1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include <linux/fsverity.h>
17 #include "misc.h"
18 #include "extent_io.h"
19 #include "extent-io-tree.h"
20 #include "extent_map.h"
21 #include "ctree.h"
22 #include "btrfs_inode.h"
23 #include "volumes.h"
24 #include "check-integrity.h"
25 #include "locking.h"
26 #include "rcu-string.h"
27 #include "backref.h"
28 #include "disk-io.h"
29 #include "subpage.h"
30 #include "zoned.h"
31 #include "block-group.h"
32
33 static struct kmem_cache *extent_state_cache;
34 static struct kmem_cache *extent_buffer_cache;
35 static struct bio_set btrfs_bioset;
36
extent_state_in_tree(const struct extent_state * state)37 static inline bool extent_state_in_tree(const struct extent_state *state)
38 {
39 return !RB_EMPTY_NODE(&state->rb_node);
40 }
41
42 #ifdef CONFIG_BTRFS_DEBUG
43 static LIST_HEAD(states);
44 static DEFINE_SPINLOCK(leak_lock);
45
btrfs_leak_debug_add(spinlock_t * lock,struct list_head * new,struct list_head * head)46 static inline void btrfs_leak_debug_add(spinlock_t *lock,
47 struct list_head *new,
48 struct list_head *head)
49 {
50 unsigned long flags;
51
52 spin_lock_irqsave(lock, flags);
53 list_add(new, head);
54 spin_unlock_irqrestore(lock, flags);
55 }
56
btrfs_leak_debug_del(spinlock_t * lock,struct list_head * entry)57 static inline void btrfs_leak_debug_del(spinlock_t *lock,
58 struct list_head *entry)
59 {
60 unsigned long flags;
61
62 spin_lock_irqsave(lock, flags);
63 list_del(entry);
64 spin_unlock_irqrestore(lock, flags);
65 }
66
btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info * fs_info)67 void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
68 {
69 struct extent_buffer *eb;
70 unsigned long flags;
71
72 /*
73 * If we didn't get into open_ctree our allocated_ebs will not be
74 * initialized, so just skip this.
75 */
76 if (!fs_info->allocated_ebs.next)
77 return;
78
79 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
80 while (!list_empty(&fs_info->allocated_ebs)) {
81 eb = list_first_entry(&fs_info->allocated_ebs,
82 struct extent_buffer, leak_list);
83 pr_err(
84 "BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
85 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
86 btrfs_header_owner(eb));
87 list_del(&eb->leak_list);
88 kmem_cache_free(extent_buffer_cache, eb);
89 }
90 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
91 }
92
btrfs_extent_state_leak_debug_check(void)93 static inline void btrfs_extent_state_leak_debug_check(void)
94 {
95 struct extent_state *state;
96
97 while (!list_empty(&states)) {
98 state = list_entry(states.next, struct extent_state, leak_list);
99 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
100 state->start, state->end, state->state,
101 extent_state_in_tree(state),
102 refcount_read(&state->refs));
103 list_del(&state->leak_list);
104 kmem_cache_free(extent_state_cache, state);
105 }
106 }
107
108 #define btrfs_debug_check_extent_io_range(tree, start, end) \
109 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
__btrfs_debug_check_extent_io_range(const char * caller,struct extent_io_tree * tree,u64 start,u64 end)110 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
111 struct extent_io_tree *tree, u64 start, u64 end)
112 {
113 struct inode *inode = tree->private_data;
114 u64 isize;
115
116 if (!inode || !is_data_inode(inode))
117 return;
118
119 isize = i_size_read(inode);
120 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
121 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
122 "%s: ino %llu isize %llu odd range [%llu,%llu]",
123 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
124 }
125 }
126 #else
127 #define btrfs_leak_debug_add(lock, new, head) do {} while (0)
128 #define btrfs_leak_debug_del(lock, entry) do {} while (0)
129 #define btrfs_extent_state_leak_debug_check() do {} while (0)
130 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
131 #endif
132
133 struct tree_entry {
134 u64 start;
135 u64 end;
136 struct rb_node rb_node;
137 };
138
139 struct extent_page_data {
140 struct btrfs_bio_ctrl bio_ctrl;
141 /* tells writepage not to lock the state bits for this range
142 * it still does the unlocking
143 */
144 unsigned int extent_locked:1;
145
146 /* tells the submit_bio code to use REQ_SYNC */
147 unsigned int sync_io:1;
148 };
149
add_extent_changeset(struct extent_state * state,u32 bits,struct extent_changeset * changeset,int set)150 static int add_extent_changeset(struct extent_state *state, u32 bits,
151 struct extent_changeset *changeset,
152 int set)
153 {
154 int ret;
155
156 if (!changeset)
157 return 0;
158 if (set && (state->state & bits) == bits)
159 return 0;
160 if (!set && (state->state & bits) == 0)
161 return 0;
162 changeset->bytes_changed += state->end - state->start + 1;
163 ret = ulist_add(&changeset->range_changed, state->start, state->end,
164 GFP_ATOMIC);
165 return ret;
166 }
167
submit_one_bio(struct bio * bio,int mirror_num,unsigned long bio_flags)168 int __must_check submit_one_bio(struct bio *bio, int mirror_num,
169 unsigned long bio_flags)
170 {
171 blk_status_t ret = 0;
172 struct extent_io_tree *tree = bio->bi_private;
173
174 bio->bi_private = NULL;
175
176 /* Caller should ensure the bio has at least some range added */
177 ASSERT(bio->bi_iter.bi_size);
178 if (is_data_inode(tree->private_data))
179 ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
180 bio_flags);
181 else
182 ret = btrfs_submit_metadata_bio(tree->private_data, bio,
183 mirror_num, bio_flags);
184
185 return blk_status_to_errno(ret);
186 }
187
188 /* Cleanup unsubmitted bios */
end_write_bio(struct extent_page_data * epd,int ret)189 static void end_write_bio(struct extent_page_data *epd, int ret)
190 {
191 struct bio *bio = epd->bio_ctrl.bio;
192
193 if (bio) {
194 bio->bi_status = errno_to_blk_status(ret);
195 bio_endio(bio);
196 epd->bio_ctrl.bio = NULL;
197 }
198 }
199
200 /*
201 * Submit bio from extent page data via submit_one_bio
202 *
203 * Return 0 if everything is OK.
204 * Return <0 for error.
205 */
flush_write_bio(struct extent_page_data * epd)206 static int __must_check flush_write_bio(struct extent_page_data *epd)
207 {
208 int ret = 0;
209 struct bio *bio = epd->bio_ctrl.bio;
210
211 if (bio) {
212 ret = submit_one_bio(bio, 0, 0);
213 /*
214 * Clean up of epd->bio is handled by its endio function.
215 * And endio is either triggered by successful bio execution
216 * or the error handler of submit bio hook.
217 * So at this point, no matter what happened, we don't need
218 * to clean up epd->bio.
219 */
220 epd->bio_ctrl.bio = NULL;
221 }
222 return ret;
223 }
224
extent_state_cache_init(void)225 int __init extent_state_cache_init(void)
226 {
227 extent_state_cache = kmem_cache_create("btrfs_extent_state",
228 sizeof(struct extent_state), 0,
229 SLAB_MEM_SPREAD, NULL);
230 if (!extent_state_cache)
231 return -ENOMEM;
232 return 0;
233 }
234
extent_io_init(void)235 int __init extent_io_init(void)
236 {
237 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
238 sizeof(struct extent_buffer), 0,
239 SLAB_MEM_SPREAD, NULL);
240 if (!extent_buffer_cache)
241 return -ENOMEM;
242
243 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
244 offsetof(struct btrfs_bio, bio),
245 BIOSET_NEED_BVECS))
246 goto free_buffer_cache;
247
248 if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
249 goto free_bioset;
250
251 return 0;
252
253 free_bioset:
254 bioset_exit(&btrfs_bioset);
255
256 free_buffer_cache:
257 kmem_cache_destroy(extent_buffer_cache);
258 extent_buffer_cache = NULL;
259 return -ENOMEM;
260 }
261
extent_state_cache_exit(void)262 void __cold extent_state_cache_exit(void)
263 {
264 btrfs_extent_state_leak_debug_check();
265 kmem_cache_destroy(extent_state_cache);
266 }
267
extent_io_exit(void)268 void __cold extent_io_exit(void)
269 {
270 /*
271 * Make sure all delayed rcu free are flushed before we
272 * destroy caches.
273 */
274 rcu_barrier();
275 kmem_cache_destroy(extent_buffer_cache);
276 bioset_exit(&btrfs_bioset);
277 }
278
279 /*
280 * For the file_extent_tree, we want to hold the inode lock when we lookup and
281 * update the disk_i_size, but lockdep will complain because our io_tree we hold
282 * the tree lock and get the inode lock when setting delalloc. These two things
283 * are unrelated, so make a class for the file_extent_tree so we don't get the
284 * two locking patterns mixed up.
285 */
286 static struct lock_class_key file_extent_tree_class;
287
extent_io_tree_init(struct btrfs_fs_info * fs_info,struct extent_io_tree * tree,unsigned int owner,void * private_data)288 void extent_io_tree_init(struct btrfs_fs_info *fs_info,
289 struct extent_io_tree *tree, unsigned int owner,
290 void *private_data)
291 {
292 tree->fs_info = fs_info;
293 tree->state = RB_ROOT;
294 tree->dirty_bytes = 0;
295 spin_lock_init(&tree->lock);
296 tree->private_data = private_data;
297 tree->owner = owner;
298 if (owner == IO_TREE_INODE_FILE_EXTENT)
299 lockdep_set_class(&tree->lock, &file_extent_tree_class);
300 }
301
extent_io_tree_release(struct extent_io_tree * tree)302 void extent_io_tree_release(struct extent_io_tree *tree)
303 {
304 spin_lock(&tree->lock);
305 /*
306 * Do a single barrier for the waitqueue_active check here, the state
307 * of the waitqueue should not change once extent_io_tree_release is
308 * called.
309 */
310 smp_mb();
311 while (!RB_EMPTY_ROOT(&tree->state)) {
312 struct rb_node *node;
313 struct extent_state *state;
314
315 node = rb_first(&tree->state);
316 state = rb_entry(node, struct extent_state, rb_node);
317 rb_erase(&state->rb_node, &tree->state);
318 RB_CLEAR_NODE(&state->rb_node);
319 /*
320 * btree io trees aren't supposed to have tasks waiting for
321 * changes in the flags of extent states ever.
322 */
323 ASSERT(!waitqueue_active(&state->wq));
324 free_extent_state(state);
325
326 cond_resched_lock(&tree->lock);
327 }
328 spin_unlock(&tree->lock);
329 }
330
alloc_extent_state(gfp_t mask)331 static struct extent_state *alloc_extent_state(gfp_t mask)
332 {
333 struct extent_state *state;
334
335 /*
336 * The given mask might be not appropriate for the slab allocator,
337 * drop the unsupported bits
338 */
339 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
340 state = kmem_cache_alloc(extent_state_cache, mask);
341 if (!state)
342 return state;
343 state->state = 0;
344 state->failrec = NULL;
345 RB_CLEAR_NODE(&state->rb_node);
346 btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
347 refcount_set(&state->refs, 1);
348 init_waitqueue_head(&state->wq);
349 trace_alloc_extent_state(state, mask, _RET_IP_);
350 return state;
351 }
352
free_extent_state(struct extent_state * state)353 void free_extent_state(struct extent_state *state)
354 {
355 if (!state)
356 return;
357 if (refcount_dec_and_test(&state->refs)) {
358 WARN_ON(extent_state_in_tree(state));
359 btrfs_leak_debug_del(&leak_lock, &state->leak_list);
360 trace_free_extent_state(state, _RET_IP_);
361 kmem_cache_free(extent_state_cache, state);
362 }
363 }
364
tree_insert(struct rb_root * root,struct rb_node * search_start,u64 offset,struct rb_node * node,struct rb_node *** p_in,struct rb_node ** parent_in)365 static struct rb_node *tree_insert(struct rb_root *root,
366 struct rb_node *search_start,
367 u64 offset,
368 struct rb_node *node,
369 struct rb_node ***p_in,
370 struct rb_node **parent_in)
371 {
372 struct rb_node **p;
373 struct rb_node *parent = NULL;
374 struct tree_entry *entry;
375
376 if (p_in && parent_in) {
377 p = *p_in;
378 parent = *parent_in;
379 goto do_insert;
380 }
381
382 p = search_start ? &search_start : &root->rb_node;
383 while (*p) {
384 parent = *p;
385 entry = rb_entry(parent, struct tree_entry, rb_node);
386
387 if (offset < entry->start)
388 p = &(*p)->rb_left;
389 else if (offset > entry->end)
390 p = &(*p)->rb_right;
391 else
392 return parent;
393 }
394
395 do_insert:
396 rb_link_node(node, parent, p);
397 rb_insert_color(node, root);
398 return NULL;
399 }
400
401 /**
402 * Search @tree for an entry that contains @offset. Such entry would have
403 * entry->start <= offset && entry->end >= offset.
404 *
405 * @tree: the tree to search
406 * @offset: offset that should fall within an entry in @tree
407 * @next_ret: pointer to the first entry whose range ends after @offset
408 * @prev_ret: pointer to the first entry whose range begins before @offset
409 * @p_ret: pointer where new node should be anchored (used when inserting an
410 * entry in the tree)
411 * @parent_ret: points to entry which would have been the parent of the entry,
412 * containing @offset
413 *
414 * This function returns a pointer to the entry that contains @offset byte
415 * address. If no such entry exists, then NULL is returned and the other
416 * pointer arguments to the function are filled, otherwise the found entry is
417 * returned and other pointers are left untouched.
418 */
__etree_search(struct extent_io_tree * tree,u64 offset,struct rb_node ** next_ret,struct rb_node ** prev_ret,struct rb_node *** p_ret,struct rb_node ** parent_ret)419 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
420 struct rb_node **next_ret,
421 struct rb_node **prev_ret,
422 struct rb_node ***p_ret,
423 struct rb_node **parent_ret)
424 {
425 struct rb_root *root = &tree->state;
426 struct rb_node **n = &root->rb_node;
427 struct rb_node *prev = NULL;
428 struct rb_node *orig_prev = NULL;
429 struct tree_entry *entry;
430 struct tree_entry *prev_entry = NULL;
431
432 while (*n) {
433 prev = *n;
434 entry = rb_entry(prev, struct tree_entry, rb_node);
435 prev_entry = entry;
436
437 if (offset < entry->start)
438 n = &(*n)->rb_left;
439 else if (offset > entry->end)
440 n = &(*n)->rb_right;
441 else
442 return *n;
443 }
444
445 if (p_ret)
446 *p_ret = n;
447 if (parent_ret)
448 *parent_ret = prev;
449
450 if (next_ret) {
451 orig_prev = prev;
452 while (prev && offset > prev_entry->end) {
453 prev = rb_next(prev);
454 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
455 }
456 *next_ret = prev;
457 prev = orig_prev;
458 }
459
460 if (prev_ret) {
461 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
462 while (prev && offset < prev_entry->start) {
463 prev = rb_prev(prev);
464 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
465 }
466 *prev_ret = prev;
467 }
468 return NULL;
469 }
470
471 static inline struct rb_node *
tree_search_for_insert(struct extent_io_tree * tree,u64 offset,struct rb_node *** p_ret,struct rb_node ** parent_ret)472 tree_search_for_insert(struct extent_io_tree *tree,
473 u64 offset,
474 struct rb_node ***p_ret,
475 struct rb_node **parent_ret)
476 {
477 struct rb_node *next= NULL;
478 struct rb_node *ret;
479
480 ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
481 if (!ret)
482 return next;
483 return ret;
484 }
485
tree_search(struct extent_io_tree * tree,u64 offset)486 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
487 u64 offset)
488 {
489 return tree_search_for_insert(tree, offset, NULL, NULL);
490 }
491
492 /*
493 * utility function to look for merge candidates inside a given range.
494 * Any extents with matching state are merged together into a single
495 * extent in the tree. Extents with EXTENT_IO in their state field
496 * are not merged because the end_io handlers need to be able to do
497 * operations on them without sleeping (or doing allocations/splits).
498 *
499 * This should be called with the tree lock held.
500 */
merge_state(struct extent_io_tree * tree,struct extent_state * state)501 static void merge_state(struct extent_io_tree *tree,
502 struct extent_state *state)
503 {
504 struct extent_state *other;
505 struct rb_node *other_node;
506
507 if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
508 return;
509
510 other_node = rb_prev(&state->rb_node);
511 if (other_node) {
512 other = rb_entry(other_node, struct extent_state, rb_node);
513 if (other->end == state->start - 1 &&
514 other->state == state->state) {
515 if (tree->private_data &&
516 is_data_inode(tree->private_data))
517 btrfs_merge_delalloc_extent(tree->private_data,
518 state, other);
519 state->start = other->start;
520 rb_erase(&other->rb_node, &tree->state);
521 RB_CLEAR_NODE(&other->rb_node);
522 free_extent_state(other);
523 }
524 }
525 other_node = rb_next(&state->rb_node);
526 if (other_node) {
527 other = rb_entry(other_node, struct extent_state, rb_node);
528 if (other->start == state->end + 1 &&
529 other->state == state->state) {
530 if (tree->private_data &&
531 is_data_inode(tree->private_data))
532 btrfs_merge_delalloc_extent(tree->private_data,
533 state, other);
534 state->end = other->end;
535 rb_erase(&other->rb_node, &tree->state);
536 RB_CLEAR_NODE(&other->rb_node);
537 free_extent_state(other);
538 }
539 }
540 }
541
542 static void set_state_bits(struct extent_io_tree *tree,
543 struct extent_state *state, u32 *bits,
544 struct extent_changeset *changeset);
545
546 /*
547 * insert an extent_state struct into the tree. 'bits' are set on the
548 * struct before it is inserted.
549 *
550 * This may return -EEXIST if the extent is already there, in which case the
551 * state struct is freed.
552 *
553 * The tree lock is not taken internally. This is a utility function and
554 * probably isn't what you want to call (see set/clear_extent_bit).
555 */
insert_state(struct extent_io_tree * tree,struct extent_state * state,u64 start,u64 end,struct rb_node *** p,struct rb_node ** parent,u32 * bits,struct extent_changeset * changeset)556 static int insert_state(struct extent_io_tree *tree,
557 struct extent_state *state, u64 start, u64 end,
558 struct rb_node ***p,
559 struct rb_node **parent,
560 u32 *bits, struct extent_changeset *changeset)
561 {
562 struct rb_node *node;
563
564 if (end < start) {
565 btrfs_err(tree->fs_info,
566 "insert state: end < start %llu %llu", end, start);
567 WARN_ON(1);
568 }
569 state->start = start;
570 state->end = end;
571
572 set_state_bits(tree, state, bits, changeset);
573
574 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
575 if (node) {
576 struct extent_state *found;
577 found = rb_entry(node, struct extent_state, rb_node);
578 btrfs_err(tree->fs_info,
579 "found node %llu %llu on insert of %llu %llu",
580 found->start, found->end, start, end);
581 return -EEXIST;
582 }
583 merge_state(tree, state);
584 return 0;
585 }
586
587 /*
588 * split a given extent state struct in two, inserting the preallocated
589 * struct 'prealloc' as the newly created second half. 'split' indicates an
590 * offset inside 'orig' where it should be split.
591 *
592 * Before calling,
593 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
594 * are two extent state structs in the tree:
595 * prealloc: [orig->start, split - 1]
596 * orig: [ split, orig->end ]
597 *
598 * The tree locks are not taken by this function. They need to be held
599 * by the caller.
600 */
split_state(struct extent_io_tree * tree,struct extent_state * orig,struct extent_state * prealloc,u64 split)601 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
602 struct extent_state *prealloc, u64 split)
603 {
604 struct rb_node *node;
605
606 if (tree->private_data && is_data_inode(tree->private_data))
607 btrfs_split_delalloc_extent(tree->private_data, orig, split);
608
609 prealloc->start = orig->start;
610 prealloc->end = split - 1;
611 prealloc->state = orig->state;
612 orig->start = split;
613
614 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
615 &prealloc->rb_node, NULL, NULL);
616 if (node) {
617 free_extent_state(prealloc);
618 return -EEXIST;
619 }
620 return 0;
621 }
622
next_state(struct extent_state * state)623 static struct extent_state *next_state(struct extent_state *state)
624 {
625 struct rb_node *next = rb_next(&state->rb_node);
626 if (next)
627 return rb_entry(next, struct extent_state, rb_node);
628 else
629 return NULL;
630 }
631
632 /*
633 * utility function to clear some bits in an extent state struct.
634 * it will optionally wake up anyone waiting on this state (wake == 1).
635 *
636 * If no bits are set on the state struct after clearing things, the
637 * struct is freed and removed from the tree
638 */
clear_state_bit(struct extent_io_tree * tree,struct extent_state * state,u32 * bits,int wake,struct extent_changeset * changeset)639 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
640 struct extent_state *state,
641 u32 *bits, int wake,
642 struct extent_changeset *changeset)
643 {
644 struct extent_state *next;
645 u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
646 int ret;
647
648 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
649 u64 range = state->end - state->start + 1;
650 WARN_ON(range > tree->dirty_bytes);
651 tree->dirty_bytes -= range;
652 }
653
654 if (tree->private_data && is_data_inode(tree->private_data))
655 btrfs_clear_delalloc_extent(tree->private_data, state, bits);
656
657 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
658 BUG_ON(ret < 0);
659 state->state &= ~bits_to_clear;
660 if (wake)
661 wake_up(&state->wq);
662 if (state->state == 0) {
663 next = next_state(state);
664 if (extent_state_in_tree(state)) {
665 rb_erase(&state->rb_node, &tree->state);
666 RB_CLEAR_NODE(&state->rb_node);
667 free_extent_state(state);
668 } else {
669 WARN_ON(1);
670 }
671 } else {
672 merge_state(tree, state);
673 next = next_state(state);
674 }
675 return next;
676 }
677
678 static struct extent_state *
alloc_extent_state_atomic(struct extent_state * prealloc)679 alloc_extent_state_atomic(struct extent_state *prealloc)
680 {
681 if (!prealloc)
682 prealloc = alloc_extent_state(GFP_ATOMIC);
683
684 return prealloc;
685 }
686
extent_io_tree_panic(struct extent_io_tree * tree,int err)687 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
688 {
689 btrfs_panic(tree->fs_info, err,
690 "locking error: extent tree was modified by another thread while locked");
691 }
692
693 /*
694 * clear some bits on a range in the tree. This may require splitting
695 * or inserting elements in the tree, so the gfp mask is used to
696 * indicate which allocations or sleeping are allowed.
697 *
698 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
699 * the given range from the tree regardless of state (ie for truncate).
700 *
701 * the range [start, end] is inclusive.
702 *
703 * This takes the tree lock, and returns 0 on success and < 0 on error.
704 */
__clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,int wake,int delete,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)705 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
706 u32 bits, int wake, int delete,
707 struct extent_state **cached_state,
708 gfp_t mask, struct extent_changeset *changeset)
709 {
710 struct extent_state *state;
711 struct extent_state *cached;
712 struct extent_state *prealloc = NULL;
713 struct rb_node *node;
714 u64 last_end;
715 int err;
716 int clear = 0;
717
718 btrfs_debug_check_extent_io_range(tree, start, end);
719 trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
720
721 if (bits & EXTENT_DELALLOC)
722 bits |= EXTENT_NORESERVE;
723
724 if (delete)
725 bits |= ~EXTENT_CTLBITS;
726
727 if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
728 clear = 1;
729 again:
730 if (!prealloc && gfpflags_allow_blocking(mask)) {
731 /*
732 * Don't care for allocation failure here because we might end
733 * up not needing the pre-allocated extent state at all, which
734 * is the case if we only have in the tree extent states that
735 * cover our input range and don't cover too any other range.
736 * If we end up needing a new extent state we allocate it later.
737 */
738 prealloc = alloc_extent_state(mask);
739 }
740
741 spin_lock(&tree->lock);
742 if (cached_state) {
743 cached = *cached_state;
744
745 if (clear) {
746 *cached_state = NULL;
747 cached_state = NULL;
748 }
749
750 if (cached && extent_state_in_tree(cached) &&
751 cached->start <= start && cached->end > start) {
752 if (clear)
753 refcount_dec(&cached->refs);
754 state = cached;
755 goto hit_next;
756 }
757 if (clear)
758 free_extent_state(cached);
759 }
760 /*
761 * this search will find the extents that end after
762 * our range starts
763 */
764 node = tree_search(tree, start);
765 if (!node)
766 goto out;
767 state = rb_entry(node, struct extent_state, rb_node);
768 hit_next:
769 if (state->start > end)
770 goto out;
771 WARN_ON(state->end < start);
772 last_end = state->end;
773
774 /* the state doesn't have the wanted bits, go ahead */
775 if (!(state->state & bits)) {
776 state = next_state(state);
777 goto next;
778 }
779
780 /*
781 * | ---- desired range ---- |
782 * | state | or
783 * | ------------- state -------------- |
784 *
785 * We need to split the extent we found, and may flip
786 * bits on second half.
787 *
788 * If the extent we found extends past our range, we
789 * just split and search again. It'll get split again
790 * the next time though.
791 *
792 * If the extent we found is inside our range, we clear
793 * the desired bit on it.
794 */
795
796 if (state->start < start) {
797 prealloc = alloc_extent_state_atomic(prealloc);
798 BUG_ON(!prealloc);
799 err = split_state(tree, state, prealloc, start);
800 if (err)
801 extent_io_tree_panic(tree, err);
802
803 prealloc = NULL;
804 if (err)
805 goto out;
806 if (state->end <= end) {
807 state = clear_state_bit(tree, state, &bits, wake,
808 changeset);
809 goto next;
810 }
811 goto search_again;
812 }
813 /*
814 * | ---- desired range ---- |
815 * | state |
816 * We need to split the extent, and clear the bit
817 * on the first half
818 */
819 if (state->start <= end && state->end > end) {
820 prealloc = alloc_extent_state_atomic(prealloc);
821 BUG_ON(!prealloc);
822 err = split_state(tree, state, prealloc, end + 1);
823 if (err)
824 extent_io_tree_panic(tree, err);
825
826 if (wake)
827 wake_up(&state->wq);
828
829 clear_state_bit(tree, prealloc, &bits, wake, changeset);
830
831 prealloc = NULL;
832 goto out;
833 }
834
835 state = clear_state_bit(tree, state, &bits, wake, changeset);
836 next:
837 if (last_end == (u64)-1)
838 goto out;
839 start = last_end + 1;
840 if (start <= end && state && !need_resched())
841 goto hit_next;
842
843 search_again:
844 if (start > end)
845 goto out;
846 spin_unlock(&tree->lock);
847 if (gfpflags_allow_blocking(mask))
848 cond_resched();
849 goto again;
850
851 out:
852 spin_unlock(&tree->lock);
853 if (prealloc)
854 free_extent_state(prealloc);
855
856 return 0;
857
858 }
859
wait_on_state(struct extent_io_tree * tree,struct extent_state * state)860 static void wait_on_state(struct extent_io_tree *tree,
861 struct extent_state *state)
862 __releases(tree->lock)
863 __acquires(tree->lock)
864 {
865 DEFINE_WAIT(wait);
866 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
867 spin_unlock(&tree->lock);
868 schedule();
869 spin_lock(&tree->lock);
870 finish_wait(&state->wq, &wait);
871 }
872
873 /*
874 * waits for one or more bits to clear on a range in the state tree.
875 * The range [start, end] is inclusive.
876 * The tree lock is taken by this function
877 */
wait_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits)878 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
879 u32 bits)
880 {
881 struct extent_state *state;
882 struct rb_node *node;
883
884 btrfs_debug_check_extent_io_range(tree, start, end);
885
886 spin_lock(&tree->lock);
887 again:
888 while (1) {
889 /*
890 * this search will find all the extents that end after
891 * our range starts
892 */
893 node = tree_search(tree, start);
894 process_node:
895 if (!node)
896 break;
897
898 state = rb_entry(node, struct extent_state, rb_node);
899
900 if (state->start > end)
901 goto out;
902
903 if (state->state & bits) {
904 start = state->start;
905 refcount_inc(&state->refs);
906 wait_on_state(tree, state);
907 free_extent_state(state);
908 goto again;
909 }
910 start = state->end + 1;
911
912 if (start > end)
913 break;
914
915 if (!cond_resched_lock(&tree->lock)) {
916 node = rb_next(node);
917 goto process_node;
918 }
919 }
920 out:
921 spin_unlock(&tree->lock);
922 }
923
set_state_bits(struct extent_io_tree * tree,struct extent_state * state,u32 * bits,struct extent_changeset * changeset)924 static void set_state_bits(struct extent_io_tree *tree,
925 struct extent_state *state,
926 u32 *bits, struct extent_changeset *changeset)
927 {
928 u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
929 int ret;
930
931 if (tree->private_data && is_data_inode(tree->private_data))
932 btrfs_set_delalloc_extent(tree->private_data, state, bits);
933
934 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
935 u64 range = state->end - state->start + 1;
936 tree->dirty_bytes += range;
937 }
938 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
939 BUG_ON(ret < 0);
940 state->state |= bits_to_set;
941 }
942
cache_state_if_flags(struct extent_state * state,struct extent_state ** cached_ptr,unsigned flags)943 static void cache_state_if_flags(struct extent_state *state,
944 struct extent_state **cached_ptr,
945 unsigned flags)
946 {
947 if (cached_ptr && !(*cached_ptr)) {
948 if (!flags || (state->state & flags)) {
949 *cached_ptr = state;
950 refcount_inc(&state->refs);
951 }
952 }
953 }
954
cache_state(struct extent_state * state,struct extent_state ** cached_ptr)955 static void cache_state(struct extent_state *state,
956 struct extent_state **cached_ptr)
957 {
958 return cache_state_if_flags(state, cached_ptr,
959 EXTENT_LOCKED | EXTENT_BOUNDARY);
960 }
961
962 /*
963 * set some bits on a range in the tree. This may require allocations or
964 * sleeping, so the gfp mask is used to indicate what is allowed.
965 *
966 * If any of the exclusive bits are set, this will fail with -EEXIST if some
967 * part of the range already has the desired bits set. The start of the
968 * existing range is returned in failed_start in this case.
969 *
970 * [start, end] is inclusive This takes the tree lock.
