regular kernel
170 * code, intrumentable code, or any code which may trigger an exception.
171 */
arm64_exit_nmi(struct pt_regs * regs)172 static void noinstr arm64_exit_nmi(struct pt_regs *regs)
173 {
174 bool restore = regs->lockdep_hardirqs;
175
176 ftrace_nmi_exit();
177 if (restore) {
178 trace_hardirqs_on_prepare();
179 lockdep_hardirqs_on_prepare(CALLER_ADDR0);
180 }
181
182 rcu_nmi_exit();
183 lockdep_hardirq_exit();
184 if (restore)
185 lockdep_hardirqs_on(CALLER_ADDR0);
186 __nmi_exit();
187 }
188
189 /*
190 * Handle IRQ/context state management when entering a debug exception from
191 * kernel mode. Before this function is called it is not safe to call regular
192 * kernel code, intrumentable code, or any code which may trigger an exception.
193 */
arm64_enter_el1_dbg(struct pt_regs * regs)194 static void noinstr arm64_enter_el1_dbg(struct pt_regs *regs)
195 {
196 regs->lockdep_hardirqs = lockdep_hardirqs_enabled();
197
198 lockdep_hardirqs_off(CALLER_ADDR0);
199 rcu_nmi_enter();
200
201 trace_hardirqs_off_finish();
202 }
203
204 /*
205 * Handle IRQ/context state management when exiting a debug exception from
206 * kernel mode. After this function returns it is not safe to call regular
207 * kernel code, intrumentable code, or any code which may trigger an exception.
208 */
arm64_exit_el1_dbg(struct pt_regs * regs)209 static void noinstr arm64_exit_el1_dbg(struct pt_regs *regs)
210 {
211 bool restore = regs->lockdep_hardirqs;
212
213 if (restore) {
214 trace_hardirqs_on_prepare();
215 lockdep_hardirqs_on_prepare(CALLER_ADDR0);
216 }
217
218 rcu_nmi_exit();
219 if (restore)
220 lockdep_hardirqs_on(CALLER_ADDR0);
221 }
222
arm64_preempt_schedule_irq(void)223 static void __sched arm64_preempt_schedule_irq(void)
224 {
225 lockdep_assert_irqs_disabled();
226
227 /*
228 * DAIF.DA are cleared at the start of IRQ/FIQ handling, and when GIC
229 * priority masking is used the GIC irqchip driver will clear DAIF.IF
230 * using gic_arch_enable_irqs() for normal IRQs. If anything is set in
231 * DAIF we must have handled an NMI, so skip preemption.
232 */
233 if (system_uses_irq_prio_masking() && read_sysreg(daif))
234 return;
235
236 /*
237 * Preempting a task from an IRQ means we leave copies of PSTATE
238 * on the stack. cpufeature's enable calls may modify PSTATE, but
239 * resuming one of these preempted tasks would undo those changes.
240 *
241 * Only allow a task to be preempted once cpufeatures have been
242 * enabled.