971 */
set_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,u32 exclusive_bits,u64 * failed_start,struct extent_state ** cached_state,gfp_t mask,struct extent_changeset * changeset)972 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
973 u32 exclusive_bits, u64 *failed_start,
974 struct extent_state **cached_state, gfp_t mask,
975 struct extent_changeset *changeset)
976 {
977 struct extent_state *state;
978 struct extent_state *prealloc = NULL;
979 struct rb_node *node;
980 struct rb_node **p;
981 struct rb_node *parent;
982 int err = 0;
983 u64 last_start;
984 u64 last_end;
985
986 btrfs_debug_check_extent_io_range(tree, start, end);
987 trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
988
989 if (exclusive_bits)
990 ASSERT(failed_start);
991 else
992 ASSERT(failed_start == NULL);
993 again:
994 if (!prealloc && gfpflags_allow_blocking(mask)) {
995 /*
996 * Don't care for allocation failure here because we might end
997 * up not needing the pre-allocated extent state at all, which
998 * is the case if we only have in the tree extent states that
999 * cover our input range and don't cover too any other range.
1000 * If we end up needing a new extent state we allocate it later.
1001 */
1002 prealloc = alloc_extent_state(mask);
1003 }
1004
1005 spin_lock(&tree->lock);
1006 if (cached_state && *cached_state) {
1007 state = *cached_state;
1008 if (state->start <= start && state->end > start &&
1009 extent_state_in_tree(state)) {
1010 node = &state->rb_node;
1011 goto hit_next;
1012 }
1013 }
1014 /*
1015 * this search will find all the extents that end after
1016 * our range starts.
1017 */
1018 node = tree_search_for_insert(tree, start, &p, &parent);
1019 if (!node) {
1020 prealloc = alloc_extent_state_atomic(prealloc);
1021 BUG_ON(!prealloc);
1022 err = insert_state(tree, prealloc, start, end,
1023 &p, &parent, &bits, changeset);
1024 if (err)
1025 extent_io_tree_panic(tree, err);
1026
1027 cache_state(prealloc, cached_state);
1028 prealloc = NULL;
1029 goto out;
1030 }
1031 state = rb_entry(node, struct extent_state, rb_node);
1032 hit_next:
1033 last_start = state->start;
1034 last_end = state->end;
1035
1036 /*
1037 * | ---- desired range ---- |
1038 * | state |
1039 *
1040 * Just lock what we found and keep going
1041 */
1042 if (state->start == start && state->end <= end) {
1043 if (state->state & exclusive_bits) {
1044 *failed_start = state->start;
1045 err = -EEXIST;
1046 goto out;
1047 }
1048
1049 set_state_bits(tree, state, &bits, changeset);
1050 cache_state(state, cached_state);
1051 merge_state(tree, state);
1052 if (last_end == (u64)-1)
1053 goto out;
1054 start = last_end + 1;
1055 state = next_state(state);
1056 if (start < end && state && state->start == start &&
1057 !need_resched())
1058 goto hit_next;
1059 goto search_again;
1060 }
1061
1062 /*
1063 * | ---- desired range ---- |
1064 * | state |
1065 * or
1066 * | ------------- state -------------- |
1067 *
1068 * We need to split the extent we found, and may flip bits on
1069 * second half.
1070 *
1071 * If the extent we found extends past our
1072 * range, we just split and search again. It'll get split
1073 * again the next time though.
1074 *
1075 * If the extent we found is inside our range, we set the
1076 * desired bit on it.
1077 */
1078 if (state->start < start) {
1079 if (state->state & exclusive_bits) {
1080 *failed_start = start;
1081 err = -EEXIST;
1082 goto out;
1083 }
1084
1085 /*
1086 * If this extent already has all the bits we want set, then
1087 * skip it, not necessary to split it or do anything with it.
1088 */
1089 if ((state->state & bits) == bits) {
1090 start = state->end + 1;
1091 cache_state(state, cached_state);
1092 goto search_again;
1093 }
1094
1095 prealloc = alloc_extent_state_atomic(prealloc);
1096 BUG_ON(!prealloc);
1097 err = split_state(tree, state, prealloc, start);
1098 if (err)
1099 extent_io_tree_panic(tree, err);
1100
1101 prealloc = NULL;
1102 if (err)
1103 goto out;
1104 if (state->end <= end) {
1105 set_state_bits(tree, state, &bits, changeset);
1106 cache_state(state, cached_state);
1107 merge_state(tree, state);
1108 if (last_end == (u64)-1)
1109 goto out;
1110 start = last_end + 1;
1111 state = next_state(state);
1112 if (start < end && state && state->start == start &&
1113 !need_resched())
1114 goto hit_next;
1115 }
1116 goto search_again;
1117 }
1118 /*
1119 * | ---- desired range ---- |
1120 * | state | or | state |
1121 *
1122 * There's a hole, we need to insert something in it and
1123 * ignore the extent we found.
1124 */
1125 if (state->start > start) {
1126 u64 this_end;
1127 if (end < last_start)
1128 this_end = end;
1129 else
1130 this_end = last_start - 1;
1131
1132 prealloc = alloc_extent_state_atomic(prealloc);
1133 BUG_ON(!prealloc);
1134
1135 /*
1136 * Avoid to free 'prealloc' if it can be merged with
1137 * the later extent.
1138 */
1139 err = insert_state(tree, prealloc, start, this_end,
1140 NULL, NULL, &bits, changeset);
1141 if (err)
1142 extent_io_tree_panic(tree, err);
1143
1144 cache_state(prealloc, cached_state);
1145 prealloc = NULL;
1146 start = this_end + 1;
1147 goto search_again;
1148 }
1149 /*
1150 * | ---- desired range ---- |
1151 * | state |
1152 * We need to split the extent, and set the bit
1153 * on the first half
1154 */
1155 if (state->start <= end && state->end > end) {
1156 if (state->state & exclusive_bits) {
1157 *failed_start = start;
1158 err = -EEXIST;
1159 goto out;
1160 }
1161
1162 prealloc = alloc_extent_state_atomic(prealloc);
1163 BUG_ON(!prealloc);
1164 err = split_state(tree, state, prealloc, end + 1);
1165 if (err)
1166 extent_io_tree_panic(tree, err);
1167
1168 set_state_bits(tree, prealloc, &bits, changeset);
1169 cache_state(prealloc, cached_state);
1170 merge_state(tree, prealloc);
1171 prealloc = NULL;
1172 goto out;
1173 }
1174
1175 search_again:
1176 if (start > end)
1177 goto out;
1178 spin_unlock(&tree->lock);
1179 if (gfpflags_allow_blocking(mask))
1180 cond_resched();
1181 goto again;
1182
1183 out:
1184 spin_unlock(&tree->lock);
1185 if (prealloc)
1186 free_extent_state(prealloc);
1187
1188 return err;
1189
1190 }
1191
1192 /**
1193 * convert_extent_bit - convert all bits in a given range from one bit to
1194 * another
1195 * @tree: the io tree to search
1196 * @start: the start offset in bytes
1197 * @end: the end offset in bytes (inclusive)
1198 * @bits: the bits to set in this range
1199 * @clear_bits: the bits to clear in this range
1200 * @cached_state: state that we're going to cache
1201 *
1202 * This will go through and set bits for the given range. If any states exist
1203 * already in this range they are set with the given bit and cleared of the
1204 * clear_bits. This is only meant to be used by things that are mergeable, ie
1205 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1206 * boundary bits like LOCK.
1207 *
1208 * All allocations are done with GFP_NOFS.
1209 */
convert_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,u32 clear_bits,struct extent_state ** cached_state)1210 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1211 u32 bits, u32 clear_bits,
1212 struct extent_state **cached_state)
1213 {
1214 struct extent_state *state;
1215 struct extent_state *prealloc = NULL;
1216 struct rb_node *node;
1217 struct rb_node **p;
1218 struct rb_node *parent;
1219 int err = 0;
1220 u64 last_start;
1221 u64 last_end;
1222 bool first_iteration = true;
1223
1224 btrfs_debug_check_extent_io_range(tree, start, end);
1225 trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1226 clear_bits);
1227
1228 again:
1229 if (!prealloc) {
1230 /*
1231 * Best effort, don't worry if extent state allocation fails
1232 * here for the first iteration. We might have a cached state
1233 * that matches exactly the target range, in which case no
1234 * extent state allocations are needed. We'll only know this
1235 * after locking the tree.
1236 */
1237 prealloc = alloc_extent_state(GFP_NOFS);
1238 if (!prealloc && !first_iteration)
1239 return -ENOMEM;
1240 }
1241
1242 spin_lock(&tree->lock);
1243 if (cached_state && *cached_state) {
1244 state = *cached_state;
1245 if (state->start <= start && state->end > start &&
1246 extent_state_in_tree(state)) {
1247 node = &state->rb_node;
1248 goto hit_next;
1249 }
1250 }
1251
1252 /*
1253 * this search will find all the extents that end after
1254 * our range starts.
1255 */
1256 node = tree_search_for_insert(tree, start, &p, &parent);
1257 if (!node) {
1258 prealloc = alloc_extent_state_atomic(prealloc);
1259 if (!prealloc) {
1260 err = -ENOMEM;
1261 goto out;
1262 }
1263 err = insert_state(tree, prealloc, start, end,
1264 &p, &parent, &bits, NULL);
1265 if (err)
1266 extent_io_tree_panic(tree, err);
1267 cache_state(prealloc, cached_state);
1268 prealloc = NULL;
1269 goto out;
1270 }
1271 state = rb_entry(node, struct extent_state, rb_node);
1272 hit_next:
1273 last_start = state->start;
1274 last_end = state->end;
1275
1276 /*
1277 * | ---- desired range ---- |
1278 * | state |
1279 *
1280 * Just lock what we found and keep going
1281 */
1282 if (state->start == start && state->end <= end) {
1283 set_state_bits(tree, state, &bits, NULL);
1284 cache_state(state, cached_state);
1285 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1286 if (last_end == (u64)-1)
1287 goto out;
1288 start = last_end + 1;
1289 if (start < end && state && state->start == start &&
1290 !need_resched())
1291 goto hit_next;
1292 goto search_again;
1293 }
1294
1295 /*
1296 * | ---- desired range ---- |
1297 * | state |
1298 * or
1299 * | ------------- state -------------- |
1300 *
1301 * We need to split the extent we found, and may flip bits on
1302 * second half.
1303 *
1304 * If the extent we found extends past our
1305 * range, we just split and search again. It'll get split
1306 * again the next time though.
1307 *
1308 * If the extent we found is inside our range, we set the
1309 * desired bit on it.
1310 */
1311 if (state->start < start) {
1312 prealloc = alloc_extent_state_atomic(prealloc);
1313 if (!prealloc) {
1314 err = -ENOMEM;
1315 goto out;
1316 }
1317 err = split_state(tree, state, prealloc, start);
1318 if (err)
1319 extent_io_tree_panic(tree, err);
1320 prealloc = NULL;
1321 if (err)
1322 goto out;
1323 if (state->end <= end) {
1324 set_state_bits(tree, state, &bits, NULL);
1325 cache_state(state, cached_state);
1326 state = clear_state_bit(tree, state, &clear_bits, 0,
1327 NULL);
1328 if (last_end == (u64)-1)
1329 goto out;
1330 start = last_end + 1;
1331 if (start < end && state && state->start == start &&
1332 !need_resched())
1333 goto hit_next;
1334 }
1335 goto search_again;
1336 }
1337 /*
1338 * | ---- desired range ---- |
1339 * | state | or | state |
1340 *
1341 * There's a hole, we need to insert something in it and
1342 * ignore the extent we found.
1343 */
1344 if (state->start > start) {
1345 u64 this_end;
1346 if (end < last_start)
1347 this_end = end;
1348 else
1349 this_end = last_start - 1;
1350
1351 prealloc = alloc_extent_state_atomic(prealloc);
1352 if (!prealloc) {
1353 err = -ENOMEM;
1354 goto out;
1355 }
1356
1357 /*
1358 * Avoid to free 'prealloc' if it can be merged with
1359 * the later extent.
1360 */
1361 err = insert_state(tree, prealloc, start, this_end,
1362 NULL, NULL, &bits, NULL);
1363 if (err)
1364 extent_io_tree_panic(tree, err);
1365 cache_state(prealloc, cached_state);
1366 prealloc = NULL;
1367 start = this_end + 1;
1368 goto search_again;
1369 }
1370 /*
1371 * | ---- desired range ---- |
1372 * | state |
1373 * We need to split the extent, and set the bit
1374 * on the first half
1375 */
1376 if (state->start <= end && state->end > end) {
1377 prealloc = alloc_extent_state_atomic(prealloc);
1378 if (!prealloc) {
1379 err = -ENOMEM;
1380 goto out;
1381 }
1382
1383 err = split_state(tree, state, prealloc, end + 1);
1384 if (err)
1385 extent_io_tree_panic(tree, err);
1386
1387 set_state_bits(tree, prealloc, &bits, NULL);
1388 cache_state(prealloc, cached_state);
1389 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1390 prealloc = NULL;
1391 goto out;
1392 }
1393
1394 search_again:
1395 if (start > end)
1396 goto out;
1397 spin_unlock(&tree->lock);
1398 cond_resched();
1399 first_iteration = false;
1400 goto again;
1401
1402 out:
1403 spin_unlock(&tree->lock);
1404 if (prealloc)
1405 free_extent_state(prealloc);
1406
1407 return err;
1408 }
1409
1410 /* wrappers around set/clear extent bit */
set_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,struct extent_changeset * changeset)1411 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1412 u32 bits, struct extent_changeset *changeset)
1413 {
1414 /*
1415 * We don't support EXTENT_LOCKED yet, as current changeset will
1416 * record any bits changed, so for EXTENT_LOCKED case, it will
1417 * either fail with -EEXIST or changeset will record the whole
1418 * range.
1419 */
1420 BUG_ON(bits & EXTENT_LOCKED);
1421
1422 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1423 changeset);
1424 }
1425
set_extent_bits_nowait(struct extent_io_tree * tree,u64 start,u64 end,u32 bits)1426 int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1427 u32 bits)
1428 {
1429 return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1430 GFP_NOWAIT, NULL);
1431 }
1432
clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,int wake,int delete,struct extent_state ** cached)1433 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1434 u32 bits, int wake, int delete,
1435 struct extent_state **cached)
1436 {
1437 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1438 cached, GFP_NOFS, NULL);
1439 }
1440
clear_record_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,struct extent_changeset * changeset)1441 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1442 u32 bits, struct extent_changeset *changeset)
1443 {
1444 /*
1445 * Don't support EXTENT_LOCKED case, same reason as
1446 * set_record_extent_bits().
1447 */
1448 BUG_ON(bits & EXTENT_LOCKED);
1449
1450 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1451 changeset);
1452 }
1453
1454 /*
1455 * either insert or lock state struct between start and end use mask to tell
1456 * us if waiting is desired.
1457 */
lock_extent_bits(struct extent_io_tree * tree,u64 start,u64 end,struct extent_state ** cached_state)1458 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1459 struct extent_state **cached_state)
1460 {
1461 int err;
1462 u64 failed_start;
1463
1464 while (1) {
1465 err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1466 EXTENT_LOCKED, &failed_start,
1467 cached_state, GFP_NOFS, NULL);
1468 if (err == -EEXIST) {
1469 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1470 start = failed_start;
1471 } else
1472 break;
1473 WARN_ON(start > end);
1474 }
1475 return err;
1476 }
1477
try_lock_extent(struct extent_io_tree * tree,u64 start,u64 end)1478 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1479 {
1480 int err;
1481 u64 failed_start;
1482
1483 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1484 &failed_start, NULL, GFP_NOFS, NULL);
1485 if (err == -EEXIST) {
1486 if (failed_start > start)
1487 clear_extent_bit(tree, start, failed_start - 1,
1488 EXTENT_LOCKED, 1, 0, NULL);
1489 return 0;
1490 }
1491 return 1;
1492 }
1493
extent_range_clear_dirty_for_io(struct inode * inode,u64 start,u64 end)1494 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1495 {
1496 unsigned long index = start >> PAGE_SHIFT;
1497 unsigned long end_index = end >> PAGE_SHIFT;
1498 struct page *page;
1499
1500 while (index <= end_index) {
1501 page = find_get_page(inode->i_mapping, index);
1502 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1503 clear_page_dirty_for_io(page);
1504 put_page(page);
1505 index++;
1506 }
1507 }
1508
extent_range_redirty_for_io(struct inode * inode,u64 start,u64 end)1509 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1510 {
1511 unsigned long index = start >> PAGE_SHIFT;
1512 unsigned long end_index = end >> PAGE_SHIFT;
1513 struct page *page;
1514
1515 while (index <= end_index) {
1516 page = find_get_page(inode->i_mapping, index);
1517 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1518 __set_page_dirty_nobuffers(page);
1519 account_page_redirty(page);
1520 put_page(page);
1521 index++;
1522 }
1523 }
1524
1525 /* find the first state struct with 'bits' set after 'start', and
1526 * return it. tree->lock must be held. NULL will returned if
1527 * nothing was found after 'start'
1528 */
1529 static struct extent_state *
find_first_extent_bit_state(struct extent_io_tree * tree,u64 start,u32 bits)1530 find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
1531 {
1532 struct rb_node *node;
1533 struct extent_state *state;
1534
1535 /*
1536 * this search will find all the extents that end after
1537 * our range starts.
1538 */
1539 node = tree_search(tree, start);
1540 if (!node)
1541 goto out;
1542
1543 while (1) {
1544 state = rb_entry(node, struct extent_state, rb_node);
1545 if (state->end >= start && (state->state & bits))
1546 return state;
1547
1548 node = rb_next(node);
1549 if (!node)
1550 break;
1551 }
1552 out:
1553 return NULL;
1554 }
1555
1556 /*
1557 * Find the first offset in the io tree with one or more @bits set.
1558 *
1559 * Note: If there are multiple bits set in @bits, any of them will match.
1560 *
1561 * Return 0 if we find something, and update @start_ret and @end_ret.
1562 * Return 1 if we found nothing.
1563 */
find_first_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,u32 bits,struct extent_state ** cached_state)1564 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1565 u64 *start_ret, u64 *end_ret, u32 bits,
1566 struct extent_state **cached_state)
1567 {
1568 struct extent_state *state;
1569 int ret = 1;
1570
1571 spin_lock(&tree->lock);
1572 if (cached_state && *cached_state) {
1573 state = *cached_state;
1574 if (state->end == start - 1 && extent_state_in_tree(state)) {
1575 while ((state = next_state(state)) != NULL) {
1576 if (state->state & bits)
1577 goto got_it;
1578 }
1579 free_extent_state(*cached_state);
1580 *cached_state = NULL;
1581 goto out;
1582 }
1583 free_extent_state(*cached_state);
1584 *cached_state = NULL;
1585 }
1586
1587 state = find_first_extent_bit_state(tree, start, bits);
1588 got_it:
1589 if (state) {
1590 cache_state_if_flags(state, cached_state, 0);
1591 *start_ret = state->start;
1592 *end_ret = state->end;
1593 ret = 0;
1594 }
1595 out:
1596 spin_unlock(&tree->lock);
1597 return ret;
1598 }
1599
1600 /**
1601 * Find a contiguous area of bits
1602 *
1603 * @tree: io tree to check
1604 * @start: offset to start the search from
1605 * @start_ret: the first offset we found with the bits set
1606 * @end_ret: the final contiguous range of the bits that were set
1607 * @bits: bits to look for
1608 *
1609 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1610 * to set bits appropriately, and then merge them again. During this time it
1611 * will drop the tree->lock, so use this helper if you want to find the actual
1612 * contiguous area for given bits. We will search to the first bit we find, and
1613 * then walk down the tree until we find a non-contiguous area. The area
1614 * returned will be the full contiguous area with the bits set.
1615 */
find_contiguous_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,u32 bits)1616 int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1617 u64 *start_ret, u64 *end_ret, u32 bits)
1618 {
1619 struct extent_state *state;
1620 int ret = 1;
1621
1622 spin_lock(&tree->lock);
1623 state = find_first_extent_bit_state(tree, start, bits);
1624 if (state) {
1625 *start_ret = state->start;
1626 *end_ret = state->end;
1627 while ((state = next_state(state)) != NULL) {
1628 if (state->start > (*end_ret + 1))
1629 break;
1630 *end_ret = state->end;
1631 }
1632 ret = 0;
1633 }
1634 spin_unlock(&tree->lock);
1635 return ret;
1636 }
1637
1638 /**
1639 * Find the first range that has @bits not set. This range could start before
1640 * @start.
1641 *
1642 * @tree: the tree to search
1643 * @start: offset at/after which the found extent should start
1644 * @start_ret: records the beginning of the range
1645 * @end_ret: records the end of the range (inclusive)
1646 * @bits: the set of bits which must be unset
1647 *
1648 * Since unallocated range is also considered one which doesn't have the bits
1649 * set it's possible that @end_ret contains -1, this happens in case the range
1650 * spans (last_range_end, end of device]. In this case it's up to the caller to
1651 * trim @end_ret to the appropriate size.
1652 */
find_first_clear_extent_bit(struct extent_io_tree * tree,u64 start,u64 * start_ret,u64 * end_ret,u32 bits)1653 void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1654 u64 *start_ret, u64 *end_ret, u32 bits)
1655 {
1656 struct extent_state *state;
1657 struct rb_node *node, *prev = NULL, *next;
1658
1659 spin_lock(&tree->lock);
1660
1661 /* Find first extent with bits cleared */
1662 while (1) {
1663 node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1664 if (!node && !next && !prev) {
1665 /*
1666 * Tree is completely empty, send full range and let
1667 * caller deal with it
1668 */
1669 *start_ret = 0;
1670 *end_ret = -1;
1671 goto out;
1672 } else if (!node && !next) {
1673 /*
1674 * We are past the last allocated chunk, set start at
1675 * the end of the last extent.
1676 */
1677 state = rb_entry(prev, struct extent_state, rb_node);
1678 *start_ret = state->end + 1;
1679 *end_ret = -1;
1680 goto out;
1681 } else if (!node) {
1682 node = next;
1683 }
1684 /*
1685 * At this point 'node' either contains 'start' or start is
1686 * before 'node'
1687 */
1688 state = rb_entry(node, struct extent_state, rb_node);
1689
1690 if (in_range(start, state->start, state->end - state->start + 1)) {
1691 if (state->state & bits) {
1692 /*
1693 * |--range with bits sets--|
1694 * |
1695 * start
1696 */
1697 start = state->end + 1;
1698 } else {
1699 /*
1700 * 'start' falls within a range that doesn't
1701 * have the bits set, so take its start as
1702 * the beginning of the desired range
1703 *
1704 * |--range with bits cleared----|
1705 * |
1706 * start
1707 */
1708 *start_ret = state->start;
1709 break;
1710 }
1711 } else {
1712 /*
1713 * |---prev range---|---hole/unset---|---node range---|
1714 * |
1715 * start
1716 *
1717 * or
1718 *
1719 * |---hole/unset--||--first node--|
1720 * 0 |
1721 * start
1722 */
1723 if (prev) {
1724 state = rb_entry(prev, struct extent_state,
1725 rb_node);
1726 *start_ret = state->end + 1;
1727 } else {
1728 *start_ret = 0;
1729 }
1730 break;
1731 }
1732 }
1733
1734 /*
1735 * Find the longest stretch from start until an entry which has the
1736 * bits set
1737 */
1738 while (1) {
1739 state = rb_entry(node, struct extent_state, rb_node);
1740 if (state->end >= start && !(state->state & bits)) {
1741 *end_ret = state->end;
1742 } else {
1743 *end_ret = state->start - 1;
1744 break;
1745 }
1746
1747 node = rb_next(node);
1748 if (!node)
1749 break;
1750 }
1751 out:
1752 spin_unlock(&tree->lock);
1753 }
1754
1755 /*
1756 * find a contiguous range of bytes in the file marked as delalloc, not
1757 * more than 'max_bytes'. start and end are used to return the range,
1758 *
1759 * true is returned if we find something, false if nothing was in the tree
1760 */
btrfs_find_delalloc_range(struct extent_io_tree * tree,u64 * start,u64 * end,u64 max_bytes,struct extent_state ** cached_state)1761 bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1762 u64 *end, u64 max_bytes,
1763 struct extent_state **cached_state)
1764 {
1765 struct rb_node *node;
1766 struct extent_state *state;
1767 u64 cur_start = *start;
1768 bool found = false;
1769 u64 total_bytes = 0;
1770
1771 spin_lock(&tree->lock);
1772
1773 /*
1774 * this search will find all the extents that end after
1775 * our range starts.
1776 */
1777 node = tree_search(tree, cur_start);
1778 if (!node) {
1779 *end = (u64)-1;
1780 goto out;
1781 }
1782
1783 while (1) {
1784 state = rb_entry(node, struct extent_state, rb_node);
1785 if (found && (state->start != cur_start ||
1786 (state->state & EXTENT_BOUNDARY))) {
1787 goto out;
1788 }
1789 if (!(state->state & EXTENT_DELALLOC)) {
1790 if (!found)
1791 *end = state->end;
1792 goto out;
1793 }
1794 if (!found) {
1795 *start = state->start;
1796 *cached_state = state;
1797 refcount_inc(&state->refs);
1798 }
1799 found = true;
1800 *end = state->end;
1801 cur_start = state->end + 1;
1802 node = rb_next(node);
1803 total_bytes += state->end - state->start + 1;
1804 if (total_bytes >= max_bytes)
1805 break;
1806 if (!node)
1807 break;
1808 }
1809 out:
1810 spin_unlock(&tree->lock);
1811 return found;
1812 }
1813
1814 /*
1815 * Process one page for __process_pages_contig().
1816 *
1817 * Return >0 if we hit @page == @locked_page.
1818 * Return 0 if we updated the page status.
1819 * Return -EGAIN if the we need to try again.
1820 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
1821 */
process_one_page(struct btrfs_fs_info * fs_info,struct address_space * mapping,struct page * page,struct page * locked_page,unsigned long page_ops,u64 start,u64 end)1822 static int process_one_page(struct btrfs_fs_info *fs_info,
1823 struct address_space *mapping,
1824 struct page *page, struct page *locked_page,
1825 unsigned long page_ops, u64 start, u64 end)
1826 {
1827 u32 len;
1828
1829 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
1830 len = end + 1 - start;
1831
1832 if (page_ops & PAGE_SET_ORDERED)
1833 btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1834 if (page_ops & PAGE_SET_ERROR)
1835 btrfs_page_clamp_set_error(fs_info, page, start, len);
1836 if (page_ops & PAGE_START_WRITEBACK) {
1837 btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
1838 btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1839 }
1840 if (page_ops & PAGE_END_WRITEBACK)
1841 btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1842
1843 if (page == locked_page)
1844 return 1;
1845
1846 if (page_ops & PAGE_LOCK) {
1847 int ret;
1848
1849 ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
1850 if (ret)
1851 return ret;
1852 if (!PageDirty(page) || page->mapping != mapping) {
1853 btrfs_page_end_writer_lock(fs_info, page, start, len);
1854 return -EAGAIN;
1855 }
1856 }
1857 if (page_ops & PAGE_UNLOCK)
1858 btrfs_page_end_writer_lock(fs_info, page, start, len);
1859 return 0;
1860 }
1861
__process_pages_contig(struct address_space * mapping,struct page * locked_page,u64 start,u64 end,unsigned long page_ops,u64 * processed_end)1862 static int __process_pages_contig(struct address_space *mapping,
1863 struct page *locked_page,
1864 u64 start, u64 end, unsigned long page_ops,
1865 u64 *processed_end)
1866 {
1867 struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1868 pgoff_t start_index = start >> PAGE_SHIFT;
1869 pgoff_t end_index = end >> PAGE_SHIFT;
1870 pgoff_t index = start_index;
1871 unsigned long nr_pages = end_index - start_index + 1;
1872 unsigned long pages_processed = 0;
1873 struct page *pages[16];
1874 int err = 0;
1875 int i;
1876
1877 if (page_ops & PAGE_LOCK) {
1878 ASSERT(page_ops == PAGE_LOCK);
1879 ASSERT(processed_end && *processed_end == start);
1880 }
1881
1882 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1883 mapping_set_error(mapping, -EIO);
1884
1885 while (nr_pages > 0) {
1886 int found_pages;
1887
1888 found_pages = find_get_pages_contig(mapping, index,
1889 min_t(unsigned long,
1890 nr_pages, ARRAY_SIZE(pages)), pages);
1891 if (found_pages == 0) {
1892 /*
1893 * Only if we're going to lock these pages, we can find
1894 * nothing at @index.
1895 */
1896 ASSERT(page_ops & PAGE_LOCK);
1897 err = -EAGAIN;
1898 goto out;
1899 }
1900
1901 for (i = 0; i < found_pages; i++) {
1902 int process_ret;
1903
1904 process_ret = process_one_page(fs_info, mapping,
1905 pages[i], locked_page, page_ops,
1906 start, end);
1907 if (process_ret < 0) {
1908 for (; i < found_pages; i++)
1909 put_page(pages[i]);
1910 err = -EAGAIN;
1911 goto out;
1912 }
1913 put_page(pages[i]);
1914 pages_processed++;
1915 }
1916 nr_pages -= found_pages;
1917 index += found_pages;
1918 cond_resched();
1919 }
1920 out:
1921 if (err && processed_end) {
1922 /*
1923 * Update @processed_end. I know this is awful since it has
1924 * two different return value patterns (inclusive vs exclusive).
1925 *
1926 * But the exclusive pattern is necessary if @start is 0, or we
1927 * underflow and check against processed_end won't work as
1928 * expected.
1929 */
1930 if (pages_processed)
1931 *processed_end = min(end,
1932 ((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
1933 else
1934 *processed_end = start;
1935 }
1936 return err;
1937 }
1938
__unlock_for_delalloc(struct inode * inode,struct page * locked_page,u64 start,u64 end)1939 static noinline void __unlock_for_delalloc(struct inode *inode,
1940 struct page *locked_page,
1941 u64 start, u64 end)
1942 {
1943 unsigned long index = start >> PAGE_SHIFT;
1944 unsigned long end_index = end >> PAGE_SHIFT;
1945
1946 ASSERT(locked_page);
1947 if (index == locked_page->index && end_index == index)
1948 return;
1949
1950 __process_pages_contig(inode->i_mapping, locked_page, start, end,
1951 PAGE_UNLOCK, NULL);
1952 }
1953
lock_delalloc_pages(struct inode * inode,struct page * locked_page,u64 delalloc_start,u64 delalloc_end)1954 static noinline int lock_delalloc_pages(struct inode *inode,
1955 struct page *locked_page,
1956 u64 delalloc_start,
1957 u64 delalloc_end)
1958 {
1959 unsigned long index = delalloc_start >> PAGE_SHIFT;
1960 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1961 u64 processed_end = delalloc_start;
1962 int ret;
1963
1964 ASSERT(locked_page);
1965 if (index == locked_page->index && index == end_index)
1966 return 0;
1967
1968 ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
1969 delalloc_end, PAGE_LOCK, &processed_end);
1970 if (ret == -EAGAIN && processed_end > delalloc_start)
1971 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1972 processed_end);
1973 return ret;
1974 }
1975
1976 /*
1977 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1978 * more than @max_bytes.
1979 *
1980 * @start: The original start bytenr to search.
1981 * Will store the extent range start bytenr.
1982 * @end: The original end bytenr of the search range
1983 * Will store the extent range end bytenr.
1984 *
1985 * Return true if we find a delalloc range which starts inside the original
1986 * range, and @start/@end will store the delalloc range start/end.
1987 *
1988 * Return false if we can't find any delalloc range which starts inside the
1989 * original range, and @start/@end will be the non-delalloc range start/end.
1990 */
1991 EXPORT_FOR_TESTS
find_lock_delalloc_range(struct inode * inode,struct page * locked_page,u64 * start,u64 * end)1992 noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1993 struct page *locked_page, u64 *start,
1994 u64 *end)
1995 {
1996 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1997 const u64 orig_start = *start;
1998 const u64 orig_end = *end;
1999 u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
2000 u64 delalloc_start;
2001 u64 delalloc_end;
2002 bool found;
2003 struct extent_state *cached_state = NULL;
2004 int ret;
2005 int loops = 0;
2006
2007 /* Caller should pass a valid @end to indicate the search range end */
2008 ASSERT(orig_end > orig_start);
2009
2010 /* The range should at least cover part of the page */
2011 ASSERT(!(orig_start >= page_offset(locked_page) + PAGE_SIZE ||
2012 orig_end <= page_offset(locked_page)));
2013 again:
2014 /* step one, find a bunch of delalloc bytes starting at start */
2015 delalloc_start = *start;
2016 delalloc_end = 0;
2017 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
2018 max_bytes, &cached_state);
2019 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
2020 *start = delalloc_start;
2021
2022 /* @delalloc_end can be -1, never go beyond @orig_end */
2023 *end = min(delalloc_end, orig_end);
2024 free_extent_state(cached_state);
2025 return false;
2026 }
2027
2028 /*
2029 * start comes from the offset of locked_page. We have to lock
2030 * pages in order, so we can't process delalloc bytes before
2031 * locked_page
2032 */
2033 if (delalloc_start < *start)
2034 delalloc_start = *start;
2035
2036 /*
2037 * make sure to limit the number of pages we try to lock down
2038 */
2039 if (delalloc_end + 1 - delalloc_start > max_bytes)
2040 delalloc_end = delalloc_start + max_bytes - 1;
2041
2042 /* step two, lock all the pages after the page that has start */
2043 ret = lock_delalloc_pages(inode, locked_page,
2044 delalloc_start, delalloc_end);
2045 ASSERT(!ret || ret == -EAGAIN);
2046 if (ret == -EAGAIN) {
2047 /* some of the pages are gone, lets avoid looping by
2048 * shortening the size of the delalloc range we're searching
2049 */
2050 free_extent_state(cached_state);
2051 cached_state = NULL;
2052 if (!loops) {
2053 max_bytes = PAGE_SIZE;
2054 loops = 1;
2055 goto again;
2056 } else {
2057 found = false;
2058 goto out_failed;
2059 }
2060 }
2061
2062 /* step three, lock the state bits for the whole range */
2063 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
2064
2065 /* then test to make sure it is all still delalloc */
2066 ret = test_range_bit(tree, delalloc_start, delalloc_end,
2067 EXTENT_DELALLOC, 1, cached_state);
2068 if (!ret) {
2069 unlock_extent_cached(tree, delalloc_start, delalloc_end,
2070 &cached_state);
2071 __unlock_for_delalloc(inode, locked_page,
2072 delalloc_start, delalloc_end);
2073 cond_resched();
2074 goto again;
2075 }
2076 free_extent_state(cached_state);
2077 *start = delalloc_start;
2078 *end = delalloc_end;
2079 out_failed:
2080 return found;
2081 }
2082
extent_clear_unlock_delalloc(struct btrfs_inode * inode,u64 start,u64 end,struct page * locked_page,u32 clear_bits,unsigned long page_ops)2083 void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2084 struct page *locked_page,
2085 u32 clear_bits, unsigned long page_ops)
2086 {
2087 clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2088
2089 __process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2090 start, end, page_ops, NULL);
2091 }
2092
2093 /*
2094 * count the number of bytes in the tree that have a given bit(s)
2095 * set. This can be fairly slow, except for EXTENT_DIRTY which is
2096 * cached. The total number found is returned.
2097 */
count_range_bits(struct extent_io_tree * tree,u64 * start,u64 search_end,u64 max_bytes,u32 bits,int contig)2098 u64 count_range_bits(struct extent_io_tree *tree,
2099 u64 *start, u64 search_end, u64 max_bytes,
2100 u32 bits, int contig)
2101 {
2102 struct rb_node *node;
2103 struct extent_state *state;
2104 u64 cur_start = *start;
2105 u64 total_bytes = 0;
2106 u64 last = 0;
2107 int found = 0;
2108
2109 if (WARN_ON(search_end <= cur_start))
2110 return 0;
2111
2112 spin_lock(&tree->lock);
2113 if (cur_start == 0 && bits == EXTENT_DIRTY) {
2114 total_bytes = tree->dirty_bytes;
2115 goto out;
2116 }
2117 /*
2118 * this search will find all the extents that end after
2119 * our range starts.
2120 */
2121 node = tree_search(tree, cur_start);
2122 if (!node)
2123 goto out;
2124
2125 while (1) {
2126 state = rb_entry(node, struct extent_state, rb_node);
2127 if (state->start > search_end)
2128 break;
2129 if (contig && found && state->start > last + 1)
2130 break;
2131 if (state->end >= cur_start && (state->state & bits) == bits) {
2132 total_bytes += min(search_end, state->end) + 1 -
2133 max(cur_start, state->start);
2134 if (total_bytes >= max_bytes)
2135 break;
2136 if (!found) {
2137 *start = max(cur_start, state->start);
2138 found = 1;
2139 }
2140 last = state->end;
2141 } else if (contig && found) {
2142 break;
2143 }
2144 node = rb_next(node);
2145 if (!node)
2146 break;
2147 }
2148 out:
2149 spin_unlock(&tree->lock);
2150 return total_bytes;
2151 }
2152
2153 /*
2154 * set the private field for a given byte offset in the tree. If there isn't
2155 * an extent_state there already, this does nothing.
2156 */
set_state_failrec(struct extent_io_tree * tree,u64 start,struct io_failure_record * failrec)2157 int set_state_failrec(struct extent_io_tree *tree, u64 start,
2158 struct io_failure_record *failrec)
2159 {
2160 struct rb_node *node;
2161 struct extent_state *state;
2162 int ret = 0;
2163
2164 spin_lock(&tree->lock);
2165 /*
2166 * this search will find all the extents that end after
2167 * our range starts.
2168 */
2169 node = tree_search(tree, start);
2170 if (!node) {
2171 ret = -ENOENT;
2172 goto out;
2173 }
2174 state = rb_entry(node, struct extent_state, rb_node);
2175 if (state->start != start) {
2176 ret = -ENOENT;
2177 goto out;
2178 }
2179 state->failrec = failrec;
2180 out:
2181 spin_unlock(&tree->lock);
2182 return ret;
2183 }
2184
get_state_failrec(struct extent_io_tree * tree,u64 start)2185 struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2186 {
2187 struct rb_node *node;
2188 struct extent_state *state;
2189 struct io_failure_record *failrec;
2190
2191 spin_lock(&tree->lock);
2192 /*
2193 * this search will find all the extents that end after
2194 * our range starts.
2195 */
2196 node = tree_search(tree, start);
2197 if (!node) {
2198 failrec = ERR_PTR(-ENOENT);
2199 goto out;
2200 }
2201 state = rb_entry(node, struct extent_state, rb_node);
2202 if (state->start != start) {
2203 failrec = ERR_PTR(-ENOENT);
2204 goto out;
2205 }
2206
2207 failrec = state->failrec;
2208 out:
2209 spin_unlock(&tree->lock);
2210 return failrec;
2211 }
2212
2213 /*
2214 * searches a range in the state tree for a given mask.
2215 * If 'filled' == 1, this returns 1 only if every extent in the tree
2216 * has the bits set. Otherwise, 1 is returned if any bit in the
2217 * range is found set.
2218 */
test_range_bit(struct extent_io_tree * tree,u64 start,u64 end,u32 bits,int filled,struct extent_state * cached)2219 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2220 u32 bits, int filled, struct extent_state *cached)
2221 {
2222 struct extent_state *state = NULL;
2223 struct rb_node *node;
2224 int bitset = 0;
2225
2226 spin_lock(&tree->lock);
2227 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2228 cached->end > start)
2229 node = &cached->rb_node;
2230 else
2231 node = tree_search(tree, start);
2232 while (node && start <= end) {
2233 state = rb_entry(node, struct extent_state, rb_node);
2234
2235 if (filled && state->start > start) {
2236 bitset = 0;
2237 break;
2238 }
2239
2240 if (state->start > end)
2241 break;
2242
2243 if (state->state & bits) {
2244 bitset = 1;
2245 if (!filled)
2246 break;
2247 } else if (filled) {
2248 bitset = 0;
2249 break;
2250 }
2251
2252 if (state->end == (u64)-1)
2253 break;
2254
2255 start = state->end + 1;
2256 if (start > end)
2257 break;
2258 node = rb_next(node);
2259 if (!node) {
2260 if (filled)
2261 bitset = 0;
2262 break;
2263 }
2264 }
2265 spin_unlock(&tree->lock);
2266 return bitset;
2267 }
2268
free_io_failure(struct extent_io_tree * failure_tree,struct extent_io_tree * io_tree,struct io_failure_record * rec)2269 int free_io_failure(struct extent_io_tree *failure_tree,
2270 struct extent_io_tree *io_tree,
2271 struct io_failure_record *rec)
2272 {
2273 int ret;
2274 int err = 0;
2275
2276 set_state_failrec(failure_tree, rec->start, NULL);
2277 ret = clear_extent_bits(failure_tree, rec->start,
2278 rec->start + rec->len - 1,
2279 EXTENT_LOCKED | EXTENT_DIRTY);
2280 if (ret)
2281 err = ret;
2282
2283 ret = clear_extent_bits(io_tree, rec->start,
2284 rec->start + rec->len - 1,
2285 EXTENT_DAMAGED);
2286 if (ret && !err)
2287 err = ret;
2288
2289 kfree(rec);
2290 return err;
2291 }
2292
2293 /*
2294 * this bypasses the standard btrfs submit functions deliberately, as
2295 * the standard behavior is to write all copies in a raid setup. here we only
2296 * want to write the one bad copy. so we do the mapping for ourselves and issue
2297 * submit_bio directly.
2298 * to avoid any synchronization issues, wait for the data after writing, which
2299 * actually prevents the read that triggered the error from finishing.
2300 * currently, there can be no more than two copies of every data bit. thus,
2301 * exactly one rewrite is required.
2302 */
repair_io_failure(struct btrfs_fs_info * fs_info,u64 ino,u64 start,u64 length,u64 logical,struct page * page,unsigned int pg_offset,int mirror_num)2303 static int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2304 u64 length, u64 logical, struct page *page,
2305 unsigned int pg_offset, int mirror_num)
2306 {
2307 struct bio *bio;
2308 struct btrfs_device *dev;
2309 u64 map_length = 0;
2310 u64 sector;
2311 struct btrfs_io_context *bioc = NULL;
2312 int ret;
2313
2314 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2315 BUG_ON(!mirror_num);
2316
2317 if (btrfs_is_zoned(fs_info))
2318 return btrfs_repair_one_zone(fs_info, logical);
2319
2320 bio = btrfs_bio_alloc(1);
2321 bio->bi_iter.bi_size = 0;
2322 map_length = length;
2323
2324 /*
2325 * Avoid races with device replace and make sure our bioc has devices
2326 * associated to its stripes that don't go away while we are doing the
2327 * read repair operation.
2328 */
2329 btrfs_bio_counter_inc_blocked(fs_info);
2330 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2331 /*
2332 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2333 * to update all raid stripes, but here we just want to correct
2334 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2335 * stripe's dev and sector.
2336 */
2337 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2338 &map_length, &bioc, 0);
2339 if (ret) {
2340 btrfs_bio_counter_dec(fs_info);
2341 bio_put(bio);
2342 return -EIO;
2343 }
2344 ASSERT(bioc->mirror_num == 1);
2345 } else {
2346 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2347 &map_length, &bioc, mirror_num);
2348 if (ret) {
2349 btrfs_bio_counter_dec(fs_info);
2350 bio_put(bio);
2351 return -EIO;
2352 }
2353 BUG_ON(mirror_num != bioc->mirror_num);
2354 }
2355
2356 sector = bioc->stripes[bioc->mirror_num - 1].physical >> 9;
2357 bio->bi_iter.bi_sector = sector;
2358 dev = bioc->stripes[bioc->mirror_num - 1].dev;
2359 btrfs_put_bioc(bioc);
2360 if (!dev || !dev->bdev ||
2361 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2362 btrfs_bio_counter_dec(fs_info);
2363 bio_put(bio);
2364 return -EIO;
2365 }
2366 bio_set_dev(bio, dev->bdev);
2367 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2368 bio_add_page(bio, page, length, pg_offset);
2369
2370 if (btrfsic_submit_bio_wait(bio)) {
2371 /* try to remap that extent elsewhere? */
2372 btrfs_bio_counter_dec(fs_info);
2373 bio_put(bio);
2374 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2375 return -EIO;
2376 }
2377
2378 btrfs_info_rl_in_rcu(fs_info,
2379 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2380 ino, start,
2381 rcu_str_deref(dev->name), sector);
2382 btrfs_bio_counter_dec(fs_info);
2383 bio_put(bio);
2384 return 0;
2385 }
2386
btrfs_repair_eb_io_failure(const struct extent_buffer * eb,int mirror_num)2387 int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2388 {
2389 struct btrfs_fs_info *fs_info = eb->fs_info;
2390 u64 start = eb->start;
2391 int i, num_pages = num_extent_pages(eb);
2392 int ret = 0;
2393
2394 if (sb_rdonly(fs_info->sb))
2395 return -EROFS;
2396
2397 for (i = 0; i < num_pages; i++) {
2398 struct page *p = eb->pages[i];
2399
2400 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2401 start - page_offset(p), mirror_num);
2402 if (ret)
2403 break;
2404 start += PAGE_SIZE;
2405 }
2406
2407 return ret;
2408 }
2409
2410 /*
2411 * each time an IO finishes, we do a fast check in the IO failure tree
2412 * to see if we need to process or clean up an io_failure_record
2413 */
clean_io_failure(struct btrfs_fs_info * fs_info,struct extent_io_tree * failure_tree,struct extent_io_tree * io_tree,u64 start,struct page * page,u64 ino,unsigned int pg_offset)2414 int clean_io_failure(struct btrfs_fs_info *fs_info,
2415 struct extent_io_tree *failure_tree,
2416 struct extent_io_tree *io_tree, u64 start,
2417 struct page *page, u64 ino, unsigned int pg_offset)
2418 {
2419 u64 private;
2420 struct io_failure_record *failrec;
2421 struct extent_state *state;
2422 int num_copies;
2423 int ret;
2424
2425 private = 0;
2426 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2427 EXTENT_DIRTY, 0);
2428 if (!ret)
2429 return 0;
2430
2431 failrec = get_state_failrec(failure_tree, start);
2432 if (IS_ERR(failrec))
2433 return 0;
2434
2435 BUG_ON(!failrec->this_mirror);
2436
2437 if (sb_rdonly(fs_info->sb))
2438 goto out;
2439
2440 spin_lock(&io_tree->lock);
2441 state = find_first_extent_bit_state(io_tree,
2442 failrec->start,
2443 EXTENT_LOCKED);
2444 spin_unlock(&io_tree->lock);
2445
2446 if (state && state->start <= failrec->start &&
2447 state->end >= failrec->start + failrec->len - 1) {
2448 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2449 failrec->len);
2450 if (num_copies > 1) {
2451 repair_io_failure(fs_info, ino, start, failrec->len,
2452 failrec->logical, page, pg_offset,
2453 failrec->failed_mirror);
2454 }
2455 }
2456
2457 out:
2458 free_io_failure(failure_tree, io_tree, failrec);
2459
2460 return 0;
2461 }
2462
2463 /*
2464 * Can be called when
2465 * - hold extent lock
2466 * - under ordered extent
2467 * - the inode is freeing
2468 */
btrfs_free_io_failure_record(struct btrfs_inode * inode,u64 start,u64 end)2469 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2470 {
2471 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2472 struct io_failure_record *failrec;
2473 struct extent_state *state, *next;
2474
2475 if (RB_EMPTY_ROOT(&failure_tree->state))
2476 return;
2477
2478 spin_lock(&failure_tree->lock);
2479 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2480 while (state) {
2481 if (state->start > end)
2482 break;
2483
2484 ASSERT(state->end <= end);
2485
2486 next = next_state(state);
2487
2488 failrec = state->failrec;
2489 free_extent_state(state);
2490 kfree(failrec);
2491
2492 state = next;
2493 }
2494 spin_unlock(&failure_tree->lock);
2495 }
2496
btrfs_get_io_failure_record(struct inode * inode,u64 start)2497 static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2498 u64 start)
2499 {
2500 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2501 struct io_failure_record *failrec;
2502 struct extent_map *em;
2503 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2504 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2505 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2506 const u32 sectorsize = fs_info->sectorsize;
2507 int ret;
2508 u64 logical;
2509
2510 failrec = get_state_failrec(failure_tree, start);
2511 if (!IS_ERR(failrec)) {
2512 btrfs_debug(fs_info,
2513 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
2514 failrec->logical, failrec->start, failrec->len);
2515 /*
2516 * when data can be on disk more than twice, add to failrec here
2517 * (e.g. with a list for failed_mirror) to make
2518 * clean_io_failure() clean all those errors at once.
2519 */
2520
2521 return failrec;
2522 }
2523
2524 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2525 if (!failrec)
2526 return ERR_PTR(-ENOMEM);
2527
2528 failrec->start = start;
2529 failrec->len = sectorsize;
2530 failrec->this_mirror = 0;
2531 failrec->bio_flags = 0;
2532
2533 read_lock(&em_tree->lock);
2534 em = lookup_extent_mapping(em_tree, start, failrec->len);
2535 if (!em) {
2536 read_unlock(&em_tree->lock);
2537 kfree(failrec);
2538 return ERR_PTR(-EIO);
2539 }
2540
2541 if (em->start > start || em->start + em->len <= start) {
2542 free_extent_map(em);
2543 em = NULL;
2544 }
2545 read_unlock(&em_tree->lock);
2546 if (!em) {
2547 kfree(failrec);
2548 return ERR_PTR(-EIO);
2549 }
2550
2551 logical = start - em->start;
2552 logical = em->block_start + logical;
2553 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2554 logical = em->block_start;
2555 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2556 extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2557 }
2558
2559 btrfs_debug(fs_info,
2560 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2561 logical, start, failrec->len);
2562
2563 failrec->logical = logical;
2564 free_extent_map(em);
2565
2566 /* Set the bits in the private failure tree */
2567 ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2568 EXTENT_LOCKED | EXTENT_DIRTY);
2569 if (ret >= 0) {
2570 ret = set_state_failrec(failure_tree, start, failrec);
2571 /* Set the bits in the inode's tree */
2572 ret = set_extent_bits(tree, start, start + sectorsize - 1,
2573 EXTENT_DAMAGED);
2574 } else if (ret < 0) {
2575 kfree(failrec);
2576 return ERR_PTR(ret);
2577 }
2578
2579 return failrec;
2580 }
2581
btrfs_check_repairable(struct inode * inode,struct io_failure_record * failrec,int failed_mirror)2582 static bool btrfs_check_repairable(struct inode *inode,
2583 struct io_failure_record *failrec,
2584 int failed_mirror)
2585 {
2586 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2587 int num_copies;
2588
2589 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2590 if (num_copies == 1) {
2591 /*
2592 * we only have a single copy of the data, so don't bother with
2593 * all the retry and error correction code that follows. no
2594 * matter what the error is, it is very likely to persist.
2595 */
2596 btrfs_debug(fs_info,
2597 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2598 num_copies, failrec->this_mirror, failed_mirror);
2599 return false;
2600 }
2601
2602 /* The failure record should only contain one sector */
2603 ASSERT(failrec->len == fs_info->sectorsize);
2604
2605 /*
2606 * There are two premises:
2607 * a) deliver good data to the caller
2608 * b) correct the bad sectors on disk
2609 *
2610 * Since we're only doing repair for one sector, we only need to get
2611 * a good copy of the failed sector and if we succeed, we have setup
2612 * everything for repair_io_failure to do the rest for us.
2613 */
2614 failrec->failed_mirror = failed_mirror;
2615 failrec->this_mirror++;
2616 if (failrec->this_mirror == failed_mirror)
2617 failrec->this_mirror++;
2618
2619 if (failrec->this_mirror > num_copies) {
2620 btrfs_debug(fs_info,
2621 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2622 num_copies, failrec->this_mirror, failed_mirror);
2623 return false;
2624 }
2625
2626 return true;
2627 }
2628
btrfs_repair_one_sector(struct inode * inode,struct bio * failed_bio,u32 bio_offset,struct page * page,unsigned int pgoff,u64 start,int failed_mirror,submit_bio_hook_t * submit_bio_hook)2629 int btrfs_repair_one_sector(struct inode *inode,
2630 struct bio *failed_bio, u32 bio_offset,
2631 struct page *page, unsigned int pgoff,
2632 u64 start, int failed_mirror,
2633 submit_bio_hook_t *submit_bio_hook)
2634 {
2635 struct io_failure_record *failrec;
2636 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2637 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2638 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2639 struct btrfs_bio *failed_bbio = btrfs_bio(failed_bio);
2640 const int icsum = bio_offset >> fs_info->sectorsize_bits;
2641 struct bio *repair_bio;
2642 struct btrfs_bio *repair_bbio;
2643 blk_status_t status;
2644
2645 btrfs_debug(fs_info,
2646 "repair read error: read error at %llu", start);
2647
2648 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2649
2650 failrec = btrfs_get_io_failure_record(inode, start);
2651 if (IS_ERR(failrec))
2652 return PTR_ERR(failrec);
2653
2654
2655 if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2656 free_io_failure(failure_tree, tree, failrec);
2657 return -EIO;
2658 }
2659
2660 repair_bio = btrfs_bio_alloc(1);
2661 repair_bbio = btrfs_bio(repair_bio);
2662 repair_bio->bi_opf = REQ_OP_READ;
2663 repair_bio->bi_end_io = failed_bio->bi_end_io;
2664 repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2665 repair_bio->bi_private = failed_bio->bi_private;
2666
2667 if (failed_bbio->csum) {
2668 const u32 csum_size = fs_info->csum_size;
2669
2670 repair_bbio->csum = repair_bbio->csum_inline;
2671 memcpy(repair_bbio->csum,
2672 failed_bbio->csum + csum_size * icsum, csum_size);
2673 }
2674
2675 bio_add_page(repair_bio, page, failrec->len, pgoff);
2676 repair_bbio->iter = repair_bio->bi_iter;
2677
2678 btrfs_debug(btrfs_sb(inode->i_sb),
2679 "repair read error: submitting new read to mirror %d",
2680 failrec->this_mirror);
2681
2682 status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2683 failrec->bio_flags);
2684 if (status) {
2685 free_io_failure(failure_tree, tree, failrec);
2686 bio_put(repair_bio);
2687 }
2688 return blk_status_to_errno(status);
2689 }
2690
end_page_read(struct page * page,bool uptodate,u64 start,u32 len)2691 static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2692 {
2693 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2694
2695 ASSERT(page_offset(page) <= start &&
2696 start + len <= page_offset(page) + PAGE_SIZE);
2697
2698 if (uptodate) {
2699 if (fsverity_active(page->mapping->host) &&
2700 !PageError(page) &&
2701 !PageUptodate(page) &&
2702 start < i_size_read(page->mapping->host) &&
2703 !fsverity_verify_page(page)) {
2704 btrfs_page_set_error(fs_info, page, start, len);
2705 } else {
2706 btrfs_page_set_uptodate(fs_info, page, start, len);
2707 }
2708 } else {
2709 btrfs_page_clear_uptodate(fs_info, page, start, len);
2710 btrfs_page_set_error(fs_info, page, start, len);
2711 }
2712
2713 if (fs_info->sectorsize == PAGE_SIZE)
2714 unlock_page(page);
2715 else
2716 btrfs_subpage_end_reader(fs_info, page, start, len);
2717 }
2718
submit_read_repair(struct inode * inode,struct bio * failed_bio,u32 bio_offset,struct page * page,unsigned int pgoff,u64 start,u64 end,int failed_mirror,unsigned int error_bitmap,submit_bio_hook_t * submit_bio_hook)2719 static blk_status_t submit_read_repair(struct inode *inode,
2720 struct bio *failed_bio, u32 bio_offset,
2721 struct page *page, unsigned int pgoff,
2722 u64 start, u64 end, int failed_mirror,
2723 unsigned int error_bitmap,
2724 submit_bio_hook_t *submit_bio_hook)
2725 {
2726 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2727 const u32 sectorsize = fs_info->sectorsize;
2728 const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
2729 int error = 0;
2730 int i;
2731
2732 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2733
2734 /* We're here because we had some read errors or csum mismatch */
2735 ASSERT(error_bitmap);
2736
2737 /*
2738 * We only get called on buffered IO, thus page must be mapped and bio
2739 * must not be cloned.
2740 */
2741 ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));
2742
2743 /* Iterate through all the sectors in the range */
2744 for (i = 0; i < nr_bits; i++) {
2745 const unsigned int offset = i * sectorsize;
2746 struct extent_state *cached = NULL;
2747 bool uptodate = false;
2748 int ret;
2749
2750 if (!(error_bitmap & (1U << i))) {
2751 /*
2752 * This sector has no error, just end the page read
2753 * and unlock the range.
2754 */
2755 uptodate = true;
2756 goto next;
2757 }
2758
2759 ret = btrfs_repair_one_sector(inode, failed_bio,
2760 bio_offset + offset,
2761 page, pgoff + offset, start + offset,
2762 failed_mirror, submit_bio_hook);
2763 if (!ret) {
2764 /*
2765 * We have submitted the read repair, the page release
2766 * will be handled by the endio function of the
2767 * submitted repair bio.
2768 * Thus we don't need to do any thing here.
2769 */
2770 continue;
2771 }
2772 /*
2773 * Repair failed, just record the error but still continue.
2774 * Or the remaining sectors will not be properly unlocked.
2775 */
2776 if (!error)
2777 error = ret;
2778 next:
2779 end_page_read(page, uptodate, start + offset, sectorsize);
2780 if (uptodate)
2781 set_extent_uptodate(&BTRFS_I(inode)->io_tree,
2782 start + offset,
2783 start + offset + sectorsize - 1,
2784 &cached, GFP_ATOMIC);
2785 unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
2786 start + offset,
2787 start + offset + sectorsize - 1,
2788 &cached);
2789 }
2790 return errno_to_blk_status(error);
2791 }
2792
2793 /* lots and lots of room for performance fixes in the end_bio funcs */
2794
end_extent_writepage(struct page * page,int err,u64 start,u64 end)2795 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2796 {
2797 struct btrfs_inode *inode;
2798 const bool uptodate = (err == 0);
2799 int ret = 0;
2800
2801 ASSERT(page && page->mapping);
2802 inode = BTRFS_I(page->mapping->host);
2803 btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2804
2805 if (!uptodate) {
2806 const struct btrfs_fs_info *fs_info = inode->root->fs_info;
2807 u32 len;
2808
2809 ASSERT(end + 1 - start <= U32_MAX);
2810 len = end + 1 - start;
2811
2812 btrfs_page_clear_uptodate(fs_info, page, start, len);
2813 btrfs_page_set_error(fs_info, page, start, len);
2814 ret = err < 0 ? err : -EIO;
2815 mapping_set_error(page->mapping, ret);
2816 }
2817 }
2818
2819 /*
2820 * after a writepage IO is done, we need to:
2821 * clear the uptodate bits on error
2822 * clear the writeback bits in the extent tree for this IO
2823 * end_page_writeback if the page has no more pending IO
2824 *
2825 * Scheduling is not allowed, so the extent state tree is expected
2826 * to have one and only one object corresponding to this IO.
2827 */
end_bio_extent_writepage(struct bio * bio)2828 static void end_bio_extent_writepage(struct bio *bio)
2829 {
2830 int error = blk_status_to_errno(bio->bi_status);
2831 struct bio_vec *bvec;
2832 u64 start;
2833 u64 end;
2834 struct bvec_iter_all iter_all;
2835 bool first_bvec = true;
2836
2837 ASSERT(!bio_flagged(bio, BIO_CLONED));
2838 bio_for_each_segment_all(bvec, bio, iter_all) {
2839 struct page *page = bvec->bv_page;
2840 struct inode *inode = page->mapping->host;
2841 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2842 const u32 sectorsize = fs_info->sectorsize;
2843
2844 /* Our read/write should always be sector aligned. */
2845 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2846 btrfs_err(fs_info,
2847 "partial page write in btrfs with offset %u and length %u",
2848 bvec->bv_offset, bvec->bv_len);
2849 else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
2850 btrfs_info(fs_info,
2851 "incomplete page write with offset %u and length %u",
2852 bvec->bv_offset, bvec->bv_len);
2853
2854 start = page_offset(page) + bvec->bv_offset;
2855 end = start + bvec->bv_len - 1;
2856
2857 if (first_bvec) {
2858 btrfs_record_physical_zoned(inode, start, bio);
2859 first_bvec = false;
2860 }
2861
2862 end_extent_writepage(page, error, start, end);
2863
2864 btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2865 }
2866
2867 bio_put(bio);
2868 }
2869
2870 /*
2871 * Record previously processed extent range
2872 *
2873 * For endio_readpage_release_extent() to handle a full extent range, reducing
2874 * the extent io operations.
2875 */
2876 struct processed_extent {
2877 struct btrfs_inode *inode;
2878 /* Start of the range in @inode */
2879 u64 start;
2880 /* End of the range in @inode */
2881 u64 end;
2882 bool uptodate;
2883 };
2884
2885 /*
2886 * Try to release processed extent range
2887 *
2888 * May not release the extent range right now if the current range is
2889 * contiguous to processed extent.
2890 *
2891 * Will release processed extent when any of @inode, @uptodate, the range is
2892 * no longer contiguous to the processed range.