243 */
244 if (system_capabilities_finalized())
245 preempt_schedule_irq();
246 }
247
do_interrupt_handler(struct pt_regs * regs,void (* handler)(struct pt_regs *))248 static void do_interrupt_handler(struct pt_regs *regs,
249 void (*handler)(struct pt_regs *))
250 {
251 struct pt_regs *old_regs = set_irq_regs(regs);
252
253 if (on_thread_stack())
254 call_on_irq_stack(regs, handler);
255 else
256 handler(regs);
257
258 set_irq_regs(old_regs);
259 }
260
261 extern void (*handle_arch_irq)(struct pt_regs *);
262 extern void (*handle_arch_fiq)(struct pt_regs *);
263
__panic_unhandled(struct pt_regs * regs,const char * vector,unsigned int esr)264 static void noinstr __panic_unhandled(struct pt_regs *regs, const char *vector,
265 unsigned int esr)
266 {
267 arm64_enter_nmi(regs);
268
269 console_verbose();
270
271 pr_crit("Unhandled %s exception on CPU%d, ESR 0x%08x -- %s\n",
272 vector, smp_processor_id(), esr,
273 esr_get_class_string(esr));
274
275 __show_regs(regs);
276 panic("Unhandled exception");
277 }
278
279 #define UNHANDLED(el, regsize, vector) \
280 asmlinkage void noinstr el##_##regsize##_##vector##_handler(struct pt_regs *regs) \
281 { \
282 const char *desc = #regsize "-bit " #el " " #vector; \
283 __panic_unhandled(regs, desc, read_sysreg(esr_el1)); \
284 }
285
286 #ifdef CONFIG_ARM64_ERRATUM_1463225
287 static DEFINE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
288
cortex_a76_erratum_1463225_svc_handler(void)289 static void cortex_a76_erratum_1463225_svc_handler(void)
290 {
291 u32 reg, val;
292
293 if (!unlikely(test_thread_flag(TIF_SINGLESTEP)))
294 return;
295
296 if (!unlikely(this_cpu_has_cap(ARM64_WORKAROUND_1463225)))
297 return;
298
299 __this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 1);
300 reg = read_sysreg(mdscr_el1);
301 val = reg | DBG_MDSCR_SS | DBG_MDSCR_KDE;
302 write_sysreg(val, mdscr_el1);
303 asm volatile("msr daifclr, #8");
304 isb();
305
306 /* We will have taken a single-step exception by this point */
307
308 write_sysreg(reg, mdscr_el1);
309 __this_cpu_write(__in_cortex_a76_erratum_1463225_wa, 0);
310 }
311
cortex_a76_erratum_1463225_debug_handler(struct pt_regs * regs)312 static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
313 {
314 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
315 return false;
316
317 /*
318 * We've taken a dummy step exception from the kernel to ensure
319 * that interrupts are re-enabled on the syscall path. Return back
320 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
321 * masked so that we can safely restore the mdscr and get on with
322 * handling the syscall.
323 */
324 regs->pstate |= PSR_D_BIT;
325 return true;
326 }
327 #else /* CONFIG_ARM64_ERRATUM_1463225 */
cortex_a76_erratum_1463225_svc_handler(void)328 static void cortex_a76_erratum_1463225_svc_handler(void) { }
cortex_a76_erratum_1463225_debug_handler(struct pt_regs * regs)329 static bool cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
330 {
331 return false;
332 }
333 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
334
335 UNHANDLED(el1t, 64, sync)
336 UNHANDLED(el1t, 64, irq)
337 UNHANDLED(el1t, 64, fiq)
338 UNHANDLED(el1t, 64, error)
339