2893 *
2894 * Passing @inode == NULL will force processed extent to be released.
2895 */
endio_readpage_release_extent(struct processed_extent * processed,struct btrfs_inode * inode,u64 start,u64 end,bool uptodate)2896 static void endio_readpage_release_extent(struct processed_extent *processed,
2897 struct btrfs_inode *inode, u64 start, u64 end,
2898 bool uptodate)
2899 {
2900 struct extent_state *cached = NULL;
2901 struct extent_io_tree *tree;
2902
2903 /* The first extent, initialize @processed */
2904 if (!processed->inode)
2905 goto update;
2906
2907 /*
2908 * Contiguous to processed extent, just uptodate the end.
2909 *
2910 * Several things to notice:
2911 *
2912 * - bio can be merged as long as on-disk bytenr is contiguous
2913 * This means we can have page belonging to other inodes, thus need to
2914 * check if the inode still matches.
2915 * - bvec can contain range beyond current page for multi-page bvec
2916 * Thus we need to do processed->end + 1 >= start check
2917 */
2918 if (processed->inode == inode && processed->uptodate == uptodate &&
2919 processed->end + 1 >= start && end >= processed->end) {
2920 processed->end = end;
2921 return;
2922 }
2923
2924 tree = &processed->inode->io_tree;
2925 /*
2926 * Now we don't have range contiguous to the processed range, release
2927 * the processed range now.
2928 */
2929 if (processed->uptodate && tree->track_uptodate)
2930 set_extent_uptodate(tree, processed->start, processed->end,
2931 &cached, GFP_ATOMIC);
2932 unlock_extent_cached_atomic(tree, processed->start, processed->end,
2933 &cached);
2934
2935 update:
2936 /* Update processed to current range */
2937 processed->inode = inode;
2938 processed->start = start;
2939 processed->end = end;
2940 processed->uptodate = uptodate;
2941 }
2942
begin_page_read(struct btrfs_fs_info * fs_info,struct page * page)2943 static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
2944 {
2945 ASSERT(PageLocked(page));
2946 if (fs_info->sectorsize == PAGE_SIZE)
2947 return;
2948
2949 ASSERT(PagePrivate(page));
2950 btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
2951 }
2952
2953 /*
2954 * Find extent buffer for a givne bytenr.
2955 *
2956 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
2957 * in endio context.
2958 */
find_extent_buffer_readpage(struct btrfs_fs_info * fs_info,struct page * page,u64 bytenr)2959 static struct extent_buffer *find_extent_buffer_readpage(
2960 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
2961 {
2962 struct extent_buffer *eb;
2963
2964 /*
2965 * For regular sectorsize, we can use page->private to grab extent
2966 * buffer
2967 */
2968 if (fs_info->sectorsize == PAGE_SIZE) {
2969 ASSERT(PagePrivate(page) && page->private);
2970 return (struct extent_buffer *)page->private;
2971 }
2972
2973 /* For subpage case, we need to lookup buffer radix tree */
2974 rcu_read_lock();
2975 eb = radix_tree_lookup(&fs_info->buffer_radix,
2976 bytenr >> fs_info->sectorsize_bits);
2977 rcu_read_unlock();
2978 ASSERT(eb);
2979 return eb;
2980 }
2981
2982 /*
2983 * after a readpage IO is done, we need to:
2984 * clear the uptodate bits on error
2985 * set the uptodate bits if things worked
2986 * set the page up to date if all extents in the tree are uptodate
2987 * clear the lock bit in the extent tree
2988 * unlock the page if there are no other extents locked for it
2989 *
2990 * Scheduling is not allowed, so the extent state tree is expected
2991 * to have one and only one object corresponding to this IO.
2992 */
end_bio_extent_readpage(struct bio * bio)2993 static void end_bio_extent_readpage(struct bio *bio)
2994 {
2995 struct bio_vec *bvec;
2996 struct btrfs_bio *bbio = btrfs_bio(bio);
2997 struct extent_io_tree *tree, *failure_tree;
2998 struct processed_extent processed = { 0 };
2999 /*
3000 * The offset to the beginning of a bio, since one bio can never be
3001 * larger than UINT_MAX, u32 here is enough.
3002 */
3003 u32 bio_offset = 0;
3004 int mirror;
3005 int ret;
3006 struct bvec_iter_all iter_all;
3007
3008 ASSERT(!bio_flagged(bio, BIO_CLONED));
3009 bio_for_each_segment_all(bvec, bio, iter_all) {
3010 bool uptodate = !bio->bi_status;
3011 struct page *page = bvec->bv_page;
3012 struct inode *inode = page->mapping->host;
3013 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3014 const u32 sectorsize = fs_info->sectorsize;
3015 unsigned int error_bitmap = (unsigned int)-1;
3016 u64 start;
3017 u64 end;
3018 u32 len;
3019
3020 btrfs_debug(fs_info,
3021 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
3022 bio->bi_iter.bi_sector, bio->bi_status,
3023 bbio->mirror_num);
3024 tree = &BTRFS_I(inode)->io_tree;
3025 failure_tree = &BTRFS_I(inode)->io_failure_tree;
3026
3027 /*
3028 * We always issue full-sector reads, but if some block in a
3029 * page fails to read, blk_update_request() will advance
3030 * bv_offset and adjust bv_len to compensate. Print a warning
3031 * for unaligned offsets, and an error if they don't add up to
3032 * a full sector.
3033 */
3034 if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
3035 btrfs_err(fs_info,
3036 "partial page read in btrfs with offset %u and length %u",
3037 bvec->bv_offset, bvec->bv_len);
3038 else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
3039 sectorsize))
3040 btrfs_info(fs_info,
3041 "incomplete page read with offset %u and length %u",
3042 bvec->bv_offset, bvec->bv_len);
3043
3044 start = page_offset(page) + bvec->bv_offset;
3045 end = start + bvec->bv_len - 1;
3046 len = bvec->bv_len;
3047
3048 mirror = bbio->mirror_num;
3049 if (likely(uptodate)) {
3050 if (is_data_inode(inode)) {
3051 error_bitmap = btrfs_verify_data_csum(bbio,
3052 bio_offset, page, start, end);
3053 ret = error_bitmap;
3054 } else {
3055 ret = btrfs_validate_metadata_buffer(bbio,
3056 page, start, end, mirror);
3057 }
3058 if (ret)
3059 uptodate = false;
3060 else
3061 clean_io_failure(BTRFS_I(inode)->root->fs_info,
3062 failure_tree, tree, start,
3063 page,
3064 btrfs_ino(BTRFS_I(inode)), 0);
3065 }
3066
3067 if (likely(uptodate))
3068 goto readpage_ok;
3069
3070 if (is_data_inode(inode)) {
3071 /*
3072 * btrfs_submit_read_repair() will handle all the good
3073 * and bad sectors, we just continue to the next bvec.
3074 */
3075 submit_read_repair(inode, bio, bio_offset, page,
3076 start - page_offset(page), start,
3077 end, mirror, error_bitmap,
3078 btrfs_submit_data_bio);
3079
3080 ASSERT(bio_offset + len > bio_offset);
3081 bio_offset += len;
3082 continue;
3083 } else {
3084 struct extent_buffer *eb;
3085
3086 eb = find_extent_buffer_readpage(fs_info, page, start);
3087 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3088 eb->read_mirror = mirror;
3089 atomic_dec(&eb->io_pages);
3090 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
3091 &eb->bflags))
3092 btree_readahead_hook(eb, -EIO);
3093 }
3094 readpage_ok:
3095 if (likely(uptodate)) {
3096 loff_t i_size = i_size_read(inode);
3097 pgoff_t end_index = i_size >> PAGE_SHIFT;
3098
3099 /*
3100 * Zero out the remaining part if this range straddles
3101 * i_size.
3102 *
3103 * Here we should only zero the range inside the bvec,
3104 * not touch anything else.
3105 *
3106 * NOTE: i_size is exclusive while end is inclusive.
3107 */
3108 if (page->index == end_index && i_size <= end) {
3109 u32 zero_start = max(offset_in_page(i_size),
3110 offset_in_page(start));
3111
3112 zero_user_segment(page, zero_start,
3113 offset_in_page(end) + 1);
3114 }
3115 }
3116 ASSERT(bio_offset + len > bio_offset);
3117 bio_offset += len;
3118
3119 /* Update page status and unlock */
3120 end_page_read(page, uptodate, start, len);
3121 endio_readpage_release_extent(&processed, BTRFS_I(inode),
3122 start, end, PageUptodate(page));
3123 }
3124 /* Release the last extent */
3125 endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3126 btrfs_bio_free_csum(bbio);
3127 bio_put(bio);
3128 }
3129
3130 /*
3131 * Initialize the members up to but not including 'bio'. Use after allocating a
3132 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3133 * 'bio' because use of __GFP_ZERO is not supported.
3134 */
btrfs_bio_init(struct btrfs_bio * bbio)3135 static inline void btrfs_bio_init(struct btrfs_bio *bbio)
3136 {
3137 memset(bbio, 0, offsetof(struct btrfs_bio, bio));
3138 }
3139
3140 /*
3141 * Allocate a btrfs_io_bio, with @nr_iovecs as maximum number of iovecs.
3142 *
3143 * The bio allocation is backed by bioset and does not fail.
3144 */
btrfs_bio_alloc(unsigned int nr_iovecs)3145 struct bio *btrfs_bio_alloc(unsigned int nr_iovecs)
3146 {
3147 struct bio *bio;
3148
3149 ASSERT(0 < nr_iovecs && nr_iovecs <= BIO_MAX_VECS);
3150 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3151 btrfs_bio_init(btrfs_bio(bio));
3152 return bio;
3153 }
3154
btrfs_bio_clone(struct bio * bio)3155 struct bio *btrfs_bio_clone(struct bio *bio)
3156 {
3157 struct btrfs_bio *bbio;
3158 struct bio *new;
3159
3160 /* Bio allocation backed by a bioset does not fail */
3161 new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3162 bbio = btrfs_bio(new);
3163 btrfs_bio_init(bbio);
3164 bbio->iter = bio->bi_iter;
3165 return new;
3166 }
3167
btrfs_bio_clone_partial(struct bio * orig,u64 offset,u64 size)3168 struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size)
3169 {
3170 struct bio *bio;
3171 struct btrfs_bio *bbio;
3172
3173 ASSERT(offset <= UINT_MAX && size <= UINT_MAX);
3174
3175 /* this will never fail when it's backed by a bioset */
3176 bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3177 ASSERT(bio);
3178
3179 bbio = btrfs_bio(bio);
3180 btrfs_bio_init(bbio);
3181
3182 bio_trim(bio, offset >> 9, size >> 9);
3183 bbio->iter = bio->bi_iter;
3184 return bio;
3185 }
3186
3187 /**
3188 * Attempt to add a page to bio
3189 *
3190 * @bio: destination bio
3191 * @page: page to add to the bio
3192 * @disk_bytenr: offset of the new bio or to check whether we are adding
3193 * a contiguous page to the previous one
3194 * @pg_offset: starting offset in the page
3195 * @size: portion of page that we want to write
3196 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3197 * @bio_flags: flags of the current bio to see if we can merge them
3198 *
3199 * Attempt to add a page to bio considering stripe alignment etc.
3200 *
3201 * Return >= 0 for the number of bytes added to the bio.
3202 * Can return 0 if the current bio is already at stripe/zone boundary.
3203 * Return <0 for error.
3204 */
btrfs_bio_add_page(struct btrfs_bio_ctrl * bio_ctrl,struct page * page,u64 disk_bytenr,unsigned int size,unsigned int pg_offset,unsigned long bio_flags)3205 static int btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
3206 struct page *page,
3207 u64 disk_bytenr, unsigned int size,
3208 unsigned int pg_offset,
3209 unsigned long bio_flags)
3210 {
3211 struct bio *bio = bio_ctrl->bio;
3212 u32 bio_size = bio->bi_iter.bi_size;
3213 u32 real_size;
3214 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3215 bool contig;
3216 int ret;
3217
3218 ASSERT(bio);
3219 /* The limit should be calculated when bio_ctrl->bio is allocated */
3220 ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3221 if (bio_ctrl->bio_flags != bio_flags)
3222 return 0;
3223
3224 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
3225 contig = bio->bi_iter.bi_sector == sector;
3226 else
3227 contig = bio_end_sector(bio) == sector;
3228 if (!contig)
3229 return 0;
3230
3231 real_size = min(bio_ctrl->len_to_oe_boundary,
3232 bio_ctrl->len_to_stripe_boundary) - bio_size;
3233 real_size = min(real_size, size);
3234
3235 /*
3236 * If real_size is 0, never call bio_add_*_page(), as even size is 0,
3237 * bio will still execute its endio function on the page!
3238 */
3239 if (real_size == 0)
3240 return 0;
3241
3242 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3243 ret = bio_add_zone_append_page(bio, page, real_size, pg_offset);
3244 else
3245 ret = bio_add_page(bio, page, real_size, pg_offset);
3246
3247 return ret;
3248 }
3249
calc_bio_boundaries(struct btrfs_bio_ctrl * bio_ctrl,struct btrfs_inode * inode,u64 file_offset)3250 static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3251 struct btrfs_inode *inode, u64 file_offset)
3252 {
3253 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3254 struct btrfs_io_geometry geom;
3255 struct btrfs_ordered_extent *ordered;
3256 struct extent_map *em;
3257 u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
3258 int ret;
3259
3260 /*
3261 * Pages for compressed extent are never submitted to disk directly,
3262 * thus it has no real boundary, just set them to U32_MAX.
3263 *
3264 * The split happens for real compressed bio, which happens in
3265 * btrfs_submit_compressed_read/write().
3266 */
3267 if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
3268 bio_ctrl->len_to_oe_boundary = U32_MAX;
3269 bio_ctrl->len_to_stripe_boundary = U32_MAX;
3270 return 0;
3271 }
3272 em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
3273 if (IS_ERR(em))
3274 return PTR_ERR(em);
3275 ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
3276 logical, &geom);
3277 free_extent_map(em);
3278 if (ret < 0) {
3279 return ret;
3280 }
3281 if (geom.len > U32_MAX)
3282 bio_ctrl->len_to_stripe_boundary = U32_MAX;
3283 else
3284 bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
3285
3286 if (!btrfs_is_zoned(fs_info) ||
3287 bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3288 bio_ctrl->len_to_oe_boundary = U32_MAX;
3289 return 0;
3290 }
3291
3292 /* Ordered extent not yet created, so we're good */
3293 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
3294 if (!ordered) {
3295 bio_ctrl->len_to_oe_boundary = U32_MAX;
3296 return 0;
3297 }
3298
3299 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
3300 ordered->disk_bytenr + ordered->disk_num_bytes - logical);
3301 btrfs_put_ordered_extent(ordered);
3302 return 0;
3303 }
3304
alloc_new_bio(struct btrfs_inode * inode,struct btrfs_bio_ctrl * bio_ctrl,struct writeback_control * wbc,unsigned int opf,bio_end_io_t end_io_func,u64 disk_bytenr,u32 offset,u64 file_offset,unsigned long bio_flags)3305 static int alloc_new_bio(struct btrfs_inode *inode,
3306 struct btrfs_bio_ctrl *bio_ctrl,
3307 struct writeback_control *wbc,
3308 unsigned int opf,
3309 bio_end_io_t end_io_func,
3310 u64 disk_bytenr, u32 offset, u64 file_offset,
3311 unsigned long bio_flags)
3312 {
3313 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3314 struct bio *bio;
3315 int ret;
3316
3317 bio = btrfs_bio_alloc(BIO_MAX_VECS);
3318 /*
3319 * For compressed page range, its disk_bytenr is always @disk_bytenr
3320 * passed in, no matter if we have added any range into previous bio.
3321 */
3322 if (bio_flags & EXTENT_BIO_COMPRESSED)
3323 bio->bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
3324 else
3325 bio->bi_iter.bi_sector = (disk_bytenr + offset) >> SECTOR_SHIFT;
3326 bio_ctrl->bio = bio;
3327 bio_ctrl->bio_flags = bio_flags;
3328 bio->bi_end_io = end_io_func;
3329 bio->bi_private = &inode->io_tree;
3330 bio->bi_write_hint = inode->vfs_inode.i_write_hint;
3331 bio->bi_opf = opf;
3332 ret = calc_bio_boundaries(bio_ctrl, inode, file_offset);
3333 if (ret < 0)
3334 goto error;
3335 if (wbc) {
3336 struct block_device *bdev;
3337
3338 bdev = fs_info->fs_devices->latest_dev->bdev;
3339 bio_set_dev(bio, bdev);
3340 wbc_init_bio(wbc, bio);
3341 }
3342 if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
3343 struct btrfs_device *device;
3344
3345 device = btrfs_zoned_get_device(fs_info, disk_bytenr,
3346 fs_info->sectorsize);
3347 if (IS_ERR(device)) {
3348 ret = PTR_ERR(device);
3349 goto error;
3350 }
3351
3352 btrfs_bio(bio)->device = device;
3353 }
3354 return 0;
3355 error:
3356 bio_ctrl->bio = NULL;
3357 bio->bi_status = errno_to_blk_status(ret);
3358 bio_endio(bio);
3359 return ret;
3360 }
3361
3362 /*
3363 * @opf: bio REQ_OP_* and REQ_* flags as one value
3364 * @wbc: optional writeback control for io accounting
3365 * @page: page to add to the bio
3366 * @disk_bytenr: logical bytenr where the write will be
3367 * @size: portion of page that we want to write to
3368 * @pg_offset: offset of the new bio or to check whether we are adding
3369 * a contiguous page to the previous one
3370 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
3371 * @end_io_func: end_io callback for new bio
3372 * @mirror_num: desired mirror to read/write
3373 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
3374 * @bio_flags: flags of the current bio to see if we can merge them
3375 */
submit_extent_page(unsigned int opf,struct writeback_control * wbc,struct btrfs_bio_ctrl * bio_ctrl,struct page * page,u64 disk_bytenr,size_t size,unsigned long pg_offset,bio_end_io_t end_io_func,int mirror_num,unsigned long bio_flags,bool force_bio_submit)3376 static int submit_extent_page(unsigned int opf,
3377 struct writeback_control *wbc,
3378 struct btrfs_bio_ctrl *bio_ctrl,
3379 struct page *page, u64 disk_bytenr,
3380 size_t size, unsigned long pg_offset,
3381 bio_end_io_t end_io_func,
3382 int mirror_num,
3383 unsigned long bio_flags,
3384 bool force_bio_submit)
3385 {
3386 int ret = 0;
3387 struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3388 unsigned int cur = pg_offset;
3389
3390 ASSERT(bio_ctrl);
3391
3392 ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
3393 pg_offset + size <= PAGE_SIZE);
3394 if (force_bio_submit && bio_ctrl->bio) {
3395 ret = submit_one_bio(bio_ctrl->bio, mirror_num, bio_ctrl->bio_flags);
3396 bio_ctrl->bio = NULL;
3397 if (ret < 0)
3398 return ret;
3399 }
3400
3401 while (cur < pg_offset + size) {
3402 u32 offset = cur - pg_offset;
3403 int added;
3404
3405 /* Allocate new bio if needed */
3406 if (!bio_ctrl->bio) {
3407 ret = alloc_new_bio(inode, bio_ctrl, wbc, opf,
3408 end_io_func, disk_bytenr, offset,
3409 page_offset(page) + cur,
3410 bio_flags);
3411 if (ret < 0)
3412 return ret;
3413 }
3414 /*
3415 * We must go through btrfs_bio_add_page() to ensure each
3416 * page range won't cross various boundaries.
3417 */
3418 if (bio_flags & EXTENT_BIO_COMPRESSED)
3419 added = btrfs_bio_add_page(bio_ctrl, page, disk_bytenr,
3420 size - offset, pg_offset + offset,
3421 bio_flags);
3422 else
3423 added = btrfs_bio_add_page(bio_ctrl, page,
3424 disk_bytenr + offset, size - offset,
3425 pg_offset + offset, bio_flags);
3426
3427 /* Metadata page range should never be split */
3428 if (!is_data_inode(&inode->vfs_inode))
3429 ASSERT(added == 0 || added == size - offset);
3430
3431 /* At least we added some page, update the account */
3432 if (wbc && added)
3433 wbc_account_cgroup_owner(wbc, page, added);
3434
3435 /* We have reached boundary, submit right now */
3436 if (added < size - offset) {
3437 /* The bio should contain some page(s) */
3438 ASSERT(bio_ctrl->bio->bi_iter.bi_size);
3439 ret = submit_one_bio(bio_ctrl->bio, mirror_num,
3440 bio_ctrl->bio_flags);
3441 bio_ctrl->bio = NULL;
3442 if (ret < 0)
3443 return ret;
3444 }
3445 cur += added;
3446 }
3447 return 0;
3448 }
3449
attach_extent_buffer_page(struct extent_buffer * eb,struct page * page,struct btrfs_subpage * prealloc)3450 static int attach_extent_buffer_page(struct extent_buffer *eb,
3451 struct page *page,
3452 struct btrfs_subpage *prealloc)
3453 {
3454 struct btrfs_fs_info *fs_info = eb->fs_info;
3455 int ret = 0;
3456
3457 /*
3458 * If the page is mapped to btree inode, we should hold the private
3459 * lock to prevent race.
3460 * For cloned or dummy extent buffers, their pages are not mapped and
3461 * will not race with any other ebs.
3462 */
3463 if (page->mapping)
3464 lockdep_assert_held(&page->mapping->private_lock);
3465
3466 if (fs_info->sectorsize == PAGE_SIZE) {
3467 if (!PagePrivate(page))
3468 attach_page_private(page, eb);
3469 else
3470 WARN_ON(page->private != (unsigned long)eb);
3471 return 0;
3472 }
3473
3474 /* Already mapped, just free prealloc */
3475 if (PagePrivate(page)) {
3476 btrfs_free_subpage(prealloc);
3477 return 0;
3478 }
3479
3480 if (prealloc)
3481 /* Has preallocated memory for subpage */
3482 attach_page_private(page, prealloc);
3483 else
3484 /* Do new allocation to attach subpage */
3485 ret = btrfs_attach_subpage(fs_info, page,
3486 BTRFS_SUBPAGE_METADATA);
3487 return ret;
3488 }
3489
set_page_extent_mapped(struct page * page)3490 int set_page_extent_mapped(struct page *page)
3491 {
3492 struct btrfs_fs_info *fs_info;
3493
3494 ASSERT(page->mapping);
3495
3496 if (PagePrivate(page))
3497 return 0;
3498
3499 fs_info = btrfs_sb(page->mapping->host->i_sb);
3500
3501 if (fs_info->sectorsize < PAGE_SIZE)
3502 return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
3503
3504 attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3505 return 0;
3506 }
3507
clear_page_extent_mapped(struct page * page)3508 void clear_page_extent_mapped(struct page *page)
3509 {
3510 struct btrfs_fs_info *fs_info;
3511
3512 ASSERT(page->mapping);
3513
3514 if (!PagePrivate(page))
3515 return;
3516
3517 fs_info = btrfs_sb(page->mapping->host->i_sb);
3518 if (fs_info->sectorsize < PAGE_SIZE)
3519 return btrfs_detach_subpage(fs_info, page);
3520
3521 detach_page_private(page);
3522 }
3523
3524 static struct extent_map *
__get_extent_map(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,struct extent_map ** em_cached)3525 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3526 u64 start, u64 len, struct extent_map **em_cached)
3527 {
3528 struct extent_map *em;
3529
3530 if (em_cached && *em_cached) {
3531 em = *em_cached;
3532 if (extent_map_in_tree(em) && start >= em->start &&
3533 start < extent_map_end(em)) {
3534 refcount_inc(&em->refs);
3535 return em;
3536 }
3537
3538 free_extent_map(em);
3539 *em_cached = NULL;
3540 }
3541
3542 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3543 if (em_cached && !IS_ERR_OR_NULL(em)) {
3544 BUG_ON(*em_cached);
3545 refcount_inc(&em->refs);
3546 *em_cached = em;
3547 }
3548 return em;
3549 }
3550 /*
3551 * basic readpage implementation. Locked extent state structs are inserted
3552 * into the tree that are removed when the IO is done (by the end_io
3553 * handlers)
3554 * XXX JDM: This needs looking at to ensure proper page locking
3555 * return 0 on success, otherwise return error
3556 */
btrfs_do_readpage(struct page * page,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,unsigned int read_flags,u64 * prev_em_start)3557 int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3558 struct btrfs_bio_ctrl *bio_ctrl,
3559 unsigned int read_flags, u64 *prev_em_start)
3560 {
3561 struct inode *inode = page->mapping->host;
3562 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3563 u64 start = page_offset(page);
3564 const u64 end = start + PAGE_SIZE - 1;
3565 u64 cur = start;
3566 u64 extent_offset;
3567 u64 last_byte = i_size_read(inode);
3568 u64 block_start;
3569 u64 cur_end;
3570 struct extent_map *em;
3571 int ret = 0;
3572 int nr = 0;
3573 size_t pg_offset = 0;
3574 size_t iosize;
3575 size_t blocksize = inode->i_sb->s_blocksize;
3576 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3577
3578 ret = set_page_extent_mapped(page);
3579 if (ret < 0) {
3580 unlock_extent(tree, start, end);
3581 btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
3582 unlock_page(page);
3583 goto out;
3584 }
3585
3586 if (!PageUptodate(page)) {
3587 if (cleancache_get_page(page) == 0) {
3588 BUG_ON(blocksize != PAGE_SIZE);
3589 unlock_extent(tree, start, end);
3590 unlock_page(page);
3591 goto out;
3592 }
3593 }
3594
3595 if (page->index == last_byte >> PAGE_SHIFT) {
3596 size_t zero_offset = offset_in_page(last_byte);
3597
3598 if (zero_offset) {
3599 iosize = PAGE_SIZE - zero_offset;
3600 memzero_page(page, zero_offset, iosize);
3601 flush_dcache_page(page);
3602 }
3603 }
3604 begin_page_read(fs_info, page);
3605 while (cur <= end) {
3606 unsigned long this_bio_flag = 0;
3607 bool force_bio_submit = false;
3608 u64 disk_bytenr;
3609
3610 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
3611 if (cur >= last_byte) {
3612 struct extent_state *cached = NULL;
3613
3614 iosize = PAGE_SIZE - pg_offset;
3615 memzero_page(page, pg_offset, iosize);
3616 flush_dcache_page(page);
3617 set_extent_uptodate(tree, cur, cur + iosize - 1,
3618 &cached, GFP_NOFS);
3619 unlock_extent_cached(tree, cur,
3620 cur + iosize - 1, &cached);
3621 end_page_read(page, true, cur, iosize);
3622 break;
3623 }
3624 em = __get_extent_map(inode, page, pg_offset, cur,
3625 end - cur + 1, em_cached);
3626 if (IS_ERR_OR_NULL(em)) {
3627 unlock_extent(tree, cur, end);
3628 end_page_read(page, false, cur, end + 1 - cur);
3629 break;
3630 }
3631 extent_offset = cur - em->start;
3632 BUG_ON(extent_map_end(em) <= cur);
3633 BUG_ON(end < cur);
3634
3635 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3636 this_bio_flag |= EXTENT_BIO_COMPRESSED;
3637 extent_set_compress_type(&this_bio_flag,
3638 em->compress_type);
3639 }
3640
3641 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3642 cur_end = min(extent_map_end(em) - 1, end);
3643 iosize = ALIGN(iosize, blocksize);
3644 if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3645 disk_bytenr = em->block_start;
3646 else
3647 disk_bytenr = em->block_start + extent_offset;
3648 block_start = em->block_start;
3649 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3650 block_start = EXTENT_MAP_HOLE;
3651
3652 /*
3653 * If we have a file range that points to a compressed extent
3654 * and it's followed by a consecutive file range that points
3655 * to the same compressed extent (possibly with a different
3656 * offset and/or length, so it either points to the whole extent
3657 * or only part of it), we must make sure we do not submit a
3658 * single bio to populate the pages for the 2 ranges because
3659 * this makes the compressed extent read zero out the pages
3660 * belonging to the 2nd range. Imagine the following scenario:
3661 *
3662 * File layout
3663 * [0 - 8K] [8K - 24K]
3664 * | |
3665 * | |
3666 * points to extent X, points to extent X,
3667 * offset 4K, length of 8K offset 0, length 16K
3668 *
3669 * [extent X, compressed length = 4K uncompressed length = 16K]
3670 *
3671 * If the bio to read the compressed extent covers both ranges,
3672 * it will decompress extent X into the pages belonging to the
3673 * first range and then it will stop, zeroing out the remaining
3674 * pages that belong to the other range that points to extent X.
3675 * So here we make sure we submit 2 bios, one for the first
3676 * range and another one for the third range. Both will target
3677 * the same physical extent from disk, but we can't currently
3678 * make the compressed bio endio callback populate the pages
3679 * for both ranges because each compressed bio is tightly
3680 * coupled with a single extent map, and each range can have
3681 * an extent map with a different offset value relative to the
3682 * uncompressed data of our extent and different lengths. This
3683 * is a corner case so we prioritize correctness over
3684 * non-optimal behavior (submitting 2 bios for the same extent).