el1_abort(struct pt_regs * regs,unsigned long esr)340 static void noinstr el1_abort(struct pt_regs *regs, unsigned long esr)
341 {
342 unsigned long far = read_sysreg(far_el1);
343
344 enter_from_kernel_mode(regs);
345 local_daif_inherit(regs);
346 do_mem_abort(far, esr, regs);
347 local_daif_mask();
348 exit_to_kernel_mode(regs);
349 }
350
el1_pc(struct pt_regs * regs,unsigned long esr)351 static void noinstr el1_pc(struct pt_regs *regs, unsigned long esr)
352 {
353 unsigned long far = read_sysreg(far_el1);
354
355 enter_from_kernel_mode(regs);
356 local_daif_inherit(regs);
357 do_sp_pc_abort(far, esr, regs);
358 local_daif_mask();
359 exit_to_kernel_mode(regs);
360 }
361
el1_undef(struct pt_regs * regs)362 static void noinstr el1_undef(struct pt_regs *regs)
363 {
364 enter_from_kernel_mode(regs);
365 local_daif_inherit(regs);
366 do_undefinstr(regs);
367 local_daif_mask();
368 exit_to_kernel_mode(regs);
369 }
370
el1_dbg(struct pt_regs * regs,unsigned long esr)371 static void noinstr el1_dbg(struct pt_regs *regs, unsigned long esr)
372 {
373 unsigned long far = read_sysreg(far_el1);
374
375 arm64_enter_el1_dbg(regs);
376 if (!cortex_a76_erratum_1463225_debug_handler(regs))
377 do_debug_exception(far, esr, regs);
378 arm64_exit_el1_dbg(regs);
379 }
380
el1_fpac(struct pt_regs * regs,unsigned long esr)381 static void noinstr el1_fpac(struct pt_regs *regs, unsigned long esr)
382 {
383 enter_from_kernel_mode(regs);
384 local_daif_inherit(regs);
385 do_ptrauth_fault(regs, esr);
386 local_daif_mask();
387 exit_to_kernel_mode(regs);
388 }
389
el1h_64_sync_handler(struct pt_regs * regs)390 asmlinkage void noinstr el1h_64_sync_handler(struct pt_regs *regs)
391 {
392 unsigned long esr = read_sysreg(esr_el1);
393
394 switch (ESR_ELx_EC(esr)) {
395 case ESR_ELx_EC_DABT_CUR:
396 case ESR_ELx_EC_IABT_CUR:
397 el1_abort(regs, esr);
398 break;
399 /*
400 * We don't handle ESR_ELx_EC_SP_ALIGN, since we will have hit a
401 * recursive exception when trying to push the initial pt_regs.
402 */
403 case ESR_ELx_EC_PC_ALIGN:
404 el1_pc(regs, esr);
405 break;
406 case ESR_ELx_EC_SYS64:
407 case ESR_ELx_EC_UNKNOWN:
408 el1_undef(regs);
409 break;
410 case ESR_ELx_EC_BREAKPT_CUR:
411 case ESR_ELx_EC_SOFTSTP_CUR:
412 case ESR_ELx_EC_WATCHPT_CUR:
413 case ESR_ELx_EC_BRK64:
414 el1_dbg(regs, esr);
415 break;
416 case ESR_ELx_EC_FPAC:
417 el1_fpac(regs, esr);
418 break;
419 default:
420 __panic_unhandled(regs, "64-bit el1h sync", esr);
421 }
422 }
423
__el1_pnmi(struct pt_regs * regs,void (* handler)(struct pt_regs *))424 static __always_inline void __el1_pnmi(struct pt_regs *regs,
425 void (*handler)(struct pt_regs *))
426 {
427 arm64_enter_nmi(regs);
428 do_interrupt_handler(regs, handler);
429 arm64_exit_nmi(regs);
430 }
431
__el1_irq(struct pt_regs * regs,void (* handler)(struct pt_regs *))432 static __always_inline void __el1_irq(struct pt_regs *regs,
433 void (*handler)(struct pt_regs *))
434 {
435 enter_from_kernel_mode(regs);
436
437 irq_enter_rcu();
438 do_interrupt_handler(regs, handler);
439 irq_exit_rcu();
440
441 /*
442 * Note: thread_info::preempt_count includes both thread_info::count
443 * and thread_info::need_resched, and is not equivalent to
444 * preempt_count().
445 */
446 if (IS_ENABLED(CONFIG_PREEMPTION) &&
447 READ_ONCE(current_thread_info()->preempt_count) == 0)
448 arm64_preempt_schedule_irq();
449
450 exit_to_kernel_mode(regs);
451 }
el1_interrupt(struct pt_regs * regs,void (* handler)(struct pt_regs *))452 static void noinstr el1_interrupt(struct pt_regs *regs,
453 void (*handler)(struct pt_regs *))
454 {
455 write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
456
457 if (IS_ENABLED(CONFIG_ARM64_PSEUDO_NMI) && !interrupts_enabled(regs))
458 __el1_pnmi(regs, handler);
459 else
460 __el1_irq(regs, handler);
461 }
462
el1h_64_irq_handler(struct pt_regs * regs)463 asmlinkage void noinstr el1h_64_irq_handler(struct pt_regs *regs)
464 {
465 el1_interrupt(regs, handle_arch_irq);
466 }
467
el1h_64_fiq_handler(struct pt_regs * regs)468 asmlinkage void noinstr el1h_64_fiq_handler(struct pt_regs *regs)
469 {
470 el1_interrupt(regs, handle_arch_fiq);
471 }
472
el1h_64_error_handler(struct pt_regs * regs)473 asmlinkage void noinstr el1h_64_error_handler(struct pt_regs *regs)
474 {
475 unsigned long esr = read_sysreg(esr_el1);
476
477 local_daif_restore(DAIF_ERRCTX);
478 arm64_enter_nmi(regs);
479 do_serror(regs, esr);
480 arm64_exit_nmi(regs);
481 }
482
el0_da(struct pt_regs * regs,unsigned long esr)483 static void noinstr el0_da(struct pt_regs *regs, unsigned long esr)
484 {
485 unsigned long far = read_sysreg(far_el1);
486
487 enter_from_user_mode(regs);
488 local_daif_restore(DAIF_PROCCTX);
489 do_mem_abort(far, esr, regs);
490 exit_to_user_mode(regs);
491 }
492
el0_ia(struct pt_regs * regs,unsigned long esr)493 static void noinstr el0_ia(struct pt_regs *regs, unsigned long esr)
494 {
495 unsigned long far = read_sysreg(far_el1);
496
497 /*
498 * We've taken an instruction abort from userspace and not yet
499 * re-enabled IRQs. If the address is a kernel address, apply
500 * BP hardening prior to enabling IRQs and pre-emption.
501 */
502 if (!is_ttbr0_addr(far))
503 arm64_apply_bp_hardening();
504
505 enter_from_user_mode(regs);
506 local_daif_restore(DAIF_PROCCTX);
507 do_mem_abort(far, esr, regs);
508 exit_to_user_mode(regs);
509 }
510
el0_fpsimd_acc(struct pt_regs * regs,unsigned long esr)511 static void noinstr el0_fpsimd_acc(struct pt_regs *regs, unsigned long esr)
512 {
513 enter_from_user_mode(regs);
514 local_daif_restore(DAIF_PROCCTX);
515 do_fpsimd_acc(esr, regs);
516 exit_to_user_mode(regs);
517 }
518
el0_sve_acc(struct pt_regs * regs,unsigned long esr)519 static void noinstr el0_sve_acc(struct pt_regs *regs, unsigned long esr)
520 {
521 enter_from_user_mode(regs);
522 local_daif_restore(DAIF_PROCCTX);
523 do_sve_acc(esr, regs);
524 exit_to_user_mode(regs);
525 }
526
el0_fpsimd_exc(struct pt_regs * regs,unsigned long esr)527 static void noinstr el0_fpsimd_exc(struct pt_regs *regs, unsigned long esr)
528 {
529 enter_from_user_mode(regs);
530 local_daif_restore(DAIF_PROCCTX);
531 do_fpsimd_exc(esr, regs);
532 exit_to_user_mode(regs);
533 }
534
el0_sys(struct pt_regs * regs,unsigned long esr)535 static void noinstr el0_sys(struct pt_regs *regs, unsigned long esr)
536 {