3685 */
3686 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3687 prev_em_start && *prev_em_start != (u64)-1 &&
3688 *prev_em_start != em->start)
3689 force_bio_submit = true;
3690
3691 if (prev_em_start)
3692 *prev_em_start = em->start;
3693
3694 free_extent_map(em);
3695 em = NULL;
3696
3697 /* we've found a hole, just zero and go on */
3698 if (block_start == EXTENT_MAP_HOLE) {
3699 struct extent_state *cached = NULL;
3700
3701 memzero_page(page, pg_offset, iosize);
3702 flush_dcache_page(page);
3703
3704 set_extent_uptodate(tree, cur, cur + iosize - 1,
3705 &cached, GFP_NOFS);
3706 unlock_extent_cached(tree, cur,
3707 cur + iosize - 1, &cached);
3708 end_page_read(page, true, cur, iosize);
3709 cur = cur + iosize;
3710 pg_offset += iosize;
3711 continue;
3712 }
3713 /* the get_extent function already copied into the page */
3714 if (test_range_bit(tree, cur, cur_end,
3715 EXTENT_UPTODATE, 1, NULL)) {
3716 unlock_extent(tree, cur, cur + iosize - 1);
3717 end_page_read(page, true, cur, iosize);
3718 cur = cur + iosize;
3719 pg_offset += iosize;
3720 continue;
3721 }
3722 /* we have an inline extent but it didn't get marked up
3723 * to date. Error out
3724 */
3725 if (block_start == EXTENT_MAP_INLINE) {
3726 unlock_extent(tree, cur, cur + iosize - 1);
3727 end_page_read(page, false, cur, iosize);
3728 cur = cur + iosize;
3729 pg_offset += iosize;
3730 continue;
3731 }
3732
3733 ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3734 bio_ctrl, page, disk_bytenr, iosize,
3735 pg_offset,
3736 end_bio_extent_readpage, 0,
3737 this_bio_flag,
3738 force_bio_submit);
3739 if (!ret) {
3740 nr++;
3741 } else {
3742 unlock_extent(tree, cur, cur + iosize - 1);
3743 end_page_read(page, false, cur, iosize);
3744 goto out;
3745 }
3746 cur = cur + iosize;
3747 pg_offset += iosize;
3748 }
3749 out:
3750 return ret;
3751 }
3752
contiguous_readpages(struct page * pages[],int nr_pages,u64 start,u64 end,struct extent_map ** em_cached,struct btrfs_bio_ctrl * bio_ctrl,u64 * prev_em_start)3753 static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3754 u64 start, u64 end,
3755 struct extent_map **em_cached,
3756 struct btrfs_bio_ctrl *bio_ctrl,
3757 u64 *prev_em_start)
3758 {
3759 struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3760 int index;
3761
3762 btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3763
3764 for (index = 0; index < nr_pages; index++) {
3765 btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3766 REQ_RAHEAD, prev_em_start);
3767 put_page(pages[index]);
3768 }
3769 }
3770
update_nr_written(struct writeback_control * wbc,unsigned long nr_written)3771 static void update_nr_written(struct writeback_control *wbc,
3772 unsigned long nr_written)
3773 {
3774 wbc->nr_to_write -= nr_written;
3775 }
3776
3777 /*
3778 * helper for __extent_writepage, doing all of the delayed allocation setup.
3779 *
3780 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3781 * to write the page (copy into inline extent). In this case the IO has
3782 * been started and the page is already unlocked.
3783 *
3784 * This returns 0 if all went well (page still locked)
3785 * This returns < 0 if there were errors (page still locked)
3786 */
writepage_delalloc(struct btrfs_inode * inode,struct page * page,struct writeback_control * wbc,unsigned long * nr_written)3787 static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3788 struct page *page, struct writeback_control *wbc,
3789 unsigned long *nr_written)
3790 {
3791 const u64 page_end = page_offset(page) + PAGE_SIZE - 1;
3792 u64 delalloc_start = page_offset(page);
3793 u64 delalloc_to_write = 0;
3794 int ret;
3795 int page_started = 0;
3796
3797 while (delalloc_start < page_end) {
3798 u64 delalloc_end = page_end;
3799 bool found;
3800
3801 found = find_lock_delalloc_range(&inode->vfs_inode, page,
3802 &delalloc_start,
3803 &delalloc_end);
3804 if (!found) {
3805 delalloc_start = delalloc_end + 1;
3806 continue;
3807 }
3808 ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3809 delalloc_end, &page_started, nr_written, wbc);
3810 if (ret) {
3811 btrfs_page_set_error(inode->root->fs_info, page,
3812 page_offset(page), PAGE_SIZE);
3813 return ret;
3814 }
3815 /*
3816 * delalloc_end is already one less than the total length, so
3817 * we don't subtract one from PAGE_SIZE
3818 */
3819 delalloc_to_write += (delalloc_end - delalloc_start +
3820 PAGE_SIZE) >> PAGE_SHIFT;
3821 delalloc_start = delalloc_end + 1;
3822 }
3823 if (wbc->nr_to_write < delalloc_to_write) {
3824 int thresh = 8192;
3825
3826 if (delalloc_to_write < thresh * 2)
3827 thresh = delalloc_to_write;
3828 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3829 thresh);
3830 }
3831
3832 /* did the fill delalloc function already unlock and start
3833 * the IO?
3834 */
3835 if (page_started) {
3836 /*
3837 * we've unlocked the page, so we can't update
3838 * the mapping's writeback index, just update
3839 * nr_to_write.
3840 */
3841 wbc->nr_to_write -= *nr_written;
3842 return 1;
3843 }
3844
3845 return 0;
3846 }
3847
3848 /*
3849 * Find the first byte we need to write.
3850 *
3851 * For subpage, one page can contain several sectors, and
3852 * __extent_writepage_io() will just grab all extent maps in the page
3853 * range and try to submit all non-inline/non-compressed extents.
3854 *
3855 * This is a big problem for subpage, we shouldn't re-submit already written
3856 * data at all.
3857 * This function will lookup subpage dirty bit to find which range we really
3858 * need to submit.
3859 *
3860 * Return the next dirty range in [@start, @end).
3861 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
3862 */
find_next_dirty_byte(struct btrfs_fs_info * fs_info,struct page * page,u64 * start,u64 * end)3863 static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
3864 struct page *page, u64 *start, u64 *end)
3865 {
3866 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3867 struct btrfs_subpage_info *spi = fs_info->subpage_info;
3868 u64 orig_start = *start;
3869 /* Declare as unsigned long so we can use bitmap ops */
3870 unsigned long flags;
3871 int range_start_bit;
3872 int range_end_bit;
3873
3874 /*
3875 * For regular sector size == page size case, since one page only
3876 * contains one sector, we return the page offset directly.
3877 */
3878 if (fs_info->sectorsize == PAGE_SIZE) {
3879 *start = page_offset(page);
3880 *end = page_offset(page) + PAGE_SIZE;
3881 return;
3882 }
3883
3884 range_start_bit = spi->dirty_offset +
3885 (offset_in_page(orig_start) >> fs_info->sectorsize_bits);
3886
3887 /* We should have the page locked, but just in case */
3888 spin_lock_irqsave(&subpage->lock, flags);
3889 bitmap_next_set_region(subpage->bitmaps, &range_start_bit, &range_end_bit,
3890 spi->dirty_offset + spi->bitmap_nr_bits);
3891 spin_unlock_irqrestore(&subpage->lock, flags);
3892
3893 range_start_bit -= spi->dirty_offset;
3894 range_end_bit -= spi->dirty_offset;
3895
3896 *start = page_offset(page) + range_start_bit * fs_info->sectorsize;
3897 *end = page_offset(page) + range_end_bit * fs_info->sectorsize;
3898 }
3899
3900 /*
3901 * helper for __extent_writepage. This calls the writepage start hooks,
3902 * and does the loop to map the page into extents and bios.
3903 *
3904 * We return 1 if the IO is started and the page is unlocked,
3905 * 0 if all went well (page still locked)
3906 * < 0 if there were errors (page still locked)
3907 */
__extent_writepage_io(struct btrfs_inode * inode,struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,loff_t i_size,unsigned long nr_written,int * nr_ret)3908 static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3909 struct page *page,
3910 struct writeback_control *wbc,
3911 struct extent_page_data *epd,
3912 loff_t i_size,
3913 unsigned long nr_written,
3914 int *nr_ret)
3915 {
3916 struct btrfs_fs_info *fs_info = inode->root->fs_info;
3917 u64 cur = page_offset(page);
3918 u64 end = cur + PAGE_SIZE - 1;
3919 u64 extent_offset;
3920 u64 block_start;
3921 struct extent_map *em;
3922 int ret = 0;
3923 int nr = 0;
3924 u32 opf = REQ_OP_WRITE;
3925 const unsigned int write_flags = wbc_to_write_flags(wbc);
3926 bool compressed;
3927
3928 ret = btrfs_writepage_cow_fixup(page);
3929 if (ret) {
3930 /* Fixup worker will requeue */
3931 redirty_page_for_writepage(wbc, page);
3932 update_nr_written(wbc, nr_written);
3933 unlock_page(page);
3934 return 1;
3935 }
3936
3937 /*
3938 * we don't want to touch the inode after unlocking the page,
3939 * so we update the mapping writeback index now
3940 */
3941 update_nr_written(wbc, nr_written + 1);
3942
3943 while (cur <= end) {
3944 u64 disk_bytenr;
3945 u64 em_end;
3946 u64 dirty_range_start = cur;
3947 u64 dirty_range_end;
3948 u32 iosize;
3949
3950 if (cur >= i_size) {
3951 btrfs_writepage_endio_finish_ordered(inode, page, cur,
3952 end, true);
3953 /*
3954 * This range is beyond i_size, thus we don't need to
3955 * bother writing back.
3956 * But we still need to clear the dirty subpage bit, or
3957 * the next time the page gets dirtied, we will try to
3958 * writeback the sectors with subpage dirty bits,
3959 * causing writeback without ordered extent.
3960 */
3961 btrfs_page_clear_dirty(fs_info, page, cur, end + 1 - cur);
3962 break;
3963 }
3964
3965 find_next_dirty_byte(fs_info, page, &dirty_range_start,
3966 &dirty_range_end);
3967 if (cur < dirty_range_start) {
3968 cur = dirty_range_start;
3969 continue;
3970 }
3971
3972 em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3973 if (IS_ERR_OR_NULL(em)) {
3974 btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
3975 ret = PTR_ERR_OR_ZERO(em);
3976 break;
3977 }
3978
3979 extent_offset = cur - em->start;
3980 em_end = extent_map_end(em);
3981 ASSERT(cur <= em_end);
3982 ASSERT(cur < end);
3983 ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
3984 ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3985 block_start = em->block_start;
3986 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3987 disk_bytenr = em->block_start + extent_offset;
3988
3989 /*
3990 * Note that em_end from extent_map_end() and dirty_range_end from
3991 * find_next_dirty_byte() are all exclusive
3992 */
3993 iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
3994
3995 if (btrfs_use_zone_append(inode, em->block_start))
3996 opf = REQ_OP_ZONE_APPEND;
3997
3998 free_extent_map(em);
3999 em = NULL;
4000
4001 /*
4002 * compressed and inline extents are written through other
4003 * paths in the FS
4004 */
4005 if (compressed || block_start == EXTENT_MAP_HOLE ||
4006 block_start == EXTENT_MAP_INLINE) {
4007 if (compressed)
4008 nr++;
4009 else
4010 btrfs_writepage_endio_finish_ordered(inode,
4011 page, cur, cur + iosize - 1, true);
4012 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
4013 cur += iosize;
4014 continue;
4015 }
4016
4017 btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
4018 if (!PageWriteback(page)) {
4019 btrfs_err(inode->root->fs_info,
4020 "page %lu not writeback, cur %llu end %llu",
4021 page->index, cur, end);
4022 }
4023
4024 /*
4025 * Although the PageDirty bit is cleared before entering this
4026 * function, subpage dirty bit is not cleared.
4027 * So clear subpage dirty bit here so next time we won't submit
4028 * page for range already written to disk.
4029 */
4030 btrfs_page_clear_dirty(fs_info, page, cur, iosize);
4031
4032 ret = submit_extent_page(opf | write_flags, wbc,
4033 &epd->bio_ctrl, page,
4034 disk_bytenr, iosize,
4035 cur - page_offset(page),
4036 end_bio_extent_writepage,
4037 0, 0, false);
4038 if (ret) {
4039 btrfs_page_set_error(fs_info, page, cur, iosize);
4040 if (PageWriteback(page))
4041 btrfs_page_clear_writeback(fs_info, page, cur,
4042 iosize);
4043 }
4044
4045 cur += iosize;
4046 nr++;
4047 }
4048 /*
4049 * If we finish without problem, we should not only clear page dirty,
4050 * but also empty subpage dirty bits
4051 */
4052 if (!ret)
4053 btrfs_page_assert_not_dirty(fs_info, page);
4054 *nr_ret = nr;
4055 return ret;
4056 }
4057
4058 /*
4059 * the writepage semantics are similar to regular writepage. extent
4060 * records are inserted to lock ranges in the tree, and as dirty areas
4061 * are found, they are marked writeback. Then the lock bits are removed
4062 * and the end_io handler clears the writeback ranges
4063 *
4064 * Return 0 if everything goes well.
4065 * Return <0 for error.
4066 */
__extent_writepage(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd)4067 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
4068 struct extent_page_data *epd)
4069 {
4070 struct inode *inode = page->mapping->host;
4071 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4072 const u64 page_start = page_offset(page);
4073 const u64 page_end = page_start + PAGE_SIZE - 1;
4074 int ret;
4075 int nr = 0;
4076 size_t pg_offset;
4077 loff_t i_size = i_size_read(inode);
4078 unsigned long end_index = i_size >> PAGE_SHIFT;
4079 unsigned long nr_written = 0;
4080
4081 trace___extent_writepage(page, inode, wbc);
4082
4083 WARN_ON(!PageLocked(page));
4084
4085 btrfs_page_clear_error(btrfs_sb(inode->i_sb), page,
4086 page_offset(page), PAGE_SIZE);
4087
4088 pg_offset = offset_in_page(i_size);
4089 if (page->index > end_index ||
4090 (page->index == end_index && !pg_offset)) {
4091 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
4092 unlock_page(page);
4093 return 0;
4094 }
4095
4096 if (page->index == end_index) {
4097 memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
4098 flush_dcache_page(page);
4099 }
4100
4101 ret = set_page_extent_mapped(page);
4102 if (ret < 0) {
4103 SetPageError(page);
4104 goto done;
4105 }
4106
4107 if (!epd->extent_locked) {
4108 ret = writepage_delalloc(BTRFS_I(inode), page, wbc, &nr_written);
4109 if (ret == 1)
4110 return 0;
4111 if (ret)
4112 goto done;
4113 }
4114
4115 ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4116 nr_written, &nr);
4117 if (ret == 1)
4118 return 0;
4119
4120 done:
4121 if (nr == 0) {
4122 /* make sure the mapping tag for page dirty gets cleared */
4123 set_page_writeback(page);
4124 end_page_writeback(page);
4125 }
4126 /*
4127 * Here we used to have a check for PageError() and then set @ret and
4128 * call end_extent_writepage().
4129 *
4130 * But in fact setting @ret here will cause different error paths
4131 * between subpage and regular sectorsize.
4132 *
4133 * For regular page size, we never submit current page, but only add
4134 * current page to current bio.
4135 * The bio submission can only happen in next page.
4136 * Thus if we hit the PageError() branch, @ret is already set to
4137 * non-zero value and will not get updated for regular sectorsize.
4138 *
4139 * But for subpage case, it's possible we submit part of current page,
4140 * thus can get PageError() set by submitted bio of the same page,
4141 * while our @ret is still 0.
4142 *
4143 * So here we unify the behavior and don't set @ret.
4144 * Error can still be properly passed to higher layer as page will
4145 * be set error, here we just don't handle the IO failure.
4146 *
4147 * NOTE: This is just a hotfix for subpage.
4148 * The root fix will be properly ending ordered extent when we hit
4149 * an error during writeback.
4150 *
4151 * But that needs a bigger refactoring, as we not only need to grab the
4152 * submitted OE, but also need to know exactly at which bytenr we hit
4153 * the error.
4154 * Currently the full page based __extent_writepage_io() is not
4155 * capable of that.
4156 */
4157 if (PageError(page))
4158 end_extent_writepage(page, ret, page_start, page_end);
4159 if (epd->extent_locked) {
4160 /*
4161 * If epd->extent_locked, it's from extent_write_locked_range(),
4162 * the page can either be locked by lock_page() or
4163 * process_one_page().
4164 * Let btrfs_page_unlock_writer() handle both cases.
4165 */
4166 ASSERT(wbc);
4167 btrfs_page_unlock_writer(fs_info, page, wbc->range_start,
4168 wbc->range_end + 1 - wbc->range_start);
4169 } else {
4170 unlock_page(page);
4171 }
4172 ASSERT(ret <= 0);
4173 return ret;
4174 }
4175
wait_on_extent_buffer_writeback(struct extent_buffer * eb)4176 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4177 {
4178 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
4179 TASK_UNINTERRUPTIBLE);
4180 }
4181
end_extent_buffer_writeback(struct extent_buffer * eb)4182 static void end_extent_buffer_writeback(struct extent_buffer *eb)
4183 {
4184 if (test_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags))
4185 btrfs_zone_finish_endio(eb->fs_info, eb->start, eb->len);
4186
4187 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4188 smp_mb__after_atomic();
4189 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
4190 }
4191
4192 /*
4193 * Lock extent buffer status and pages for writeback.
4194 *
4195 * May try to flush write bio if we can't get the lock.
4196 *
4197 * Return 0 if the extent buffer doesn't need to be submitted.
4198 * (E.g. the extent buffer is not dirty)
4199 * Return >0 is the extent buffer is submitted to bio.
4200 * Return <0 if something went wrong, no page is locked.
4201 */
lock_extent_buffer_for_io(struct extent_buffer * eb,struct extent_page_data * epd)4202 static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4203 struct extent_page_data *epd)
4204 {
4205 struct btrfs_fs_info *fs_info = eb->fs_info;
4206 int i, num_pages, failed_page_nr;
4207 int flush = 0;
4208 int ret = 0;
4209
4210 if (!btrfs_try_tree_write_lock(eb)) {
4211 ret = flush_write_bio(epd);
4212 if (ret < 0)
4213 return ret;
4214 flush = 1;
4215 btrfs_tree_lock(eb);
4216 }
4217
4218 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
4219 btrfs_tree_unlock(eb);
4220 if (!epd->sync_io)
4221 return 0;
4222 if (!flush) {
4223 ret = flush_write_bio(epd);
4224 if (ret < 0)
4225 return ret;
4226 flush = 1;
4227 }
4228 while (1) {
4229 wait_on_extent_buffer_writeback(eb);
4230 btrfs_tree_lock(eb);
4231 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
4232 break;
4233 btrfs_tree_unlock(eb);
4234 }
4235 }
4236
4237 /*
4238 * We need to do this to prevent races in people who check if the eb is
4239 * under IO since we can end up having no IO bits set for a short period
4240 * of time.
4241 */
4242 spin_lock(&eb->refs_lock);
4243 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4244 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4245 spin_unlock(&eb->refs_lock);
4246 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4247 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4248 -eb->len,
4249 fs_info->dirty_metadata_batch);
4250 ret = 1;
4251 } else {
4252 spin_unlock(&eb->refs_lock);
4253 }
4254
4255 btrfs_tree_unlock(eb);
4256
4257 /*
4258 * Either we don't need to submit any tree block, or we're submitting
4259 * subpage eb.
4260 * Subpage metadata doesn't use page locking at all, so we can skip
4261 * the page locking.
4262 */
4263 if (!ret || fs_info->sectorsize < PAGE_SIZE)
4264 return ret;
4265
4266 num_pages = num_extent_pages(eb);
4267 for (i = 0; i < num_pages; i++) {
4268 struct page *p = eb->pages[i];
4269
4270 if (!trylock_page(p)) {
4271 if (!flush) {
4272 int err;
4273
4274 err = flush_write_bio(epd);
4275 if (err < 0) {
4276 ret = err;
4277 failed_page_nr = i;
4278 goto err_unlock;
4279 }
4280 flush = 1;
4281 }
4282 lock_page(p);
4283 }
4284 }
4285
4286 return ret;
4287 err_unlock:
4288 /* Unlock already locked pages */
4289 for (i = 0; i < failed_page_nr; i++)
4290 unlock_page(eb->pages[i]);
4291 /*
4292 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
4293 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
4294 * be made and undo everything done before.
4295 */
4296 btrfs_tree_lock(eb);
4297 spin_lock(&eb->refs_lock);
4298 set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4299 end_extent_buffer_writeback(eb);
4300 spin_unlock(&eb->refs_lock);
4301 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
4302 fs_info->dirty_metadata_batch);
4303 btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4304 btrfs_tree_unlock(eb);
4305 return ret;
4306 }
4307
set_btree_ioerr(struct page * page,struct extent_buffer * eb)4308 static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4309 {
4310 struct btrfs_fs_info *fs_info = eb->fs_info;
4311
4312 btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4313 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4314 return;
4315
4316 /*
4317 * A read may stumble upon this buffer later, make sure that it gets an
4318 * error and knows there was an error.
4319 */
4320 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4321
4322 /*
4323 * We need to set the mapping with the io error as well because a write
4324 * error will flip the file system readonly, and then syncfs() will
4325 * return a 0 because we are readonly if we don't modify the err seq for
4326 * the superblock.
4327 */
4328 mapping_set_error(page->mapping, -EIO);
4329
4330 /*
4331 * If we error out, we should add back the dirty_metadata_bytes
4332 * to make it consistent.
4333 */
4334 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4335 eb->len, fs_info->dirty_metadata_batch);
4336
4337 /*
4338 * If writeback for a btree extent that doesn't belong to a log tree
4339 * failed, increment the counter transaction->eb_write_errors.
4340 * We do this because while the transaction is running and before it's
4341 * committing (when we call filemap_fdata[write|wait]_range against
4342 * the btree inode), we might have
4343 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
4344 * returns an error or an error happens during writeback, when we're
4345 * committing the transaction we wouldn't know about it, since the pages
4346 * can be no longer dirty nor marked anymore for writeback (if a
4347 * subsequent modification to the extent buffer didn't happen before the
4348 * transaction commit), which makes filemap_fdata[write|wait]_range not
4349 * able to find the pages tagged with SetPageError at transaction
4350 * commit time. So if this happens we must abort the transaction,
4351 * otherwise we commit a super block with btree roots that point to
4352 * btree nodes/leafs whose content on disk is invalid - either garbage
4353 * or the content of some node/leaf from a past generation that got
4354 * cowed or deleted and is no longer valid.
4355 *
4356 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
4357 * not be enough - we need to distinguish between log tree extents vs
4358 * non-log tree extents, and the next filemap_fdatawait_range() call
4359 * will catch and clear such errors in the mapping - and that call might
4360 * be from a log sync and not from a transaction commit. Also, checking
4361 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
4362 * not done and would not be reliable - the eb might have been released
4363 * from memory and reading it back again means that flag would not be
4364 * set (since it's a runtime flag, not persisted on disk).
4365 *
4366 * Using the flags below in the btree inode also makes us achieve the
4367 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
4368 * writeback for all dirty pages and before filemap_fdatawait_range()
4369 * is called, the writeback for all dirty pages had already finished
4370 * with errors - because we were not using AS_EIO/AS_ENOSPC,
4371 * filemap_fdatawait_range() would return success, as it could not know
4372 * that writeback errors happened (the pages were no longer tagged for
4373 * writeback).
4374 */
4375 switch (eb->log_index) {
4376 case -1:
4377 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4378 break;
4379 case 0:
4380 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4381 break;
4382 case 1:
4383 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4384 break;
4385 default:
4386 BUG(); /* unexpected, logic error */
4387 }
4388 }
4389
4390 /*
4391 * The endio specific version which won't touch any unsafe spinlock in endio
4392 * context.
4393 */
find_extent_buffer_nolock(struct btrfs_fs_info * fs_info,u64 start)4394 static struct extent_buffer *find_extent_buffer_nolock(
4395 struct btrfs_fs_info *fs_info, u64 start)
4396 {
4397 struct extent_buffer *eb;
4398
4399 rcu_read_lock();
4400 eb = radix_tree_lookup(&fs_info->buffer_radix,
4401 start >> fs_info->sectorsize_bits);
4402 if (eb && atomic_inc_not_zero(&eb->refs)) {
4403 rcu_read_unlock();
4404 return eb;
4405 }
4406 rcu_read_unlock();
4407 return NULL;
4408 }
4409
4410 /*
4411 * The endio function for subpage extent buffer write.
4412 *
4413 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
4414 * after all extent buffers in the page has finished their writeback.
4415 */
end_bio_subpage_eb_writepage(struct bio * bio)4416 static void end_bio_subpage_eb_writepage(struct bio *bio)
4417 {
4418 struct btrfs_fs_info *fs_info;
4419 struct bio_vec *bvec;
4420 struct bvec_iter_all iter_all;
4421
4422 fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4423 ASSERT(fs_info->sectorsize < PAGE_SIZE);
4424
4425 ASSERT(!bio_flagged(bio, BIO_CLONED));
4426 bio_for_each_segment_all(bvec, bio, iter_all) {
4427 struct page *page = bvec->bv_page;
4428 u64 bvec_start = page_offset(page) + bvec->bv_offset;
4429 u64 bvec_end = bvec_start + bvec->bv_len - 1;
4430 u64 cur_bytenr = bvec_start;
4431
4432 ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
4433
4434 /* Iterate through all extent buffers in the range */
4435 while (cur_bytenr <= bvec_end) {
4436 struct extent_buffer *eb;
4437 int done;
4438
4439 /*
4440 * Here we can't use find_extent_buffer(), as it may
4441 * try to lock eb->refs_lock, which is not safe in endio
4442 * context.
4443 */
4444 eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
4445 ASSERT(eb);
4446
4447 cur_bytenr = eb->start + eb->len;
4448
4449 ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
4450 done = atomic_dec_and_test(&eb->io_pages);
4451 ASSERT(done);
4452
4453 if (bio->bi_status ||
4454 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4455 ClearPageUptodate(page);
4456 set_btree_ioerr(page, eb);
4457 }
4458
4459 btrfs_subpage_clear_writeback(fs_info, page, eb->start,
4460 eb->len);
4461 end_extent_buffer_writeback(eb);
4462 /*
4463 * free_extent_buffer() will grab spinlock which is not
4464 * safe in endio context. Thus here we manually dec
4465 * the ref.
4466 */
4467 atomic_dec(&eb->refs);
4468 }
4469 }
4470 bio_put(bio);
4471 }
4472
end_bio_extent_buffer_writepage(struct bio * bio)4473 static void end_bio_extent_buffer_writepage(struct bio *bio)
4474 {
4475 struct bio_vec *bvec;
4476 struct extent_buffer *eb;
4477 int done;
4478 struct bvec_iter_all iter_all;
4479
4480 ASSERT(!bio_flagged(bio, BIO_CLONED));
4481 bio_for_each_segment_all(bvec, bio, iter_all) {
4482 struct page *page = bvec->bv_page;
4483
4484 eb = (struct extent_buffer *)page->private;
4485 BUG_ON(!eb);
4486 done = atomic_dec_and_test(&eb->io_pages);
4487
4488 if (bio->bi_status ||
4489 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4490 ClearPageUptodate(page);
4491 set_btree_ioerr(page, eb);
4492 }
4493
4494 end_page_writeback(page);
4495
4496 if (!done)
4497 continue;
4498
4499 end_extent_buffer_writeback(eb);
4500 }
4501
4502 bio_put(bio);
4503 }
4504
prepare_eb_write(struct extent_buffer * eb)4505 static void prepare_eb_write(struct extent_buffer *eb)
4506 {
4507 u32 nritems;
4508 unsigned long start;
4509 unsigned long end;
4510
4511 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4512 atomic_set(&eb->io_pages, num_extent_pages(eb));
4513
4514 /* Set btree blocks beyond nritems with 0 to avoid stale content */
4515 nritems = btrfs_header_nritems(eb);
4516 if (btrfs_header_level(eb) > 0) {
4517 end = btrfs_node_key_ptr_offset(nritems);
4518 memzero_extent_buffer(eb, end, eb->len - end);
4519 } else {
4520 /*
4521 * Leaf:
4522 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
4523 */
4524 start = btrfs_item_nr_offset(nritems);
4525 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
4526 memzero_extent_buffer(eb, start, end - start);
4527 }
4528 }
4529
4530 /*
4531 * Unlike the work in write_one_eb(), we rely completely on extent locking.
4532 * Page locking is only utilized at minimum to keep the VMM code happy.
4533 */
write_one_subpage_eb(struct extent_buffer * eb,struct writeback_control * wbc,struct extent_page_data * epd)4534 static int write_one_subpage_eb(struct extent_buffer *eb,
4535 struct writeback_control *wbc,
4536 struct extent_page_data *epd)
4537 {
4538 struct btrfs_fs_info *fs_info = eb->fs_info;
4539 struct page *page = eb->pages[0];
4540 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4541 bool no_dirty_ebs = false;
4542 int ret;
4543
4544 prepare_eb_write(eb);
4545
4546 /* clear_page_dirty_for_io() in subpage helper needs page locked */
4547 lock_page(page);
4548 btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
4549
4550 /* Check if this is the last dirty bit to update nr_written */
4551 no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
4552 eb->start, eb->len);
4553 if (no_dirty_ebs)
4554 clear_page_dirty_for_io(page);
4555
4556 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4557 &epd->bio_ctrl, page, eb->start, eb->len,
4558 eb->start - page_offset(page),
4559 end_bio_subpage_eb_writepage, 0, 0, false);
4560 if (ret) {
4561 btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
4562 set_btree_ioerr(page, eb);
4563 unlock_page(page);
4564
4565 if (atomic_dec_and_test(&eb->io_pages))
4566 end_extent_buffer_writeback(eb);
4567 return -EIO;
4568 }
4569 unlock_page(page);
4570 /*
4571 * Submission finished without problem, if no range of the page is
4572 * dirty anymore, we have submitted a page. Update nr_written in wbc.
4573 */
4574 if (no_dirty_ebs)
4575 update_nr_written(wbc, 1);
4576 return ret;
4577 }
4578
write_one_eb(struct extent_buffer * eb,struct writeback_control * wbc,struct extent_page_data * epd)4579 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4580 struct writeback_control *wbc,
4581 struct extent_page_data *epd)
4582 {
4583 u64 disk_bytenr = eb->start;
4584 int i, num_pages;
4585 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4586 int ret = 0;
4587
4588 prepare_eb_write(eb);
4589
4590 num_pages = num_extent_pages(eb);
4591 for (i = 0; i < num_pages; i++) {
4592 struct page *p = eb->pages[i];
4593
4594 clear_page_dirty_for_io(p);
4595 set_page_writeback(p);
4596 ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4597 &epd->bio_ctrl, p, disk_bytenr,
4598 PAGE_SIZE, 0,
4599 end_bio_extent_buffer_writepage,
4600 0, 0, false);
4601 if (ret) {
4602 set_btree_ioerr(p, eb);
4603 if (PageWriteback(p))
4604 end_page_writeback(p);
4605 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
4606 end_extent_buffer_writeback(eb);
4607 ret = -EIO;
4608 break;
4609 }
4610 disk_bytenr += PAGE_SIZE;
4611 update_nr_written(wbc, 1);
4612 unlock_page(p);
4613 }
4614
4615 if (unlikely(ret)) {
4616 for (; i < num_pages; i++) {
4617 struct page *p = eb->pages[i];
4618 clear_page_dirty_for_io(p);
4619 unlock_page(p);
4620 }
4621 }
4622
4623 return ret;
4624 }
4625
4626 /*
4627 * Submit one subpage btree page.
4628 *
4629 * The main difference to submit_eb_page() is:
4630 * - Page locking
4631 * For subpage, we don't rely on page locking at all.
4632 *
4633 * - Flush write bio
4634 * We only flush bio if we may be unable to fit current extent buffers into
4635 * current bio.