537 enter_from_user_mode(regs);
538 local_daif_restore(DAIF_PROCCTX);
539 do_sysinstr(esr, regs);
540 exit_to_user_mode(regs);
541 }
542
el0_pc(struct pt_regs * regs,unsigned long esr)543 static void noinstr el0_pc(struct pt_regs *regs, unsigned long esr)
544 {
545 unsigned long far = read_sysreg(far_el1);
546
547 if (!is_ttbr0_addr(instruction_pointer(regs)))
548 arm64_apply_bp_hardening();
549
550 enter_from_user_mode(regs);
551 local_daif_restore(DAIF_PROCCTX);
552 do_sp_pc_abort(far, esr, regs);
553 exit_to_user_mode(regs);
554 }
555
el0_sp(struct pt_regs * regs,unsigned long esr)556 static void noinstr el0_sp(struct pt_regs *regs, unsigned long esr)
557 {
558 enter_from_user_mode(regs);
559 local_daif_restore(DAIF_PROCCTX);
560 do_sp_pc_abort(regs->sp, esr, regs);
561 exit_to_user_mode(regs);
562 }
563
el0_undef(struct pt_regs * regs)564 static void noinstr el0_undef(struct pt_regs *regs)
565 {
566 enter_from_user_mode(regs);
567 local_daif_restore(DAIF_PROCCTX);
568 do_undefinstr(regs);
569 exit_to_user_mode(regs);
570 }
571
el0_bti(struct pt_regs * regs)572 static void noinstr el0_bti(struct pt_regs *regs)
573 {
574 enter_from_user_mode(regs);
575 local_daif_restore(DAIF_PROCCTX);
576 do_bti(regs);
577 exit_to_user_mode(regs);
578 }
579
el0_inv(struct pt_regs * regs,unsigned long esr)580 static void noinstr el0_inv(struct pt_regs *regs, unsigned long esr)
581 {
582 enter_from_user_mode(regs);
583 local_daif_restore(DAIF_PROCCTX);
584 bad_el0_sync(regs, 0, esr);
585 exit_to_user_mode(regs);
586 }
587
el0_dbg(struct pt_regs * regs,unsigned long esr)588 static void noinstr el0_dbg(struct pt_regs *regs, unsigned long esr)
589 {
590 /* Only watchpoints write FAR_EL1, otherwise its UNKNOWN */
591 unsigned long far = read_sysreg(far_el1);
592
593 enter_from_user_mode(regs);
594 do_debug_exception(far, esr, regs);
595 local_daif_restore(DAIF_PROCCTX);
596 exit_to_user_mode(regs);
597 }
598
el0_svc(struct pt_regs * regs)599 static void noinstr el0_svc(struct pt_regs *regs)
600 {
601 enter_from_user_mode(regs);
602 cortex_a76_erratum_1463225_svc_handler();
603 do_el0_svc(regs);
604 exit_to_user_mode(regs);
605 }
606
el0_fpac(struct pt_regs * regs,unsigned long esr)607 static void noinstr el0_fpac(struct pt_regs *regs, unsigned long esr)
608 {
609 enter_from_user_mode(regs);
610 local_daif_restore(DAIF_PROCCTX);
611 do_ptrauth_fault(regs, esr);
612 exit_to_user_mode(regs);
613 }
614
el0t_64_sync_handler(struct pt_regs * regs)615 asmlinkage void noinstr el0t_64_sync_handler(struct pt_regs *regs)
616 {
617 unsigned long esr = read_sysreg(esr_el1);
618
619 switch (ESR_ELx_EC(esr)) {
620 case ESR_ELx_EC_SVC64:
621 el0_svc(regs);
622 break;
623 case ESR_ELx_EC_DABT_LOW:
624 el0_da(regs, esr);
625 break;
626 case ESR_ELx_EC_IABT_LOW:
627 el0_ia(regs, esr);
628 break;
629 case ESR_ELx_EC_FP_ASIMD:
630 el0_fpsimd_acc(regs, esr);
631 break;
632 case ESR_ELx_EC_SVE:
633 el0_sve_acc(regs, esr);
634 break;
635 case ESR_ELx_EC_FP_EXC64:
636 el0_fpsimd_exc(regs, esr);
637 break;
638 case ESR_ELx_EC_SYS64:
639 case ESR_ELx_EC_WFx:
640 el0_sys(regs, esr);
641 break;
642 case ESR_ELx_EC_SP_ALIGN:
643 el0_sp(regs, esr);
644 break;
645 case ESR_ELx_EC_PC_ALIGN:
646 el0_pc(regs, esr);
647 break;
648 case ESR_ELx_EC_UNKNOWN:
649 el0_undef(regs);
650 break;
651 case ESR_ELx_EC_BTI:
652 el0_bti(regs);
653 break;
654 case ESR_ELx_EC_BREAKPT_LOW:
655 case ESR_ELx_EC_SOFTSTP_LOW:
656 case ESR_ELx_EC_WATCHPT_LOW:
657 case ESR_ELx_EC_BRK64:
658 el0_dbg(regs, esr);
659 break;
660 case ESR_ELx_EC_FPAC:
661 el0_fpac(regs, esr);
662 break;
663 default:
664 el0_inv(regs, esr);
665 }
666 }
667
el0_interrupt(struct pt_regs * regs,void (* handler)(struct pt_regs *))668 static void noinstr el0_interrupt(struct pt_regs *regs,
669 void (*handler)(struct pt_regs *))
670 {
671 enter_from_user_mode(regs);
672
673 write_sysreg(DAIF_PROCCTX_NOIRQ, daif);
674
675 if (regs->pc & BIT(55))
676 arm64_apply_bp_hardening();
677
678 irq_enter_rcu();
679 do_interrupt_handler(regs, handler);
680 irq_exit_rcu();
681
682 exit_to_user_mode(regs);
683 }
684
__el0_irq_handler_common(struct pt_regs * regs)685 static void noinstr __el0_irq_handler_common(struct pt_regs *regs)
686 {
687 el0_interrupt(regs, handle_arch_irq);
688 }
689
el0t_64_irq_handler(struct pt_regs * regs)690 asmlinkage void noinstr el0t_64_irq_handler(struct pt_regs *regs)
691 {
692 __el0_irq_handler_common(regs);
693 }
694
__el0_fiq_handler_common(struct pt_regs * regs)695 static void noinstr __el0_fiq_handler_common(struct pt_regs *regs)
696 {
697 el0_interrupt(regs, handle_arch_fiq);
698 }
699
el0t_64_fiq_handler(struct pt_regs * regs)700 asmlinkage void noinstr el0t_64_fiq_handler(struct pt_regs *regs)
701 {
702 __el0_fiq_handler_common(regs);
703 }
704
__el0_error_handler_common(struct pt_regs * regs)705 static void noinstr __el0_error_handler_common(struct pt_regs *regs)
706 {
707 unsigned long esr = read_sysreg(esr_el1);
708
709 enter_from_user_mode(regs);
710 local_daif_restore(DAIF_ERRCTX);
711 arm64_enter_nmi(regs);
712 do_serror(regs, esr);
713 arm64_exit_nmi(regs);
714 local_daif_restore(DAIF_PROCCTX);
715 exit_to_user_mode(regs);
716 }
717
el0t_64_error_handler(struct pt_regs * regs)718 asmlinkage void noinstr el0t_64_error_handler(struct pt_regs *regs)
719 {
720 __el0_error_handler_common(regs);
721 }
722
723 #ifdef CONFIG_COMPAT
el0_cp15(struct pt_regs * regs,unsigned long esr)724 static void noinstr el0_cp15(struct pt_regs *regs, unsigned long esr)
725 {
726 enter_from_user_mode(regs);
727 local_daif_restore(DAIF_PROCCTX);
728 do_cp15instr(esr, regs);
729 exit_to_user_mode(regs);
730 }
731
el0_svc_compat(struct pt_regs * regs)732 static void noinstr el0_svc_compat(struct pt_regs *regs)
733 {
734 enter_from_user_mode(regs);
735 cortex_a76_erratum_1463225_svc_handler();
736 do_el0_svc_compat(regs);
737 exit_to_user_mode(regs);
738 }
739
el0t_32_sync_handler(struct pt_regs * regs)740 asmlinkage void noinstr el0t_32_sync_handler(struct pt_regs *regs)
741 {
742 unsigned long esr = read_sysreg(esr_el1);
743
744 switch (ESR_ELx_EC(esr)) {
745 case ESR_ELx_EC_SVC32:
746 el0_svc_compat(regs);
747 break;
748 case ESR_ELx_EC_DABT_LOW:
749 el0_da(regs, esr);