4636 *
4637 * Return >=0 for the number of submitted extent buffers.
4638 * Return <0 for fatal error.
4639 */
submit_eb_subpage(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd)4640 static int submit_eb_subpage(struct page *page,
4641 struct writeback_control *wbc,
4642 struct extent_page_data *epd)
4643 {
4644 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4645 int submitted = 0;
4646 u64 page_start = page_offset(page);
4647 int bit_start = 0;
4648 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
4649 int ret;
4650
4651 /* Lock and write each dirty extent buffers in the range */
4652 while (bit_start < fs_info->subpage_info->bitmap_nr_bits) {
4653 struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
4654 struct extent_buffer *eb;
4655 unsigned long flags;
4656 u64 start;
4657
4658 /*
4659 * Take private lock to ensure the subpage won't be detached
4660 * in the meantime.
4661 */
4662 spin_lock(&page->mapping->private_lock);
4663 if (!PagePrivate(page)) {
4664 spin_unlock(&page->mapping->private_lock);
4665 break;
4666 }
4667 spin_lock_irqsave(&subpage->lock, flags);
4668 if (!test_bit(bit_start + fs_info->subpage_info->dirty_offset,
4669 subpage->bitmaps)) {
4670 spin_unlock_irqrestore(&subpage->lock, flags);
4671 spin_unlock(&page->mapping->private_lock);
4672 bit_start++;
4673 continue;
4674 }
4675
4676 start = page_start + bit_start * fs_info->sectorsize;
4677 bit_start += sectors_per_node;
4678
4679 /*
4680 * Here we just want to grab the eb without touching extra
4681 * spin locks, so call find_extent_buffer_nolock().
4682 */
4683 eb = find_extent_buffer_nolock(fs_info, start);
4684 spin_unlock_irqrestore(&subpage->lock, flags);
4685 spin_unlock(&page->mapping->private_lock);
4686
4687 /*
4688 * The eb has already reached 0 refs thus find_extent_buffer()
4689 * doesn't return it. We don't need to write back such eb
4690 * anyway.
4691 */
4692 if (!eb)
4693 continue;
4694
4695 ret = lock_extent_buffer_for_io(eb, epd);
4696 if (ret == 0) {
4697 free_extent_buffer(eb);
4698 continue;
4699 }
4700 if (ret < 0) {
4701 free_extent_buffer(eb);
4702 goto cleanup;
4703 }
4704 ret = write_one_subpage_eb(eb, wbc, epd);
4705 free_extent_buffer(eb);
4706 if (ret < 0)
4707 goto cleanup;
4708 submitted++;
4709 }
4710 return submitted;
4711
4712 cleanup:
4713 /* We hit error, end bio for the submitted extent buffers */
4714 end_write_bio(epd, ret);
4715 return ret;
4716 }
4717
4718 /*
4719 * Submit all page(s) of one extent buffer.
4720 *
4721 * @page: the page of one extent buffer
4722 * @eb_context: to determine if we need to submit this page, if current page
4723 * belongs to this eb, we don't need to submit
4724 *
4725 * The caller should pass each page in their bytenr order, and here we use
4726 * @eb_context to determine if we have submitted pages of one extent buffer.
4727 *
4728 * If we have, we just skip until we hit a new page that doesn't belong to
4729 * current @eb_context.
4730 *
4731 * If not, we submit all the page(s) of the extent buffer.
4732 *
4733 * Return >0 if we have submitted the extent buffer successfully.
4734 * Return 0 if we don't need to submit the page, as it's already submitted by
4735 * previous call.
4736 * Return <0 for fatal error.
4737 */
submit_eb_page(struct page * page,struct writeback_control * wbc,struct extent_page_data * epd,struct extent_buffer ** eb_context)4738 static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4739 struct extent_page_data *epd,
4740 struct extent_buffer **eb_context)
4741 {
4742 struct address_space *mapping = page->mapping;
4743 struct btrfs_block_group *cache = NULL;
4744 struct extent_buffer *eb;
4745 int ret;
4746
4747 if (!PagePrivate(page))
4748 return 0;
4749
4750 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
4751 return submit_eb_subpage(page, wbc, epd);
4752
4753 spin_lock(&mapping->private_lock);
4754 if (!PagePrivate(page)) {
4755 spin_unlock(&mapping->private_lock);
4756 return 0;
4757 }
4758
4759 eb = (struct extent_buffer *)page->private;
4760
4761 /*
4762 * Shouldn't happen and normally this would be a BUG_ON but no point
4763 * crashing the machine for something we can survive anyway.
4764 */
4765 if (WARN_ON(!eb)) {
4766 spin_unlock(&mapping->private_lock);
4767 return 0;
4768 }
4769
4770 if (eb == *eb_context) {
4771 spin_unlock(&mapping->private_lock);
4772 return 0;
4773 }
4774 ret = atomic_inc_not_zero(&eb->refs);
4775 spin_unlock(&mapping->private_lock);
4776 if (!ret)
4777 return 0;
4778
4779 if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
4780 /*
4781 * If for_sync, this hole will be filled with
4782 * trasnsaction commit.
4783 */
4784 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4785 ret = -EAGAIN;
4786 else
4787 ret = 0;
4788 free_extent_buffer(eb);
4789 return ret;
4790 }
4791
4792 *eb_context = eb;
4793
4794 ret = lock_extent_buffer_for_io(eb, epd);
4795 if (ret <= 0) {
4796 btrfs_revert_meta_write_pointer(cache, eb);
4797 if (cache)
4798 btrfs_put_block_group(cache);
4799 free_extent_buffer(eb);
4800 return ret;
4801 }
4802 if (cache) {
4803 /* Impiles write in zoned mode */
4804 btrfs_put_block_group(cache);
4805 /* Mark the last eb in a block group */
4806 if (cache->seq_zone && eb->start + eb->len == cache->zone_capacity)
4807 set_bit(EXTENT_BUFFER_ZONE_FINISH, &eb->bflags);
4808 }
4809 ret = write_one_eb(eb, wbc, epd);
4810 free_extent_buffer(eb);
4811 if (ret < 0)
4812 return ret;
4813 return 1;
4814 }
4815
btree_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc)4816 int btree_write_cache_pages(struct address_space *mapping,
4817 struct writeback_control *wbc)
4818 {
4819 struct extent_buffer *eb_context = NULL;
4820 struct extent_page_data epd = {
4821 .bio_ctrl = { 0 },
4822 .extent_locked = 0,
4823 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4824 };
4825 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4826 int ret = 0;
4827 int done = 0;
4828 int nr_to_write_done = 0;
4829 struct pagevec pvec;
4830 int nr_pages;
4831 pgoff_t index;
4832 pgoff_t end; /* Inclusive */
4833 int scanned = 0;
4834 xa_mark_t tag;
4835
4836 pagevec_init(&pvec);
4837 if (wbc->range_cyclic) {
4838 index = mapping->writeback_index; /* Start from prev offset */
4839 end = -1;
4840 /*
4841 * Start from the beginning does not need to cycle over the
4842 * range, mark it as scanned.
4843 */
4844 scanned = (index == 0);
4845 } else {
4846 index = wbc->range_start >> PAGE_SHIFT;
4847 end = wbc->range_end >> PAGE_SHIFT;
4848 scanned = 1;
4849 }
4850 if (wbc->sync_mode == WB_SYNC_ALL)
4851 tag = PAGECACHE_TAG_TOWRITE;
4852 else
4853 tag = PAGECACHE_TAG_DIRTY;
4854 btrfs_zoned_meta_io_lock(fs_info);
4855 retry:
4856 if (wbc->sync_mode == WB_SYNC_ALL)
4857 tag_pages_for_writeback(mapping, index, end);
4858 while (!done && !nr_to_write_done && (index <= end) &&
4859 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4860 tag))) {
4861 unsigned i;
4862
4863 for (i = 0; i < nr_pages; i++) {
4864 struct page *page = pvec.pages[i];
4865
4866 ret = submit_eb_page(page, wbc, &epd, &eb_context);
4867 if (ret == 0)
4868 continue;
4869 if (ret < 0) {
4870 done = 1;
4871 break;
4872 }
4873
4874 /*
4875 * the filesystem may choose to bump up nr_to_write.
4876 * We have to make sure to honor the new nr_to_write
4877 * at any time
4878 */
4879 nr_to_write_done = wbc->nr_to_write <= 0;
4880 }
4881 pagevec_release(&pvec);
4882 cond_resched();
4883 }
4884 if (!scanned && !done) {
4885 /*
4886 * We hit the last page and there is more work to be done: wrap
4887 * back to the start of the file
4888 */
4889 scanned = 1;
4890 index = 0;
4891 goto retry;
4892 }
4893 if (ret < 0) {
4894 end_write_bio(&epd, ret);
4895 goto out;
4896 }
4897 /*
4898 * If something went wrong, don't allow any metadata write bio to be
4899 * submitted.
4900 *
4901 * This would prevent use-after-free if we had dirty pages not
4902 * cleaned up, which can still happen by fuzzed images.
4903 *
4904 * - Bad extent tree
4905 * Allowing existing tree block to be allocated for other trees.
4906 *
4907 * - Log tree operations
4908 * Exiting tree blocks get allocated to log tree, bumps its
4909 * generation, then get cleaned in tree re-balance.
4910 * Such tree block will not be written back, since it's clean,
4911 * thus no WRITTEN flag set.
4912 * And after log writes back, this tree block is not traced by
4913 * any dirty extent_io_tree.
4914 *
4915 * - Offending tree block gets re-dirtied from its original owner
4916 * Since it has bumped generation, no WRITTEN flag, it can be
4917 * reused without COWing. This tree block will not be traced
4918 * by btrfs_transaction::dirty_pages.
4919 *
4920 * Now such dirty tree block will not be cleaned by any dirty
4921 * extent io tree. Thus we don't want to submit such wild eb
4922 * if the fs already has error.
4923 */
4924 if (!BTRFS_FS_ERROR(fs_info)) {
4925 ret = flush_write_bio(&epd);
4926 } else {
4927 ret = -EROFS;
4928 end_write_bio(&epd, ret);
4929 }
4930 out:
4931 btrfs_zoned_meta_io_unlock(fs_info);
4932 return ret;
4933 }
4934
4935 /**
4936 * Walk the list of dirty pages of the given address space and write all of them.
4937 *
4938 * @mapping: address space structure to write
4939 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4940 * @epd: holds context for the write, namely the bio
4941 *
4942 * If a page is already under I/O, write_cache_pages() skips it, even
4943 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4944 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4945 * and msync() need to guarantee that all the data which was dirty at the time
4946 * the call was made get new I/O started against them. If wbc->sync_mode is
4947 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4948 * existing IO to complete.
4949 */
extent_write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,struct extent_page_data * epd)4950 static int extent_write_cache_pages(struct address_space *mapping,
4951 struct writeback_control *wbc,
4952 struct extent_page_data *epd)
4953 {
4954 struct inode *inode = mapping->host;
4955 int ret = 0;
4956 int done = 0;
4957 int nr_to_write_done = 0;
4958 struct pagevec pvec;
4959 int nr_pages;
4960 pgoff_t index;
4961 pgoff_t end; /* Inclusive */
4962 pgoff_t done_index;
4963 int range_whole = 0;
4964 int scanned = 0;
4965 xa_mark_t tag;
4966
4967 /*
4968 * We have to hold onto the inode so that ordered extents can do their
4969 * work when the IO finishes. The alternative to this is failing to add
4970 * an ordered extent if the igrab() fails there and that is a huge pain
4971 * to deal with, so instead just hold onto the inode throughout the
4972 * writepages operation. If it fails here we are freeing up the inode
4973 * anyway and we'd rather not waste our time writing out stuff that is
4974 * going to be truncated anyway.
4975 */
4976 if (!igrab(inode))
4977 return 0;
4978
4979 pagevec_init(&pvec);
4980 if (wbc->range_cyclic) {
4981 index = mapping->writeback_index; /* Start from prev offset */
4982 end = -1;
4983 /*
4984 * Start from the beginning does not need to cycle over the
4985 * range, mark it as scanned.
4986 */
4987 scanned = (index == 0);
4988 } else {
4989 index = wbc->range_start >> PAGE_SHIFT;
4990 end = wbc->range_end >> PAGE_SHIFT;
4991 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4992 range_whole = 1;
4993 scanned = 1;
4994 }
4995
4996 /*
4997 * We do the tagged writepage as long as the snapshot flush bit is set
4998 * and we are the first one who do the filemap_flush() on this inode.
4999 *
5000 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
5001 * not race in and drop the bit.
5002 */
5003 if (range_whole && wbc->nr_to_write == LONG_MAX &&
5004 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
5005 &BTRFS_I(inode)->runtime_flags))
5006 wbc->tagged_writepages = 1;
5007
5008 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5009 tag = PAGECACHE_TAG_TOWRITE;
5010 else
5011 tag = PAGECACHE_TAG_DIRTY;
5012 retry:
5013 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5014 tag_pages_for_writeback(mapping, index, end);
5015 done_index = index;
5016 while (!done && !nr_to_write_done && (index <= end) &&
5017 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
5018 &index, end, tag))) {
5019 unsigned i;
5020
5021 for (i = 0; i < nr_pages; i++) {
5022 struct page *page = pvec.pages[i];
5023
5024 done_index = page->index + 1;
5025 /*
5026 * At this point we hold neither the i_pages lock nor
5027 * the page lock: the page may be truncated or
5028 * invalidated (changing page->mapping to NULL),
5029 * or even swizzled back from swapper_space to
5030 * tmpfs file mapping
5031 */
5032 if (!trylock_page(page)) {
5033 ret = flush_write_bio(epd);
5034 BUG_ON(ret < 0);
5035 lock_page(page);
5036 }
5037
5038 if (unlikely(page->mapping != mapping)) {
5039 unlock_page(page);
5040 continue;
5041 }
5042
5043 if (wbc->sync_mode != WB_SYNC_NONE) {
5044 if (PageWriteback(page)) {
5045 ret = flush_write_bio(epd);
5046 BUG_ON(ret < 0);
5047 }
5048 wait_on_page_writeback(page);
5049 }
5050
5051 if (PageWriteback(page) ||
5052 !clear_page_dirty_for_io(page)) {
5053 unlock_page(page);
5054 continue;
5055 }
5056
5057 ret = __extent_writepage(page, wbc, epd);
5058 if (ret < 0) {
5059 done = 1;
5060 break;
5061 }
5062
5063 /*
5064 * the filesystem may choose to bump up nr_to_write.
5065 * We have to make sure to honor the new nr_to_write
5066 * at any time
5067 */
5068 nr_to_write_done = wbc->nr_to_write <= 0;
5069 }
5070 pagevec_release(&pvec);
5071 cond_resched();
5072 }
5073 if (!scanned && !done) {
5074 /*
5075 * We hit the last page and there is more work to be done: wrap
5076 * back to the start of the file
5077 */
5078 scanned = 1;
5079 index = 0;
5080
5081 /*
5082 * If we're looping we could run into a page that is locked by a
5083 * writer and that writer could be waiting on writeback for a
5084 * page in our current bio, and thus deadlock, so flush the
5085 * write bio here.
5086 */
5087 ret = flush_write_bio(epd);
5088 if (!ret)
5089 goto retry;
5090 }
5091
5092 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
5093 mapping->writeback_index = done_index;
5094
5095 btrfs_add_delayed_iput(inode);
5096 return ret;
5097 }
5098
extent_write_full_page(struct page * page,struct writeback_control * wbc)5099 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
5100 {
5101 int ret;
5102 struct extent_page_data epd = {
5103 .bio_ctrl = { 0 },
5104 .extent_locked = 0,
5105 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
5106 };
5107
5108 ret = __extent_writepage(page, wbc, &epd);
5109 ASSERT(ret <= 0);
5110 if (ret < 0) {
5111 end_write_bio(&epd, ret);
5112 return ret;
5113 }
5114
5115 ret = flush_write_bio(&epd);
5116 ASSERT(ret <= 0);
5117 return ret;
5118 }
5119
5120 /*
5121 * Submit the pages in the range to bio for call sites which delalloc range has
5122 * already been ran (aka, ordered extent inserted) and all pages are still
5123 * locked.
5124 */
extent_write_locked_range(struct inode * inode,u64 start,u64 end)5125 int extent_write_locked_range(struct inode *inode, u64 start, u64 end)
5126 {
5127 bool found_error = false;
5128 int first_error = 0;
5129 int ret = 0;
5130 struct address_space *mapping = inode->i_mapping;
5131 struct page *page;
5132 u64 cur = start;
5133 unsigned long nr_pages;
5134 const u32 sectorsize = btrfs_sb(inode->i_sb)->sectorsize;
5135 struct extent_page_data epd = {
5136 .bio_ctrl = { 0 },
5137 .extent_locked = 1,
5138 .sync_io = 1,
5139 };
5140 struct writeback_control wbc_writepages = {
5141 .sync_mode = WB_SYNC_ALL,
5142 .range_start = start,
5143 .range_end = end + 1,
5144 /* We're called from an async helper function */
5145 .punt_to_cgroup = 1,
5146 .no_cgroup_owner = 1,
5147 };
5148
5149 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
5150 nr_pages = (round_up(end, PAGE_SIZE) - round_down(start, PAGE_SIZE)) >>
5151 PAGE_SHIFT;
5152 wbc_writepages.nr_to_write = nr_pages * 2;
5153
5154 wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
5155 while (cur <= end) {
5156 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
5157
5158 page = find_get_page(mapping, cur >> PAGE_SHIFT);
5159 /*
5160 * All pages in the range are locked since
5161 * btrfs_run_delalloc_range(), thus there is no way to clear
5162 * the page dirty flag.
5163 */
5164 ASSERT(PageLocked(page));
5165 ASSERT(PageDirty(page));
5166 clear_page_dirty_for_io(page);
5167 ret = __extent_writepage(page, &wbc_writepages, &epd);
5168 ASSERT(ret <= 0);
5169 if (ret < 0) {
5170 found_error = true;
5171 first_error = ret;
5172 }
5173 put_page(page);
5174 cur = cur_end + 1;
5175 }
5176
5177 if (!found_error)
5178 ret = flush_write_bio(&epd);
5179 else
5180 end_write_bio(&epd, ret);
5181
5182 wbc_detach_inode(&wbc_writepages);
5183 if (found_error)
5184 return first_error;
5185 return ret;
5186 }
5187
extent_writepages(struct address_space * mapping,struct writeback_control * wbc)5188 int extent_writepages(struct address_space *mapping,
5189 struct writeback_control *wbc)
5190 {
5191 struct inode *inode = mapping->host;
5192 const bool data_reloc = btrfs_is_data_reloc_root(BTRFS_I(inode)->root);
5193 const bool zoned = btrfs_is_zoned(BTRFS_I(inode)->root->fs_info);
5194 int ret = 0;
5195 struct extent_page_data epd = {
5196 .bio_ctrl = { 0 },
5197 .extent_locked = 0,
5198 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
5199 };
5200
5201 /*
5202 * Allow only a single thread to do the reloc work in zoned mode to
5203 * protect the write pointer updates.
5204 */
5205 if (data_reloc && zoned)
5206 btrfs_inode_lock(inode, 0);
5207 ret = extent_write_cache_pages(mapping, wbc, &epd);
5208 if (data_reloc && zoned)
5209 btrfs_inode_unlock(inode, 0);
5210 ASSERT(ret <= 0);
5211 if (ret < 0) {
5212 end_write_bio(&epd, ret);
5213 return ret;
5214 }
5215 ret = flush_write_bio(&epd);
5216 return ret;
5217 }
5218
extent_readahead(struct readahead_control * rac)5219 void extent_readahead(struct readahead_control *rac)
5220 {
5221 struct btrfs_bio_ctrl bio_ctrl = { 0 };
5222 struct page *pagepool[16];
5223 struct extent_map *em_cached = NULL;
5224 u64 prev_em_start = (u64)-1;
5225 int nr;
5226
5227 while ((nr = readahead_page_batch(rac, pagepool))) {
5228 u64 contig_start = readahead_pos(rac);
5229 u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
5230
5231 contiguous_readpages(pagepool, nr, contig_start, contig_end,
5232 &em_cached, &bio_ctrl, &prev_em_start);
5233 }
5234
5235 if (em_cached)
5236 free_extent_map(em_cached);
5237
5238 if (bio_ctrl.bio) {
5239 if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
5240 return;
5241 }
5242 }
5243
5244 /*
5245 * basic invalidatepage code, this waits on any locked or writeback
5246 * ranges corresponding to the page, and then deletes any extent state
5247 * records from the tree
5248 */
extent_invalidatepage(struct extent_io_tree * tree,struct page * page,unsigned long offset)5249 int extent_invalidatepage(struct extent_io_tree *tree,
5250 struct page *page, unsigned long offset)
5251 {
5252 struct extent_state *cached_state = NULL;
5253 u64 start = page_offset(page);
5254 u64 end = start + PAGE_SIZE - 1;
5255 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
5256
5257 /* This function is only called for the btree inode */
5258 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
5259
5260 start += ALIGN(offset, blocksize);
5261 if (start > end)
5262 return 0;
5263
5264 lock_extent_bits(tree, start, end, &cached_state);
5265 wait_on_page_writeback(page);
5266
5267 /*
5268 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
5269 * so here we only need to unlock the extent range to free any
5270 * existing extent state.
5271 */
5272 unlock_extent_cached(tree, start, end, &cached_state);
5273 return 0;
5274 }
5275
5276 /*
5277 * a helper for releasepage, this tests for areas of the page that
5278 * are locked or under IO and drops the related state bits if it is safe
5279 * to drop the page.
5280 */
try_release_extent_state(struct extent_io_tree * tree,struct page * page,gfp_t mask)5281 static int try_release_extent_state(struct extent_io_tree *tree,
5282 struct page *page, gfp_t mask)
5283 {
5284 u64 start = page_offset(page);
5285 u64 end = start + PAGE_SIZE - 1;
5286 int ret = 1;
5287
5288 if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5289 ret = 0;
5290 } else {
5291 /*
5292 * At this point we can safely clear everything except the
5293 * locked bit, the nodatasum bit and the delalloc new bit.
5294 * The delalloc new bit will be cleared by ordered extent
5295 * completion.
5296 */
5297 ret = __clear_extent_bit(tree, start, end,
5298 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
5299 0, 0, NULL, mask, NULL);
5300
5301 /* if clear_extent_bit failed for enomem reasons,
5302 * we can't allow the release to continue.
5303 */
5304 if (ret < 0)
5305 ret = 0;
5306 else
5307 ret = 1;
5308 }
5309 return ret;
5310 }
5311
5312 /*
5313 * a helper for releasepage. As long as there are no locked extents
5314 * in the range corresponding to the page, both state records and extent
5315 * map records are removed
5316 */
try_release_extent_mapping(struct page * page,gfp_t mask)5317 int try_release_extent_mapping(struct page *page, gfp_t mask)
5318 {
5319 struct extent_map *em;
5320 u64 start = page_offset(page);
5321 u64 end = start + PAGE_SIZE - 1;
5322 struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
5323 struct extent_io_tree *tree = &btrfs_inode->io_tree;
5324 struct extent_map_tree *map = &btrfs_inode->extent_tree;
5325
5326 if (gfpflags_allow_blocking(mask) &&
5327 page->mapping->host->i_size > SZ_16M) {
5328 u64 len;
5329 while (start <= end) {
5330 struct btrfs_fs_info *fs_info;
5331 u64 cur_gen;
5332
5333 len = end - start + 1;
5334 write_lock(&map->lock);
5335 em = lookup_extent_mapping(map, start, len);
5336 if (!em) {
5337 write_unlock(&map->lock);
5338 break;
5339 }
5340 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
5341 em->start != start) {
5342 write_unlock(&map->lock);
5343 free_extent_map(em);
5344 break;
5345 }
5346 if (test_range_bit(tree, em->start,
5347 extent_map_end(em) - 1,
5348 EXTENT_LOCKED, 0, NULL))
5349 goto next;
5350 /*
5351 * If it's not in the list of modified extents, used
5352 * by a fast fsync, we can remove it. If it's being
5353 * logged we can safely remove it since fsync took an
5354 * extra reference on the em.
5355 */
5356 if (list_empty(&em->list) ||
5357 test_bit(EXTENT_FLAG_LOGGING, &em->flags))
5358 goto remove_em;
5359 /*
5360 * If it's in the list of modified extents, remove it
5361 * only if its generation is older then the current one,
5362 * in which case we don't need it for a fast fsync.
5363 * Otherwise don't remove it, we could be racing with an
5364 * ongoing fast fsync that could miss the new extent.
5365 */
5366 fs_info = btrfs_inode->root->fs_info;
5367 spin_lock(&fs_info->trans_lock);
5368 cur_gen = fs_info->generation;
5369 spin_unlock(&fs_info->trans_lock);
5370 if (em->generation >= cur_gen)
5371 goto next;
5372 remove_em:
5373 /*
5374 * We only remove extent maps that are not in the list of
5375 * modified extents or that are in the list but with a
5376 * generation lower then the current generation, so there
5377 * is no need to set the full fsync flag on the inode (it
5378 * hurts the fsync performance for workloads with a data
5379 * size that exceeds or is close to the system's memory).
5380 */
5381 remove_extent_mapping(map, em);
5382 /* once for the rb tree */
5383 free_extent_map(em);
5384 next:
5385 start = extent_map_end(em);
5386 write_unlock(&map->lock);
5387
5388 /* once for us */
5389 free_extent_map(em);
5390
5391 cond_resched(); /* Allow large-extent preemption. */
5392 }
5393 }
5394 return try_release_extent_state(tree, page, mask);
5395 }
5396
5397 /*
5398 * helper function for fiemap, which doesn't want to see any holes.
5399 * This maps until we find something past 'last'
5400 */
get_extent_skip_holes(struct btrfs_inode * inode,u64 offset,u64 last)5401 static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5402 u64 offset, u64 last)
5403 {
5404 u64 sectorsize = btrfs_inode_sectorsize(inode);
5405 struct extent_map *em;
5406 u64 len;
5407
5408 if (offset >= last)
5409 return NULL;
5410
5411 while (1) {
5412 len = last - offset;
5413 if (len == 0)
5414 break;
5415 len = ALIGN(len, sectorsize);
5416 em = btrfs_get_extent_fiemap(inode, offset, len);
5417 if (IS_ERR_OR_NULL(em))
5418 return em;
5419
5420 /* if this isn't a hole return it */
5421 if (em->block_start != EXTENT_MAP_HOLE)
5422 return em;
5423
5424 /* this is a hole, advance to the next extent */
5425 offset = extent_map_end(em);
5426 free_extent_map(em);
5427 if (offset >= last)
5428 break;
5429 }
5430 return NULL;
5431 }
5432
5433 /*
5434 * To cache previous fiemap extent
5435 *
5436 * Will be used for merging fiemap extent
5437 */
5438 struct fiemap_cache {
5439 u64 offset;
5440 u64 phys;
5441 u64 len;
5442 u32 flags;
5443 bool cached;
5444 };
5445
5446 /*
5447 * Helper to submit fiemap extent.
5448 *
5449 * Will try to merge current fiemap extent specified by @offset, @phys,
5450 * @len and @flags with cached one.
5451 * And only when we fails to merge, cached one will be submitted as
5452 * fiemap extent.
5453 *
5454 * Return value is the same as fiemap_fill_next_extent().
5455 */
emit_fiemap_extent(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache,u64 offset,u64 phys,u64 len,u32 flags)5456 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
5457 struct fiemap_cache *cache,
5458 u64 offset, u64 phys, u64 len, u32 flags)
5459 {
5460 int ret = 0;
5461
5462 if (!cache->cached)
5463 goto assign;
5464
5465 /*
5466 * Sanity check, extent_fiemap() should have ensured that new
5467 * fiemap extent won't overlap with cached one.
5468 * Not recoverable.
5469 *
5470 * NOTE: Physical address can overlap, due to compression
5471 */
5472 if (cache->offset + cache->len > offset) {
5473 WARN_ON(1);
5474 return -EINVAL;
5475 }
5476
5477 /*
5478 * Only merges fiemap extents if
5479 * 1) Their logical addresses are continuous
5480 *
5481 * 2) Their physical addresses are continuous
5482 * So truly compressed (physical size smaller than logical size)
5483 * extents won't get merged with each other
5484 *
5485 * 3) Share same flags except FIEMAP_EXTENT_LAST
5486 * So regular extent won't get merged with prealloc extent
5487 */
5488 if (cache->offset + cache->len == offset &&
5489 cache->phys + cache->len == phys &&
5490 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
5491 (flags & ~FIEMAP_EXTENT_LAST)) {
5492 cache->len += len;
5493 cache->flags |= flags;
5494 goto try_submit_last;
5495 }
5496
5497 /* Not mergeable, need to submit cached one */
5498 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5499 cache->len, cache->flags);
5500 cache->cached = false;
5501 if (ret)
5502 return ret;
5503 assign:
5504 cache->cached = true;
5505 cache->offset = offset;
5506 cache->phys = phys;
5507 cache->len = len;
5508 cache->flags = flags;
5509 try_submit_last:
5510 if (cache->flags & FIEMAP_EXTENT_LAST) {
5511 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
5512 cache->phys, cache->len, cache->flags);
5513 cache->cached = false;
5514 }
5515 return ret;
5516 }
5517
5518 /*
5519 * Emit last fiemap cache
5520 *
5521 * The last fiemap cache may still be cached in the following case:
5522 * 0 4k 8k
5523 * |<- Fiemap range ->|
5524 * |<------------ First extent ----------->|
5525 *
5526 * In this case, the first extent range will be cached but not emitted.
5527 * So we must emit it before ending extent_fiemap().
5528 */
emit_last_fiemap_cache(struct fiemap_extent_info * fieinfo,struct fiemap_cache * cache)5529 static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5530 struct fiemap_cache *cache)
5531 {
5532 int ret;
5533
5534 if (!cache->cached)
5535 return 0;
5536
5537 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5538 cache->len, cache->flags);
5539 cache->cached = false;
5540 if (ret > 0)
5541 ret = 0;
5542 return ret;
5543 }
5544
extent_fiemap(struct btrfs_inode * inode,struct fiemap_extent_info * fieinfo,u64 start,u64 len)5545 int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5546 u64 start, u64 len)
5547 {
5548 int ret = 0;
5549 u64 off;
5550 u64 max = start + len;
5551 u32 flags = 0;
5552 u32 found_type;
5553 u64 last;
5554 u64 last_for_get_extent = 0;
5555 u64 disko = 0;
5556 u64 isize = i_size_read(&inode->vfs_inode);
5557 struct btrfs_key found_key;
5558 struct extent_map *em = NULL;
5559 struct extent_state *cached_state = NULL;
5560 struct btrfs_path *path;
5561 struct btrfs_root *root = inode->root;
5562 struct fiemap_cache cache = { 0 };
5563 struct ulist *roots;
5564 struct ulist *tmp_ulist;
5565 int end = 0;
5566 u64 em_start = 0;
5567 u64 em_len = 0;
5568 u64 em_end = 0;
5569
5570 if (len == 0)
5571 return -EINVAL;
5572
5573 path = btrfs_alloc_path();
5574 if (!path)
5575 return -ENOMEM;
5576
5577 roots = ulist_alloc(GFP_KERNEL);
5578 tmp_ulist = ulist_alloc(GFP_KERNEL);
5579 if (!roots || !tmp_ulist) {
5580 ret = -ENOMEM;
5581 goto out_free_ulist;
5582 }
5583
5584 /*
5585 * We can't initialize that to 'start' as this could miss extents due
5586 * to extent item merging
5587 */
5588 off = 0;
5589 start = round_down(start, btrfs_inode_sectorsize(inode));
5590 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5591
5592 /*
5593 * lookup the last file extent. We're not using i_size here
5594 * because there might be preallocation past i_size
5595 */
5596 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
5597 0);
5598 if (ret < 0) {
5599 goto out_free_ulist;
5600 } else {
5601 WARN_ON(!ret);
5602 if (ret == 1)
5603 ret = 0;
5604 }
5605
5606 path->slots[0]--;
5607 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5608 found_type = found_key.type;
5609
5610 /* No extents, but there might be delalloc bits */
5611 if (found_key.objectid != btrfs_ino(inode) ||
5612 found_type != BTRFS_EXTENT_DATA_KEY) {
5613 /* have to trust i_size as the end */
5614 last = (u64)-1;
5615 last_for_get_extent = isize;
5616 } else {
5617 /*
5618 * remember the start of the last extent. There are a
5619 * bunch of different factors that go into the length of the
5620 * extent, so its much less complex to remember where it started
5621 */
5622 last = found_key.offset;
5623 last_for_get_extent = last + 1;
5624 }
5625 btrfs_release_path(path);
5626
5627 /*
5628 * we might have some extents allocated but more delalloc past those
5629 * extents. so, we trust isize unless the start of the last extent is
5630 * beyond isize
5631 */
5632 if (last < isize) {
5633 last = (u64)-1;
5634 last_for_get_extent = isize;
5635 }
5636
5637 lock_extent_bits(&inode->io_tree, start, start + len - 1,
5638 &cached_state);
5639
5640 em = get_extent_skip_holes(inode, start, last_for_get_extent);
5641 if (!em)
5642 goto out;
5643 if (IS_ERR(em)) {
5644 ret = PTR_ERR(em);
5645 goto out;
5646 }
5647
5648 while (!end) {
5649 u64 offset_in_extent = 0;
5650
5651 /* break if the extent we found is outside the range */
5652 if (em->start >= max || extent_map_end(em) < off)
5653 break;
5654
5655 /*
5656 * get_extent may return an extent that starts before our
5657 * requested range. We have to make sure the ranges
5658 * we return to fiemap always move forward and don't
5659 * overlap, so adjust the offsets here
5660 */
5661 em_start = max(em->start, off);
5662
5663 /*
5664 * record the offset from the start of the extent
5665 * for adjusting the disk offset below. Only do this if the
5666 * extent isn't compressed since our in ram offset may be past
5667 * what we have actually allocated on disk.
5668 */
5669 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5670 offset_in_extent = em_start - em->start;
5671 em_end = extent_map_end(em);
5672 em_len = em_end - em_start;
5673 flags = 0;
5674 if (em->block_start < EXTENT_MAP_LAST_BYTE)
5675 disko = em->block_start + offset_in_extent;
5676 else
5677 disko = 0;
5678
5679 /*
5680 * bump off for our next call to get_extent
5681 */
5682 off = extent_map_end(em);
5683 if (off >= max)
5684 end = 1;
5685
5686 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
5687 end = 1;
5688 flags |= FIEMAP_EXTENT_LAST;
5689 } else if (em->block_start == EXTENT_MAP_INLINE) {
5690 flags |= (FIEMAP_EXTENT_DATA_INLINE |
5691 FIEMAP_EXTENT_NOT_ALIGNED);
5692 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
5693 flags |= (FIEMAP_EXTENT_DELALLOC |
5694 FIEMAP_EXTENT_UNKNOWN);
5695 } else if (fieinfo->fi_extents_max) {
5696 u64 bytenr = em->block_start -
5697 (em->start - em->orig_start);
5698
5699 /*
5700 * As btrfs supports shared space, this information
5701 * can be exported to userspace tools via
5702 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
5703 * then we're just getting a count and we can skip the
5704 * lookup stuff.
5705 */
5706 ret = btrfs_check_shared(root, btrfs_ino(inode),
5707 bytenr, roots, tmp_ulist);
5708 if (ret < 0)
5709 goto out_free;
5710 if (ret)
5711 flags |= FIEMAP_EXTENT_SHARED;
5712 ret = 0;
5713 }
5714 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5715 flags |= FIEMAP_EXTENT_ENCODED;
5716 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5717 flags |= FIEMAP_EXTENT_UNWRITTEN;
5718
5719 free_extent_map(em);
5720 em = NULL;
5721 if ((em_start >= last) || em_len == (u64)-1 ||
5722 (last == (u64)-1 && isize <= em_end)) {
5723 flags |= FIEMAP_EXTENT_LAST;
5724 end = 1;
5725 }
5726
5727 /* now scan forward to see if this is really the last extent. */
5728 em = get_extent_skip_holes(inode, off, last_for_get_extent);
5729 if (IS_ERR(em)) {
5730 ret = PTR_ERR(em);
5731 goto out;
5732 }
5733 if (!em) {
5734 flags |= FIEMAP_EXTENT_LAST;
5735 end = 1;
5736 }
5737 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
5738 em_len, flags);
5739 if (ret) {
5740 if (ret == 1)
5741 ret = 0;
5742 goto out_free;
5743 }
5744 }
5745 out_free:
5746 if (!ret)
5747 ret = emit_last_fiemap_cache(fieinfo, &cache);
5748 free_extent_map(em);
5749 out:
5750 unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5751 &cached_state);
5752
5753 out_free_ulist:
5754 btrfs_free_path(path);
5755 ulist_free(roots);
5756 ulist_free(tmp_ulist);
5757 return ret;
5758 }
5759
__free_extent_buffer(struct extent_buffer * eb)5760 static void __free_extent_buffer(struct extent_buffer *eb)
5761 {
5762 kmem_cache_free(extent_buffer_cache, eb);
5763 }
5764
extent_buffer_under_io(const struct extent_buffer * eb)5765 int extent_buffer_under_io(const struct extent_buffer *eb)
5766 {
5767 return (atomic_read(&eb->io_pages) ||
5768 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
5769 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5770 }
5771
page_range_has_eb(struct btrfs_fs_info * fs_info,struct page * page)5772 static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5773 {
5774 struct btrfs_subpage *subpage;
5775
5776 lockdep_assert_held(&page->mapping->private_lock);
5777
5778 if (PagePrivate(page)) {
5779 subpage = (struct btrfs_subpage *)page->private;
5780 if (atomic_read(&subpage->eb_refs))
5781 return true;
5782 /*
5783 * Even there is no eb refs here, we may still have
5784 * end_page_read() call relying on page::private.
5785 */
5786 if (atomic_read(&subpage->readers))
5787 return true;
5788 }
5789 return false;
5790 }
5791
detach_extent_buffer_page(struct extent_buffer * eb,struct page * page)5792 static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
5793 {
5794 struct btrfs_fs_info *fs_info = eb->fs_info;
5795 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5796
5797 /*
5798 * For mapped eb, we're going to change the page private, which should
5799 * be done under the private_lock.
5800 */
5801 if (mapped)
5802 spin_lock(&page->mapping->private_lock);
5803
5804 if (!PagePrivate(page)) {
5805 if (mapped)
5806 spin_unlock(&page->mapping->private_lock);
5807 return;
5808 }
5809
5810 if (fs_info->sectorsize == PAGE_SIZE) {
5811 /*
5812 * We do this since we'll remove the pages after we've
5813 * removed the eb from the radix tree, so we could race
5814 * and have this page now attached to the new eb. So
5815 * only clear page_private if it's still connected to
5816 * this eb.
5817 */
5818 if (PagePrivate(page) &&
5819 page->private == (unsigned long)eb) {
5820 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5821 BUG_ON(PageDirty(page));
5822 BUG_ON(PageWriteback(page));
5823 /*
5824 * We need to make sure we haven't be attached
5825 * to a new eb.
5826 */
5827 detach_page_private(page);
5828 }
5829 if (mapped)
5830 spin_unlock(&page->mapping->private_lock);
5831 return;
5832 }
5833
5834 /*
5835 * For subpage, we can have dummy eb with page private. In this case,
5836 * we can directly detach the private as such page is only attached to
5837 * one dummy eb, no sharing.
5838 */
5839 if (!mapped) {
5840 btrfs_detach_subpage(fs_info, page);
5841 return;
5842 }
5843
5844 btrfs_page_dec_eb_refs(fs_info, page);
5845
5846 /*
5847 * We can only detach the page private if there are no other ebs in the
5848 * page range and no unfinished IO.
5849 */
5850 if (!page_range_has_eb(fs_info, page))
5851 btrfs_detach_subpage(fs_info, page);
5852
5853 spin_unlock(&page->mapping->private_lock);
5854 }
5855
5856 /* Release all pages attached to the extent buffer */
btrfs_release_extent_buffer_pages(struct extent_buffer * eb)5857 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
5858 {
5859 int i;
5860 int num_pages;
5861
5862 ASSERT(!extent_buffer_under_io(eb));
5863
5864 num_pages = num_extent_pages(eb);
5865 for (i = 0; i < num_pages; i++) {
5866 struct page *page = eb->pages[i];
5867
5868 if (!page)
5869 continue;
5870
5871 detach_extent_buffer_page(eb, page);
5872
5873 /* One for when we allocated the page */
5874 put_page(page);
5875 }
5876 }
5877
5878 /*
5879 * Helper for releasing the extent buffer.
5880 */
btrfs_release_extent_buffer(struct extent_buffer * eb)5881 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5882 {
5883 btrfs_release_extent_buffer_pages(eb);
5884 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5885 __free_extent_buffer(eb);
5886 }
5887
5888 static struct extent_buffer *
__alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)5889 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5890 unsigned long len)
5891 {
5892 struct extent_buffer *eb = NULL;
5893
5894 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5895 eb->start = start;
5896 eb->len = len;
5897 eb->fs_info = fs_info;
5898 eb->bflags = 0;
5899 init_rwsem(&eb->lock);
5900
5901 btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5902 &fs_info->allocated_ebs);
5903 INIT_LIST_HEAD(&eb->release_list);
5904
5905 spin_lock_init(&eb->refs_lock);
5906 atomic_set(&eb->refs, 1);
5907 atomic_set(&eb->io_pages, 0);
5908
5909 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5910
5911 return eb;
5912 }
5913
btrfs_clone_extent_buffer(const struct extent_buffer * src)5914 struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5915 {
5916 int i;
5917 struct page *p;
5918 struct extent_buffer *new;
5919 int num_pages = num_extent_pages(src);
5920
5921 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5922 if (new == NULL)
5923 return NULL;
5924
5925 /*
5926 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
5927 * btrfs_release_extent_buffer() have different behavior for
5928 * UNMAPPED subpage extent buffer.
5929 */
5930 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5931
5932 for (i = 0; i < num_pages; i++) {
5933 int ret;
5934
5935 p = alloc_page(GFP_NOFS);
5936 if (!p) {
5937 btrfs_release_extent_buffer(new);
5938 return NULL;
5939 }
5940 ret = attach_extent_buffer_page(new, p, NULL);
5941 if (ret < 0) {
5942 put_page(p);
5943 btrfs_release_extent_buffer(new);
5944 return NULL;
5945 }
5946 WARN_ON(PageDirty(p));
5947 new->pages[i] = p;
5948 copy_page(page_address(p), page_address(src->pages[i]));
5949 }
5950 set_extent_buffer_uptodate(new);
5951
5952 return new;
5953 }
5954
__alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,unsigned long len)5955 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5956 u64 start, unsigned long len)
5957 {
5958 struct extent_buffer *eb;
5959 int num_pages;
5960 int i;
5961
5962 eb = __alloc_extent_buffer(fs_info, start, len);
5963 if (!eb)
5964 return NULL;
5965
5966 num_pages = num_extent_pages(eb);
5967 for (i = 0; i < num_pages; i++) {
5968 int ret;
5969
5970 eb->pages[i] = alloc_page(GFP_NOFS);
5971 if (!eb->pages[i])
5972 goto err;
5973 ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
5974 if (ret < 0)
5975 goto err;
5976 }
5977 set_extent_buffer_uptodate(eb);
5978 btrfs_set_header_nritems(eb, 0);
5979 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5980
5981 return eb;
5982 err:
5983 for (; i > 0; i--) {
5984 detach_extent_buffer_page(eb, eb->pages[i - 1]);
5985 __free_page(eb->pages[i - 1]);
5986 }
5987 __free_extent_buffer(eb);
5988 return NULL;
5989 }
5990
alloc_dummy_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)5991 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5992 u64 start)
5993 {
5994 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5995 }
5996
check_buffer_tree_ref(struct extent_buffer * eb)5997 static void check_buffer_tree_ref(struct extent_buffer *eb)
5998 {
5999 int refs;
6000 /*
6001 * The TREE_REF bit is first set when the extent_buffer is added
6002 * to the radix tree. It is also reset, if unset, when a new reference
6003 * is created by find_extent_buffer.
6004 *
6005 * It is only cleared in two cases: freeing the last non-tree
6006 * reference to the extent_buffer when its STALE bit is set or
6007 * calling releasepage when the tree reference is the only reference.
6008 *
6009 * In both cases, care is taken to ensure that the extent_buffer's
6010 * pages are not under io. However, releasepage can be concurrently
6011 * called with creating new references, which is prone to race
6012 * conditions between the calls to check_buffer_tree_ref in those
6013 * codepaths and clearing TREE_REF in try_release_extent_buffer.
6014 *
6015 * The actual lifetime of the extent_buffer in the radix tree is
6016 * adequately protected by the refcount, but the TREE_REF bit and
6017 * its corresponding reference are not. To protect against this
6018 * class of races, we call check_buffer_tree_ref from the codepaths
6019 * which trigger io after they set eb->io_pages. Note that once io is
6020 * initiated, TREE_REF can no longer be cleared, so that is the
6021 * moment at which any such race is best fixed.
6022 */
6023 refs = atomic_read(&eb->refs);
6024 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6025 return;
6026
6027 spin_lock(&eb->refs_lock);
6028 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6029 atomic_inc(&eb->refs);
6030 spin_unlock(&eb->refs_lock);
6031 }
6032
mark_extent_buffer_accessed(struct extent_buffer * eb,struct page * accessed)6033 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
6034 struct page *accessed)
6035 {
6036 int num_pages, i;
6037
6038 check_buffer_tree_ref(eb);
6039
6040 num_pages = num_extent_pages(eb);
6041 for (i = 0; i < num_pages; i++) {
6042 struct page *p = eb->pages[i];
6043
6044 if (p != accessed)
6045 mark_page_accessed(p);
6046 }
6047 }
6048
find_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)6049 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
6050 u64 start)
6051 {
6052 struct extent_buffer *eb;
6053
6054 eb = find_extent_buffer_nolock(fs_info, start);
6055 if (!eb)
6056 return NULL;
6057 /*
6058 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
6059 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
6060 * another task running free_extent_buffer() might have seen that flag
6061 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
6062 * writeback flags not set) and it's still in the tree (flag
6063 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
6064 * decrementing the extent buffer's reference count twice. So here we
6065 * could race and increment the eb's reference count, clear its stale
6066 * flag, mark it as dirty and drop our reference before the other task
6067 * finishes executing free_extent_buffer, which would later result in
6068 * an attempt to free an extent buffer that is dirty.
6069 */
6070 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
6071 spin_lock(&eb->refs_lock);
6072 spin_unlock(&eb->refs_lock);
6073 }
6074 mark_extent_buffer_accessed(eb, NULL);
6075 return eb;
6076 }
6077
6078 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
alloc_test_extent_buffer(struct btrfs_fs_info * fs_info,u64 start)6079 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
6080 u64 start)
6081 {
6082 struct extent_buffer *eb, *exists = NULL;
6083 int ret;
6084
6085 eb = find_extent_buffer(fs_info, start);
6086 if (eb)
6087 return eb;
6088 eb = alloc_dummy_extent_buffer(fs_info, start);
6089 if (!eb)
6090 return ERR_PTR(-ENOMEM);
6091 eb->fs_info = fs_info;
6092 again:
6093 ret = radix_tree_preload(GFP_NOFS);
6094 if (ret) {
6095 exists = ERR_PTR(ret);
6096 goto free_eb;
6097 }
6098 spin_lock(&fs_info->buffer_lock);
6099 ret = radix_tree_insert(&fs_info->buffer_radix,
6100 start >> fs_info->sectorsize_bits, eb);
6101 spin_unlock(&fs_info->buffer_lock);
6102 radix_tree_preload_end();
6103 if (ret == -EEXIST) {
6104 exists = find_extent_buffer(fs_info, start);
6105 if (exists)
6106 goto free_eb;
6107 else
6108 goto again;
6109 }
6110 check_buffer_tree_ref(eb);
6111 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6112
6113 return eb;
6114 free_eb:
6115 btrfs_release_extent_buffer(eb);
6116 return exists;
6117 }
6118 #endif
6119
grab_extent_buffer(struct btrfs_fs_info * fs_info,struct page * page)6120 static struct extent_buffer *grab_extent_buffer(
6121 struct btrfs_fs_info *fs_info, struct page *page)
6122 {
6123 struct extent_buffer *exists;
6124
6125 /*
6126 * For subpage case, we completely rely on radix tree to ensure we
6127 * don't try to insert two ebs for the same bytenr. So here we always
6128 * return NULL and just continue.
6129 */
6130 if (fs_info->sectorsize < PAGE_SIZE)
6131 return NULL;
6132
6133 /* Page not yet attached to an extent buffer */
6134 if (!PagePrivate(page))
6135 return NULL;
6136
6137 /*
6138 * We could have already allocated an eb for this page and attached one
6139 * so lets see if we can get a ref on the existing eb, and if we can we
6140 * know it's good and we can just return that one, else we know we can
6141 * just overwrite page->private.
6142 */
6143 exists = (struct extent_buffer *)page->private;
6144 if (atomic_inc_not_zero(&exists->refs))
6145 return exists;
6146
6147 WARN_ON(PageDirty(page));
6148 detach_page_private(page);
6149 return NULL;
6150 }
6151
alloc_extent_buffer(struct btrfs_fs_info * fs_info,u64 start,u64 owner_root,int level)6152 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
6153 u64 start, u64 owner_root, int level)
6154 {
6155 unsigned long len = fs_info->nodesize;
6156 int num_pages;
6157 int i;
6158 unsigned long index = start >> PAGE_SHIFT;
6159 struct extent_buffer *eb;
6160 struct extent_buffer *exists = NULL;
6161 struct page *p;
6162 struct address_space *mapping = fs_info->btree_inode->i_mapping;
6163 int uptodate = 1;
6164 int ret;
6165
6166 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
6167 btrfs_err(fs_info, "bad tree block start %llu", start);
6168 return ERR_PTR(-EINVAL);
6169 }
6170
6171 #if BITS_PER_LONG == 32
6172 if (start >= MAX_LFS_FILESIZE) {
6173 btrfs_err_rl(fs_info,
6174 "extent buffer %llu is beyond 32bit page cache limit", start);
6175 btrfs_err_32bit_limit(fs_info);
6176 return ERR_PTR(-EOVERFLOW);
6177 }
6178 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
6179 btrfs_warn_32bit_limit(fs_info);
6180 #endif
6181
6182 if (fs_info->sectorsize < PAGE_SIZE &&
6183 offset_in_page(start) + len > PAGE_SIZE) {
6184 btrfs_err(fs_info,
6185 "tree block crosses page boundary, start %llu nodesize %lu",
6186 start, len);
6187 return ERR_PTR(-EINVAL);
6188 }
6189
6190 eb = find_extent_buffer(fs_info, start);
6191 if (eb)
6192 return eb;
6193
6194 eb = __alloc_extent_buffer(fs_info, start, len);
6195 if (!eb)
6196 return ERR_PTR(-ENOMEM);
6197 btrfs_set_buffer_lockdep_class(owner_root, eb, level);
6198
6199 num_pages = num_extent_pages(eb);
6200 for (i = 0; i < num_pages; i++, index++) {
6201 struct btrfs_subpage *prealloc = NULL;
6202
6203 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6204 if (!p) {
6205 exists = ERR_PTR(-ENOMEM);
6206 goto free_eb;
6207 }
6208
6209 /*
6210 * Preallocate page->private for subpage case, so that we won't
6211 * allocate memory with private_lock hold. The memory will be
6212 * freed by attach_extent_buffer_page() or freed manually if
6213 * we exit earlier.
6214 *
6215 * Although we have ensured one subpage eb can only have one
6216 * page, but it may change in the future for 16K page size
6217 * support, so we still preallocate the memory in the loop.
6218 */
6219 if (fs_info->sectorsize < PAGE_SIZE) {
6220 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
6221 if (IS_ERR(prealloc)) {
6222 ret = PTR_ERR(prealloc);
6223 unlock_page(p);
6224 put_page(p);
6225 exists = ERR_PTR(ret);
6226 goto free_eb;
6227 }
6228 }
6229
6230 spin_lock(&mapping->private_lock);
6231 exists = grab_extent_buffer(fs_info, p);
6232 if (exists) {
6233 spin_unlock(&mapping->private_lock);
6234 unlock_page(p);
6235 put_page(p);
6236 mark_extent_buffer_accessed(exists, p);
6237 btrfs_free_subpage(prealloc);
6238 goto free_eb;
6239 }
6240 /* Should not fail, as we have preallocated the memory */
6241 ret = attach_extent_buffer_page(eb, p, prealloc);
6242 ASSERT(!ret);
6243 /*
6244 * To inform we have extra eb under allocation, so that
6245 * detach_extent_buffer_page() won't release the page private
6246 * when the eb hasn't yet been inserted into radix tree.
6247 *
6248 * The ref will be decreased when the eb released the page, in
6249 * detach_extent_buffer_page().
6250 * Thus needs no special handling in error path.
6251 */
6252 btrfs_page_inc_eb_refs(fs_info, p);
6253 spin_unlock(&mapping->private_lock);
6254
6255 WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6256 eb->pages[i] = p;
6257 if (!PageUptodate(p))
6258 uptodate = 0;
6259
6260 /*
6261 * We can't unlock the pages just yet since the extent buffer
6262 * hasn't been properly inserted in the radix tree, this
6263 * opens a race with btree_releasepage which can free a page
6264 * while we are still filling in all pages for the buffer and
6265 * we could crash.
6266 */
6267 }
6268 if (uptodate)
6269 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6270 again:
6271 ret = radix_tree_preload(GFP_NOFS);
6272 if (ret) {
6273 exists = ERR_PTR(ret);
6274 goto free_eb;
6275 }
6276
6277 spin_lock(&fs_info->buffer_lock);
6278 ret = radix_tree_insert(&fs_info->buffer_radix,
6279 start >> fs_info->sectorsize_bits, eb);
6280 spin_unlock(&fs_info->buffer_lock);
6281 radix_tree_preload_end();
6282 if (ret == -EEXIST) {
6283 exists = find_extent_buffer(fs_info, start);
6284 if (exists)
6285 goto free_eb;
6286 else
6287 goto again;
6288 }
6289 /* add one reference for the tree */
6290 check_buffer_tree_ref(eb);
6291 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6292
6293 /*
6294 * Now it's safe to unlock the pages because any calls to
6295 * btree_releasepage will correctly detect that a page belongs to a
6296 * live buffer and won't free them prematurely.
6297 */
6298 for (i = 0; i < num_pages; i++)
6299 unlock_page(eb->pages[i]);
6300 return eb;
6301
6302 free_eb:
6303 WARN_ON(!atomic_dec_and_test(&eb->refs));
6304 for (i = 0; i < num_pages; i++) {
6305 if (eb->pages[i])
6306 unlock_page(eb->pages[i]);
6307 }
6308
6309 btrfs_release_extent_buffer(eb);
6310 return exists;
6311 }
6312
btrfs_release_extent_buffer_rcu(struct rcu_head * head)6313 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
6314 {
6315 struct extent_buffer *eb =
6316 container_of(head, struct extent_buffer, rcu_head);
6317
6318 __free_extent_buffer(eb);
6319 }
6320
release_extent_buffer(struct extent_buffer * eb)6321 static int release_extent_buffer(struct extent_buffer *eb)
6322 __releases(&eb->refs_lock)
6323 {
6324 lockdep_assert_held(&eb->refs_lock);
6325
6326 WARN_ON(atomic_read(&eb->refs) == 0);
6327 if (atomic_dec_and_test(&eb->refs)) {
6328 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6329 struct btrfs_fs_info *fs_info = eb->fs_info;
6330
6331 spin_unlock(&eb->refs_lock);
6332
6333 spin_lock(&fs_info->buffer_lock);
6334 radix_tree_delete(&fs_info->buffer_radix,
6335 eb->start >> fs_info->sectorsize_bits);
6336 spin_unlock(&fs_info->buffer_lock);
6337 } else {
6338 spin_unlock(&eb->refs_lock);
6339 }
6340
6341 btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6342 /* Should be safe to release our pages at this point */
6343 btrfs_release_extent_buffer_pages(eb);
6344 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6345 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6346 __free_extent_buffer(eb);
6347 return 1;
6348 }
6349 #endif
6350 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6351 return 1;
6352 }
6353 spin_unlock(&eb->refs_lock);
6354
6355 return 0;
6356 }
6357
free_extent_buffer(struct extent_buffer * eb)6358 void free_extent_buffer(struct extent_buffer *eb)
6359 {
6360 int refs;
6361 int old;
6362 if (!eb)
6363 return;
6364
6365 while (1) {
6366 refs = atomic_read(&eb->refs);
6367 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
6368 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
6369 refs == 1))
6370 break;
6371 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
6372 if (old == refs)
6373 return;
6374 }
6375
6376 spin_lock(&eb->refs_lock);
6377 if (atomic_read(&eb->refs) == 2 &&
6378 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6379 !extent_buffer_under_io(eb) &&
6380 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6381 atomic_dec(&eb->refs);
6382
6383 /*
6384 * I know this is terrible, but it's temporary until we stop tracking
6385 * the uptodate bits and such for the extent buffers.
6386 */
6387 release_extent_buffer(eb);
6388 }
6389
free_extent_buffer_stale(struct extent_buffer * eb)6390 void free_extent_buffer_stale(struct extent_buffer *eb)
6391 {
6392 if (!eb)
6393 return;
6394
6395 spin_lock(&eb->refs_lock);
6396 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
6397
6398 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6399 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6400 atomic_dec(&eb->refs);
6401 release_extent_buffer(eb);
6402 }
6403
btree_clear_page_dirty(struct page * page)6404 static void btree_clear_page_dirty(struct page *page)
6405 {
6406 ASSERT(PageDirty(page));
6407 ASSERT(PageLocked(page));
6408 clear_page_dirty_for_io(page);
6409 xa_lock_irq(&page->mapping->i_pages);
6410 if (!PageDirty(page))
6411 __xa_clear_mark(&page->mapping->i_pages,
6412 page_index(page), PAGECACHE_TAG_DIRTY);
6413 xa_unlock_irq(&page->mapping->i_pages);
6414 }
6415
clear_subpage_extent_buffer_dirty(const struct extent_buffer * eb)6416 static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
6417 {
6418 struct btrfs_fs_info *fs_info = eb->fs_info;
6419 struct page *page = eb->pages[0];
6420 bool last;
6421
6422 /* btree_clear_page_dirty() needs page locked */
6423 lock_page(page);
6424 last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
6425 eb->len);
6426 if (last)
6427 btree_clear_page_dirty(page);
6428 unlock_page(page);
6429 WARN_ON(atomic_read(&eb->refs) == 0);
6430 }
6431
clear_extent_buffer_dirty(const struct extent_buffer * eb)6432 void clear_extent_buffer_dirty(const struct extent_buffer *eb)
6433 {
6434 int i;
6435 int num_pages;
6436 struct page *page;
6437
6438 if (eb->fs_info->sectorsize < PAGE_SIZE)
6439 return clear_subpage_extent_buffer_dirty(eb);
6440
6441 num_pages = num_extent_pages(eb);
6442
6443 for (i = 0; i < num_pages; i++) {
6444 page = eb->pages[i];
6445 if (!PageDirty(page))
6446 continue;
6447 lock_page(page);
6448 btree_clear_page_dirty(page);
6449 ClearPageError(page);
6450 unlock_page(page);
6451 }
6452 WARN_ON(atomic_read(&eb->refs) == 0);
6453 }
6454
set_extent_buffer_dirty(struct extent_buffer * eb)6455 bool set_extent_buffer_dirty(struct extent_buffer *eb)
6456 {
6457 int i;
6458 int num_pages;
6459 bool was_dirty;
6460
6461 check_buffer_tree_ref(eb);
6462
6463 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6464
6465 num_pages = num_extent_pages(eb);
6466 WARN_ON(atomic_read(&eb->refs) == 0);
6467 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
6468
6469 if (!was_dirty) {
6470 bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
6471
6472 /*
6473 * For subpage case, we can have other extent buffers in the
6474 * same page, and in clear_subpage_extent_buffer_dirty() we
6475 * have to clear page dirty without subpage lock held.
6476 * This can cause race where our page gets dirty cleared after
6477 * we just set it.
6478 *
6479 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
6480 * its page for other reasons, we can use page lock to prevent
6481 * the above race.