750 break;
751 case ESR_ELx_EC_IABT_LOW:
752 el0_ia(regs, esr);
753 break;
754 case ESR_ELx_EC_FP_ASIMD:
755 el0_fpsimd_acc(regs, esr);
756 break;
757 case ESR_ELx_EC_FP_EXC32:
758 el0_fpsimd_exc(regs, esr);
759 break;
760 case ESR_ELx_EC_PC_ALIGN:
761 el0_pc(regs, esr);
762 break;
763 case ESR_ELx_EC_UNKNOWN:
764 case ESR_ELx_EC_CP14_MR:
765 case ESR_ELx_EC_CP14_LS:
766 case ESR_ELx_EC_CP14_64:
767 el0_undef(regs);
768 break;
769 case ESR_ELx_EC_CP15_32:
770 case ESR_ELx_EC_CP15_64:
771 el0_cp15(regs, esr);
772 break;
773 case ESR_ELx_EC_BREAKPT_LOW:
774 case ESR_ELx_EC_SOFTSTP_LOW:
775 case ESR_ELx_EC_WATCHPT_LOW:
776 case ESR_ELx_EC_BKPT32:
777 el0_dbg(regs, esr);
778 break;
779 default:
780 el0_inv(regs, esr);
781 }
782 }
783
el0t_32_irq_handler(struct pt_regs * regs)784 asmlinkage void noinstr el0t_32_irq_handler(struct pt_regs *regs)
785 {
786 __el0_irq_handler_common(regs);
787 }
788
el0t_32_fiq_handler(struct pt_regs * regs)789 asmlinkage void noinstr el0t_32_fiq_handler(struct pt_regs *regs)
790 {
791 __el0_fiq_handler_common(regs);
792 }
793
el0t_32_error_handler(struct pt_regs * regs)794 asmlinkage void noinstr el0t_32_error_handler(struct pt_regs *regs)
795 {
796 __el0_error_handler_common(regs);
797 }
798 #else /* CONFIG_COMPAT */
799 UNHANDLED(el0t, 32, sync)
800 UNHANDLED(el0t, 32, irq)
801 UNHANDLED(el0t, 32, fiq)
802 UNHANDLED(el0t, 32, error)
803 #endif /* CONFIG_COMPAT */
804
805 #ifdef CONFIG_VMAP_STACK
handle_bad_stack(struct pt_regs * regs)806 asmlinkage void noinstr handle_bad_stack(struct pt_regs *regs)
807 {
808 unsigned int esr = read_sysreg(esr_el1);
809 unsigned long far = read_sysreg(far_el1);
810
811 arm64_enter_nmi(regs);
812 panic_bad_stack(regs, esr, far);
813 }
814 #endif /* CONFIG_VMAP_STACK */
815
816 #ifdef CONFIG_ARM_SDE_INTERFACE
817 asmlinkage noinstr unsigned long
__sdei_handler(struct pt_regs * regs,struct sdei_registered_event * arg)818 __sdei_handler(struct pt_regs *regs, struct sdei_registered_event *arg)
819 {
820 unsigned long ret;
821
822 /*
823 * We didn't take an exception to get here, so the HW hasn't
824 * set/cleared bits in PSTATE that we may rely on.
825 *
826 * The original SDEI spec (ARM DEN 0054A) can be read ambiguously as to
827 * whether PSTATE bits are inherited unchanged or generated from
828 * scratch, and the TF-A implementation always clears PAN and always
829 * clears UAO. There are no other known implementations.
830 *
831 * Subsequent revisions (ARM DEN 0054B) follow the usual rules for how
832 * PSTATE is modified upon architectural exceptions, and so PAN is
833 * either inherited or set per SCTLR_ELx.SPAN, and UAO is always
834 * cleared.
835 *
836 * We must explicitly reset PAN to the expected state, including
837 * clearing it when the host isn't using it, in case a VM had it set.
838 */
839 if (system_uses_hw_pan())
840 set_pstate_pan(1);
841 else if (cpu_has_pan())
842 set_pstate_pan(0);
843
844 arm64_enter_nmi(regs);
845 ret = do_sdei_event(regs, arg);
846 arm64_exit_nmi(regs);
847
848 return ret;
849 }
850 #endif /* CONFIG_ARM_SDE_INTERFACE */
851