6482 */
6483 if (subpage)
6484 lock_page(eb->pages[0]);
6485 for (i = 0; i < num_pages; i++)
6486 btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
6487 eb->start, eb->len);
6488 if (subpage)
6489 unlock_page(eb->pages[0]);
6490 }
6491 #ifdef CONFIG_BTRFS_DEBUG
6492 for (i = 0; i < num_pages; i++)
6493 ASSERT(PageDirty(eb->pages[i]));
6494 #endif
6495
6496 return was_dirty;
6497 }
6498
clear_extent_buffer_uptodate(struct extent_buffer * eb)6499 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6500 {
6501 struct btrfs_fs_info *fs_info = eb->fs_info;
6502 struct page *page;
6503 int num_pages;
6504 int i;
6505
6506 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6507 num_pages = num_extent_pages(eb);
6508 for (i = 0; i < num_pages; i++) {
6509 page = eb->pages[i];
6510 if (page)
6511 btrfs_page_clear_uptodate(fs_info, page,
6512 eb->start, eb->len);
6513 }
6514 }
6515
set_extent_buffer_uptodate(struct extent_buffer * eb)6516 void set_extent_buffer_uptodate(struct extent_buffer *eb)
6517 {
6518 struct btrfs_fs_info *fs_info = eb->fs_info;
6519 struct page *page;
6520 int num_pages;
6521 int i;
6522
6523 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6524 num_pages = num_extent_pages(eb);
6525 for (i = 0; i < num_pages; i++) {
6526 page = eb->pages[i];
6527 btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
6528 }
6529 }
6530
read_extent_buffer_subpage(struct extent_buffer * eb,int wait,int mirror_num)6531 static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
6532 int mirror_num)
6533 {
6534 struct btrfs_fs_info *fs_info = eb->fs_info;
6535 struct extent_io_tree *io_tree;
6536 struct page *page = eb->pages[0];
6537 struct btrfs_bio_ctrl bio_ctrl = { 0 };
6538 int ret = 0;
6539
6540 ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
6541 ASSERT(PagePrivate(page));
6542 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
6543
6544 if (wait == WAIT_NONE) {
6545 if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
6546 return -EAGAIN;
6547 } else {
6548 ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6549 if (ret < 0)
6550 return ret;
6551 }
6552
6553 ret = 0;
6554 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
6555 PageUptodate(page) ||
6556 btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
6557 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6558 unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6559 return ret;
6560 }
6561
6562 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6563 eb->read_mirror = 0;
6564 atomic_set(&eb->io_pages, 1);
6565 check_buffer_tree_ref(eb);
6566 btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
6567
6568 btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6569 ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
6570 page, eb->start, eb->len,
6571 eb->start - page_offset(page),
6572 end_bio_extent_readpage, mirror_num, 0,
6573 true);
6574 if (ret) {
6575 /*
6576 * In the endio function, if we hit something wrong we will
6577 * increase the io_pages, so here we need to decrease it for
6578 * error path.
6579 */
6580 atomic_dec(&eb->io_pages);
6581 }
6582 if (bio_ctrl.bio) {
6583 int tmp;
6584
6585 tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
6586 bio_ctrl.bio = NULL;
6587 if (tmp < 0)
6588 return tmp;
6589 }
6590 if (ret || wait != WAIT_COMPLETE)
6591 return ret;
6592
6593 wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
6594 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6595 ret = -EIO;
6596 return ret;
6597 }
6598
read_extent_buffer_pages(struct extent_buffer * eb,int wait,int mirror_num)6599 int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
6600 {
6601 int i;
6602 struct page *page;
6603 int err;
6604 int ret = 0;
6605 int locked_pages = 0;
6606 int all_uptodate = 1;
6607 int num_pages;
6608 unsigned long num_reads = 0;
6609 struct btrfs_bio_ctrl bio_ctrl = { 0 };
6610
6611 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6612 return 0;
6613
6614 /*
6615 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
6616 * operation, which could potentially still be in flight. In this case
6617 * we simply want to return an error.
6618 */
6619 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
6620 return -EIO;
6621
6622 if (eb->fs_info->sectorsize < PAGE_SIZE)
6623 return read_extent_buffer_subpage(eb, wait, mirror_num);
6624
6625 num_pages = num_extent_pages(eb);
6626 for (i = 0; i < num_pages; i++) {
6627 page = eb->pages[i];
6628 if (wait == WAIT_NONE) {
6629 /*
6630 * WAIT_NONE is only utilized by readahead. If we can't
6631 * acquire the lock atomically it means either the eb
6632 * is being read out or under modification.
6633 * Either way the eb will be or has been cached,
6634 * readahead can exit safely.
6635 */
6636 if (!trylock_page(page))
6637 goto unlock_exit;
6638 } else {
6639 lock_page(page);
6640 }
6641 locked_pages++;
6642 }
6643 /*
6644 * We need to firstly lock all pages to make sure that
6645 * the uptodate bit of our pages won't be affected by
6646 * clear_extent_buffer_uptodate().
6647 */
6648 for (i = 0; i < num_pages; i++) {
6649 page = eb->pages[i];
6650 if (!PageUptodate(page)) {
6651 num_reads++;
6652 all_uptodate = 0;
6653 }
6654 }
6655
6656 if (all_uptodate) {
6657 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6658 goto unlock_exit;
6659 }
6660
6661 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6662 eb->read_mirror = 0;
6663 atomic_set(&eb->io_pages, num_reads);
6664 /*
6665 * It is possible for releasepage to clear the TREE_REF bit before we
6666 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
6667 */
6668 check_buffer_tree_ref(eb);
6669 for (i = 0; i < num_pages; i++) {
6670 page = eb->pages[i];
6671
6672 if (!PageUptodate(page)) {
6673 if (ret) {
6674 atomic_dec(&eb->io_pages);
6675 unlock_page(page);
6676 continue;
6677 }
6678
6679 ClearPageError(page);
6680 err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6681 &bio_ctrl, page, page_offset(page),
6682 PAGE_SIZE, 0, end_bio_extent_readpage,
6683 mirror_num, 0, false);
6684 if (err) {
6685 /*
6686 * We failed to submit the bio so it's the
6687 * caller's responsibility to perform cleanup
6688 * i.e unlock page/set error bit.
6689 */
6690 ret = err;
6691 SetPageError(page);
6692 unlock_page(page);
6693 atomic_dec(&eb->io_pages);
6694 }
6695 } else {
6696 unlock_page(page);
6697 }
6698 }
6699
6700 if (bio_ctrl.bio) {
6701 err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
6702 bio_ctrl.bio = NULL;
6703 if (err)
6704 return err;
6705 }
6706
6707 if (ret || wait != WAIT_COMPLETE)
6708 return ret;
6709
6710 for (i = 0; i < num_pages; i++) {
6711 page = eb->pages[i];
6712 wait_on_page_locked(page);
6713 if (!PageUptodate(page))
6714 ret = -EIO;
6715 }
6716
6717 return ret;
6718
6719 unlock_exit:
6720 while (locked_pages > 0) {
6721 locked_pages--;
6722 page = eb->pages[locked_pages];
6723 unlock_page(page);
6724 }
6725 return ret;
6726 }
6727
report_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)6728 static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
6729 unsigned long len)
6730 {
6731 btrfs_warn(eb->fs_info,
6732 "access to eb bytenr %llu len %lu out of range start %lu len %lu",
6733 eb->start, eb->len, start, len);
6734 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6735
6736 return true;
6737 }
6738
6739 /*
6740 * Check if the [start, start + len) range is valid before reading/writing
6741 * the eb.
6742 * NOTE: @start and @len are offset inside the eb, not logical address.
6743 *
6744 * Caller should not touch the dst/src memory if this function returns error.
6745 */
check_eb_range(const struct extent_buffer * eb,unsigned long start,unsigned long len)6746 static inline int check_eb_range(const struct extent_buffer *eb,
6747 unsigned long start, unsigned long len)
6748 {
6749 unsigned long offset;
6750
6751 /* start, start + len should not go beyond eb->len nor overflow */
6752 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
6753 return report_eb_range(eb, start, len);
6754
6755 return false;
6756 }
6757
read_extent_buffer(const struct extent_buffer * eb,void * dstv,unsigned long start,unsigned long len)6758 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
6759 unsigned long start, unsigned long len)
6760 {
6761 size_t cur;
6762 size_t offset;
6763 struct page *page;
6764 char *kaddr;
6765 char *dst = (char *)dstv;
6766 unsigned long i = get_eb_page_index(start);
6767
6768 if (check_eb_range(eb, start, len))
6769 return;
6770
6771 offset = get_eb_offset_in_page(eb, start);
6772
6773 while (len > 0) {
6774 page = eb->pages[i];
6775
6776 cur = min(len, (PAGE_SIZE - offset));
6777 kaddr = page_address(page);
6778 memcpy(dst, kaddr + offset, cur);
6779
6780 dst += cur;
6781 len -= cur;
6782 offset = 0;
6783 i++;
6784 }
6785 }
6786
read_extent_buffer_to_user_nofault(const struct extent_buffer * eb,void __user * dstv,unsigned long start,unsigned long len)6787 int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
6788 void __user *dstv,
6789 unsigned long start, unsigned long len)
6790 {
6791 size_t cur;
6792 size_t offset;
6793 struct page *page;
6794 char *kaddr;
6795 char __user *dst = (char __user *)dstv;
6796 unsigned long i = get_eb_page_index(start);
6797 int ret = 0;
6798
6799 WARN_ON(start > eb->len);
6800 WARN_ON(start + len > eb->start + eb->len);
6801
6802 offset = get_eb_offset_in_page(eb, start);
6803
6804 while (len > 0) {
6805 page = eb->pages[i];
6806
6807 cur = min(len, (PAGE_SIZE - offset));
6808 kaddr = page_address(page);
6809 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6810 ret = -EFAULT;
6811 break;
6812 }
6813
6814 dst += cur;
6815 len -= cur;
6816 offset = 0;
6817 i++;
6818 }
6819
6820 return ret;
6821 }
6822
memcmp_extent_buffer(const struct extent_buffer * eb,const void * ptrv,unsigned long start,unsigned long len)6823 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
6824 unsigned long start, unsigned long len)
6825 {
6826 size_t cur;
6827 size_t offset;
6828 struct page *page;
6829 char *kaddr;
6830 char *ptr = (char *)ptrv;
6831 unsigned long i = get_eb_page_index(start);
6832 int ret = 0;
6833
6834 if (check_eb_range(eb, start, len))
6835 return -EINVAL;
6836
6837 offset = get_eb_offset_in_page(eb, start);
6838
6839 while (len > 0) {
6840 page = eb->pages[i];
6841
6842 cur = min(len, (PAGE_SIZE - offset));
6843
6844 kaddr = page_address(page);
6845 ret = memcmp(ptr, kaddr + offset, cur);
6846 if (ret)
6847 break;
6848
6849 ptr += cur;
6850 len -= cur;
6851 offset = 0;
6852 i++;
6853 }
6854 return ret;
6855 }
6856
6857 /*
6858 * Check that the extent buffer is uptodate.
6859 *
6860 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
6861 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
6862 */
assert_eb_page_uptodate(const struct extent_buffer * eb,struct page * page)6863 static void assert_eb_page_uptodate(const struct extent_buffer *eb,
6864 struct page *page)
6865 {
6866 struct btrfs_fs_info *fs_info = eb->fs_info;
6867
6868 if (fs_info->sectorsize < PAGE_SIZE) {
6869 bool uptodate;
6870
6871 uptodate = btrfs_subpage_test_uptodate(fs_info, page,
6872 eb->start, eb->len);
6873 WARN_ON(!uptodate);
6874 } else {
6875 WARN_ON(!PageUptodate(page));
6876 }
6877 }
6878
write_extent_buffer_chunk_tree_uuid(const struct extent_buffer * eb,const void * srcv)6879 void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6880 const void *srcv)
6881 {
6882 char *kaddr;
6883
6884 assert_eb_page_uptodate(eb, eb->pages[0]);
6885 kaddr = page_address(eb->pages[0]) +
6886 get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
6887 chunk_tree_uuid));
6888 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6889 }
6890
write_extent_buffer_fsid(const struct extent_buffer * eb,const void * srcv)6891 void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6892 {
6893 char *kaddr;
6894
6895 assert_eb_page_uptodate(eb, eb->pages[0]);
6896 kaddr = page_address(eb->pages[0]) +
6897 get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
6898 memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6899 }
6900
write_extent_buffer(const struct extent_buffer * eb,const void * srcv,unsigned long start,unsigned long len)6901 void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6902 unsigned long start, unsigned long len)
6903 {
6904 size_t cur;
6905 size_t offset;
6906 struct page *page;
6907 char *kaddr;
6908 char *src = (char *)srcv;
6909 unsigned long i = get_eb_page_index(start);
6910
6911 WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
6912
6913 if (check_eb_range(eb, start, len))
6914 return;
6915
6916 offset = get_eb_offset_in_page(eb, start);
6917
6918 while (len > 0) {
6919 page = eb->pages[i];
6920 assert_eb_page_uptodate(eb, page);
6921
6922 cur = min(len, PAGE_SIZE - offset);
6923 kaddr = page_address(page);
6924 memcpy(kaddr + offset, src, cur);
6925
6926 src += cur;
6927 len -= cur;
6928 offset = 0;
6929 i++;
6930 }
6931 }
6932
memzero_extent_buffer(const struct extent_buffer * eb,unsigned long start,unsigned long len)6933 void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6934 unsigned long len)
6935 {
6936 size_t cur;
6937 size_t offset;
6938 struct page *page;
6939 char *kaddr;
6940 unsigned long i = get_eb_page_index(start);
6941
6942 if (check_eb_range(eb, start, len))
6943 return;
6944
6945 offset = get_eb_offset_in_page(eb, start);
6946
6947 while (len > 0) {
6948 page = eb->pages[i];
6949 assert_eb_page_uptodate(eb, page);
6950
6951 cur = min(len, PAGE_SIZE - offset);
6952 kaddr = page_address(page);
6953 memset(kaddr + offset, 0, cur);
6954
6955 len -= cur;
6956 offset = 0;
6957 i++;
6958 }
6959 }
6960
copy_extent_buffer_full(const struct extent_buffer * dst,const struct extent_buffer * src)6961 void copy_extent_buffer_full(const struct extent_buffer *dst,
6962 const struct extent_buffer *src)
6963 {
6964 int i;
6965 int num_pages;
6966
6967 ASSERT(dst->len == src->len);
6968
6969 if (dst->fs_info->sectorsize == PAGE_SIZE) {
6970 num_pages = num_extent_pages(dst);
6971 for (i = 0; i < num_pages; i++)
6972 copy_page(page_address(dst->pages[i]),
6973 page_address(src->pages[i]));
6974 } else {
6975 size_t src_offset = get_eb_offset_in_page(src, 0);
6976 size_t dst_offset = get_eb_offset_in_page(dst, 0);
6977
6978 ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
6979 memcpy(page_address(dst->pages[0]) + dst_offset,
6980 page_address(src->pages[0]) + src_offset,
6981 src->len);
6982 }
6983 }
6984
copy_extent_buffer(const struct extent_buffer * dst,const struct extent_buffer * src,unsigned long dst_offset,unsigned long src_offset,unsigned long len)6985 void copy_extent_buffer(const struct extent_buffer *dst,
6986 const struct extent_buffer *src,
6987 unsigned long dst_offset, unsigned long src_offset,
6988 unsigned long len)
6989 {
6990 u64 dst_len = dst->len;
6991 size_t cur;
6992 size_t offset;
6993 struct page *page;
6994 char *kaddr;
6995 unsigned long i = get_eb_page_index(dst_offset);
6996
6997 if (check_eb_range(dst, dst_offset, len) ||
6998 check_eb_range(src, src_offset, len))
6999 return;
7000
7001 WARN_ON(src->len != dst_len);
7002
7003 offset = get_eb_offset_in_page(dst, dst_offset);
7004
7005 while (len > 0) {
7006 page = dst->pages[i];
7007 assert_eb_page_uptodate(dst, page);
7008
7009 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
7010
7011 kaddr = page_address(page);
7012 read_extent_buffer(src, kaddr + offset, src_offset, cur);
7013
7014 src_offset += cur;
7015 len -= cur;
7016 offset = 0;
7017 i++;
7018 }
7019 }
7020
7021 /*
7022 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
7023 * given bit number
7024 * @eb: the extent buffer
7025 * @start: offset of the bitmap item in the extent buffer
7026 * @nr: bit number
7027 * @page_index: return index of the page in the extent buffer that contains the
7028 * given bit number
7029 * @page_offset: return offset into the page given by page_index
7030 *
7031 * This helper hides the ugliness of finding the byte in an extent buffer which
7032 * contains a given bit.
7033 */
eb_bitmap_offset(const struct extent_buffer * eb,unsigned long start,unsigned long nr,unsigned long * page_index,size_t * page_offset)7034 static inline void eb_bitmap_offset(const struct extent_buffer *eb,
7035 unsigned long start, unsigned long nr,
7036 unsigned long *page_index,
7037 size_t *page_offset)
7038 {
7039 size_t byte_offset = BIT_BYTE(nr);
7040 size_t offset;
7041
7042 /*
7043 * The byte we want is the offset of the extent buffer + the offset of
7044 * the bitmap item in the extent buffer + the offset of the byte in the
7045 * bitmap item.
7046 */
7047 offset = start + offset_in_page(eb->start) + byte_offset;
7048
7049 *page_index = offset >> PAGE_SHIFT;
7050 *page_offset = offset_in_page(offset);
7051 }
7052
7053 /**
7054 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
7055 * @eb: the extent buffer
7056 * @start: offset of the bitmap item in the extent buffer
7057 * @nr: bit number to test
7058 */
extent_buffer_test_bit(const struct extent_buffer * eb,unsigned long start,unsigned long nr)7059 int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
7060 unsigned long nr)
7061 {
7062 u8 *kaddr;
7063 struct page *page;
7064 unsigned long i;
7065 size_t offset;
7066
7067 eb_bitmap_offset(eb, start, nr, &i, &offset);
7068 page = eb->pages[i];
7069 assert_eb_page_uptodate(eb, page);
7070 kaddr = page_address(page);
7071 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
7072 }
7073
7074 /**
7075 * extent_buffer_bitmap_set - set an area of a bitmap
7076 * @eb: the extent buffer
7077 * @start: offset of the bitmap item in the extent buffer
7078 * @pos: bit number of the first bit
7079 * @len: number of bits to set
7080 */
extent_buffer_bitmap_set(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)7081 void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
7082 unsigned long pos, unsigned long len)
7083 {
7084 u8 *kaddr;
7085 struct page *page;
7086 unsigned long i;
7087 size_t offset;
7088 const unsigned int size = pos + len;
7089 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7090 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
7091
7092 eb_bitmap_offset(eb, start, pos, &i, &offset);
7093 page = eb->pages[i];
7094 assert_eb_page_uptodate(eb, page);
7095 kaddr = page_address(page);
7096
7097 while (len >= bits_to_set) {
7098 kaddr[offset] |= mask_to_set;
7099 len -= bits_to_set;
7100 bits_to_set = BITS_PER_BYTE;
7101 mask_to_set = ~0;
7102 if (++offset >= PAGE_SIZE && len > 0) {
7103 offset = 0;
7104 page = eb->pages[++i];
7105 assert_eb_page_uptodate(eb, page);
7106 kaddr = page_address(page);
7107 }
7108 }
7109 if (len) {
7110 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
7111 kaddr[offset] |= mask_to_set;
7112 }
7113 }
7114
7115
7116 /**
7117 * extent_buffer_bitmap_clear - clear an area of a bitmap
7118 * @eb: the extent buffer
7119 * @start: offset of the bitmap item in the extent buffer
7120 * @pos: bit number of the first bit
7121 * @len: number of bits to clear
7122 */
extent_buffer_bitmap_clear(const struct extent_buffer * eb,unsigned long start,unsigned long pos,unsigned long len)7123 void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
7124 unsigned long start, unsigned long pos,
7125 unsigned long len)
7126 {
7127 u8 *kaddr;
7128 struct page *page;
7129 unsigned long i;
7130 size_t offset;
7131 const unsigned int size = pos + len;
7132 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
7133 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
7134
7135 eb_bitmap_offset(eb, start, pos, &i, &offset);
7136 page = eb->pages[i];
7137 assert_eb_page_uptodate(eb, page);
7138 kaddr = page_address(page);
7139
7140 while (len >= bits_to_clear) {
7141 kaddr[offset] &= ~mask_to_clear;
7142 len -= bits_to_clear;
7143 bits_to_clear = BITS_PER_BYTE;
7144 mask_to_clear = ~0;
7145 if (++offset >= PAGE_SIZE && len > 0) {
7146 offset = 0;
7147 page = eb->pages[++i];
7148 assert_eb_page_uptodate(eb, page);
7149 kaddr = page_address(page);
7150 }
7151 }
7152 if (len) {
7153 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
7154 kaddr[offset] &= ~mask_to_clear;
7155 }
7156 }
7157
areas_overlap(unsigned long src,unsigned long dst,unsigned long len)7158 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
7159 {
7160 unsigned long distance = (src > dst) ? src - dst : dst - src;
7161 return distance < len;
7162 }
7163
copy_pages(struct page * dst_page,struct page * src_page,unsigned long dst_off,unsigned long src_off,unsigned long len)7164 static void copy_pages(struct page *dst_page, struct page *src_page,
7165 unsigned long dst_off, unsigned long src_off,
7166 unsigned long len)
7167 {
7168 char *dst_kaddr = page_address(dst_page);
7169 char *src_kaddr;
7170 int must_memmove = 0;
7171
7172 if (dst_page != src_page) {
7173 src_kaddr = page_address(src_page);
7174 } else {
7175 src_kaddr = dst_kaddr;
7176 if (areas_overlap(src_off, dst_off, len))
7177 must_memmove = 1;
7178 }
7179
7180 if (must_memmove)
7181 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
7182 else
7183 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
7184 }
7185
memcpy_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)7186 void memcpy_extent_buffer(const struct extent_buffer *dst,
7187 unsigned long dst_offset, unsigned long src_offset,
7188 unsigned long len)
7189 {
7190 size_t cur;
7191 size_t dst_off_in_page;
7192 size_t src_off_in_page;
7193 unsigned long dst_i;
7194 unsigned long src_i;
7195
7196 if (check_eb_range(dst, dst_offset, len) ||
7197 check_eb_range(dst, src_offset, len))
7198 return;
7199
7200 while (len > 0) {
7201 dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
7202 src_off_in_page = get_eb_offset_in_page(dst, src_offset);
7203
7204 dst_i = get_eb_page_index(dst_offset);
7205 src_i = get_eb_page_index(src_offset);
7206
7207 cur = min(len, (unsigned long)(PAGE_SIZE -
7208 src_off_in_page));
7209 cur = min_t(unsigned long, cur,
7210 (unsigned long)(PAGE_SIZE - dst_off_in_page));
7211
7212 copy_pages(dst->pages[dst_i], dst->pages[src_i],
7213 dst_off_in_page, src_off_in_page, cur);
7214
7215 src_offset += cur;
7216 dst_offset += cur;
7217 len -= cur;
7218 }
7219 }
7220
memmove_extent_buffer(const struct extent_buffer * dst,unsigned long dst_offset,unsigned long src_offset,unsigned long len)7221 void memmove_extent_buffer(const struct extent_buffer *dst,
7222 unsigned long dst_offset, unsigned long src_offset,
7223 unsigned long len)
7224 {
7225 size_t cur;
7226 size_t dst_off_in_page;
7227 size_t src_off_in_page;
7228 unsigned long dst_end = dst_offset + len - 1;
7229 unsigned long src_end = src_offset + len - 1;
7230 unsigned long dst_i;
7231 unsigned long src_i;
7232
7233 if (check_eb_range(dst, dst_offset, len) ||
7234 check_eb_range(dst, src_offset, len))
7235 return;
7236 if (dst_offset < src_offset) {
7237 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
7238 return;
7239 }
7240 while (len > 0) {
7241 dst_i = get_eb_page_index(dst_end);
7242 src_i = get_eb_page_index(src_end);
7243
7244 dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
7245 src_off_in_page = get_eb_offset_in_page(dst, src_end);
7246
7247 cur = min_t(unsigned long, len, src_off_in_page + 1);
7248 cur = min(cur, dst_off_in_page + 1);
7249 copy_pages(dst->pages[dst_i], dst->pages[src_i],
7250 dst_off_in_page - cur + 1,
7251 src_off_in_page - cur + 1, cur);
7252
7253 dst_end -= cur;
7254 src_end -= cur;
7255 len -= cur;
7256 }
7257 }
7258
7259 #define GANG_LOOKUP_SIZE 16
get_next_extent_buffer(struct btrfs_fs_info * fs_info,struct page * page,u64 bytenr)7260 static struct extent_buffer *get_next_extent_buffer(
7261 struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
7262 {
7263 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
7264 struct extent_buffer *found = NULL;
7265 u64 page_start = page_offset(page);
7266 u64 cur = page_start;
7267
7268 ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
7269 lockdep_assert_held(&fs_info->buffer_lock);
7270
7271 while (cur < page_start + PAGE_SIZE) {
7272 int ret;
7273 int i;
7274
7275 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
7276 (void **)gang, cur >> fs_info->sectorsize_bits,
7277 min_t(unsigned int, GANG_LOOKUP_SIZE,
7278 PAGE_SIZE / fs_info->nodesize));
7279 if (ret == 0)
7280 goto out;
7281 for (i = 0; i < ret; i++) {
7282 /* Already beyond page end */
7283 if (gang[i]->start >= page_start + PAGE_SIZE)
7284 goto out;
7285 /* Found one */
7286 if (gang[i]->start >= bytenr) {
7287 found = gang[i];
7288 goto out;
7289 }
7290 }
7291 cur = gang[ret - 1]->start + gang[ret - 1]->len;
7292 }
7293 out:
7294 return found;
7295 }
7296
try_release_subpage_extent_buffer(struct page * page)7297 static int try_release_subpage_extent_buffer(struct page *page)
7298 {
7299 struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7300 u64 cur = page_offset(page);
7301 const u64 end = page_offset(page) + PAGE_SIZE;
7302 int ret;
7303
7304 while (cur < end) {
7305 struct extent_buffer *eb = NULL;
7306
7307 /*
7308 * Unlike try_release_extent_buffer() which uses page->private
7309 * to grab buffer, for subpage case we rely on radix tree, thus
7310 * we need to ensure radix tree consistency.
7311 *
7312 * We also want an atomic snapshot of the radix tree, thus go
7313 * with spinlock rather than RCU.
7314 */
7315 spin_lock(&fs_info->buffer_lock);
7316 eb = get_next_extent_buffer(fs_info, page, cur);
7317 if (!eb) {
7318 /* No more eb in the page range after or at cur */
7319 spin_unlock(&fs_info->buffer_lock);
7320 break;
7321 }
7322 cur = eb->start + eb->len;
7323
7324 /*
7325 * The same as try_release_extent_buffer(), to ensure the eb
7326 * won't disappear out from under us.
7327 */
7328 spin_lock(&eb->refs_lock);
7329 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7330 spin_unlock(&eb->refs_lock);
7331 spin_unlock(&fs_info->buffer_lock);
7332 break;
7333 }
7334 spin_unlock(&fs_info->buffer_lock);
7335
7336 /*
7337 * If tree ref isn't set then we know the ref on this eb is a
7338 * real ref, so just return, this eb will likely be freed soon
7339 * anyway.
7340 */
7341 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7342 spin_unlock(&eb->refs_lock);
7343 break;
7344 }
7345
7346 /*
7347 * Here we don't care about the return value, we will always
7348 * check the page private at the end. And
7349 * release_extent_buffer() will release the refs_lock.
7350 */
7351 release_extent_buffer(eb);
7352 }
7353 /*
7354 * Finally to check if we have cleared page private, as if we have
7355 * released all ebs in the page, the page private should be cleared now.
7356 */
7357 spin_lock(&page->mapping->private_lock);
7358 if (!PagePrivate(page))
7359 ret = 1;
7360 else
7361 ret = 0;
7362 spin_unlock(&page->mapping->private_lock);
7363 return ret;
7364
7365 }
7366
try_release_extent_buffer(struct page * page)7367 int try_release_extent_buffer(struct page *page)
7368 {
7369 struct extent_buffer *eb;
7370
7371 if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
7372 return try_release_subpage_extent_buffer(page);
7373
7374 /*
7375 * We need to make sure nobody is changing page->private, as we rely on
7376 * page->private as the pointer to extent buffer.
7377 */
7378 spin_lock(&page->mapping->private_lock);
7379 if (!PagePrivate(page)) {
7380 spin_unlock(&page->mapping->private_lock);
7381 return 1;
7382 }
7383
7384 eb = (struct extent_buffer *)page->private;
7385 BUG_ON(!eb);
7386
7387 /*
7388 * This is a little awful but should be ok, we need to make sure that
7389 * the eb doesn't disappear out from under us while we're looking at
7390 * this page.
7391 */
7392 spin_lock(&eb->refs_lock);
7393 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7394 spin_unlock(&eb->refs_lock);
7395 spin_unlock(&page->mapping->private_lock);
7396 return 0;
7397 }
7398 spin_unlock(&page->mapping->private_lock);
7399
7400 /*
7401 * If tree ref isn't set then we know the ref on this eb is a real ref,
7402 * so just return, this page will likely be freed soon anyway.
7403 */
7404 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7405 spin_unlock(&eb->refs_lock);
7406 return 0;
7407 }
7408
7409 return release_extent_buffer(eb);
7410 }
7411
7412 /*
7413 * btrfs_readahead_tree_block - attempt to readahead a child block
7414 * @fs_info: the fs_info
7415 * @bytenr: bytenr to read
7416 * @owner_root: objectid of the root that owns this eb
7417 * @gen: generation for the uptodate check, can be 0
7418 * @level: level for the eb
7419 *
7420 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
7421 * normal uptodate check of the eb, without checking the generation. If we have
7422 * to read the block we will not block on anything.
7423 */
btrfs_readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 owner_root,u64 gen,int level)7424 void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7425 u64 bytenr, u64 owner_root, u64 gen, int level)
7426 {
7427 struct extent_buffer *eb;
7428 int ret;
7429
7430 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7431 if (IS_ERR(eb))
7432 return;
7433
7434 if (btrfs_buffer_uptodate(eb, gen, 1)) {
7435 free_extent_buffer(eb);
7436 return;
7437 }
7438
7439 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
7440 if (ret < 0)
7441 free_extent_buffer_stale(eb);
7442 else
7443 free_extent_buffer(eb);
7444 }
7445
7446 /*
7447 * btrfs_readahead_node_child - readahead a node's child block
7448 * @node: parent node we're reading from
7449 * @slot: slot in the parent node for the child we want to read
7450 *
7451 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
7452 * the slot in the node provided.
7453 */
btrfs_readahead_node_child(struct extent_buffer * node,int slot)7454 void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
7455 {
7456 btrfs_readahead_tree_block(node->fs_info,
7457 btrfs_node_blockptr(node, slot),
7458 btrfs_header_owner(node),
7459 btrfs_node_ptr_generation(node, slot),
7460 btrfs_header_level(node) - 1);
7461 }
7462