1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * MMU context allocation for 64-bit kernels.
4 *
5 * Copyright (C) 2004 Anton Blanchard, IBM Corp. <anton@samba.org>
6 */
7
8 #include <linux/sched.h>
9 #include <linux/kernel.h>
10 #include <linux/errno.h>
11 #include <linux/string.h>
12 #include <linux/types.h>
13 #include <linux/mm.h>
14 #include <linux/pkeys.h>
15 #include <linux/spinlock.h>
16 #include <linux/idr.h>
17 #include <linux/export.h>
18 #include <linux/gfp.h>
19 #include <linux/slab.h>
20 #include <linux/cpu.h>
21
22 #include <asm/mmu_context.h>
23 #include <asm/pgalloc.h>
24
25 #include "internal.h"
26
27 static DEFINE_IDA(mmu_context_ida);
28
alloc_context_id(int min_id,int max_id)29 static int alloc_context_id(int min_id, int max_id)
30 {
31 return ida_alloc_range(&mmu_context_ida, min_id, max_id, GFP_KERNEL);
32 }
33
hash__reserve_context_id(int id)34 void hash__reserve_context_id(int id)
35 {
36 int result = ida_alloc_range(&mmu_context_ida, id, id, GFP_KERNEL);
37
38 WARN(result != id, "mmu: Failed to reserve context id %d (rc %d)\n", id, result);
39 }
40
hash__alloc_context_id(void)41 int hash__alloc_context_id(void)
42 {
43 unsigned long max;
44
45 if (mmu_has_feature(MMU_FTR_68_BIT_VA))
46 max = MAX_USER_CONTEXT;
47 else
48 max = MAX_USER_CONTEXT_65BIT_VA;
49
50 return alloc_context_id(MIN_USER_CONTEXT, max);
51 }
52 EXPORT_SYMBOL_GPL(hash__alloc_context_id);
53
realloc_context_ids(mm_context_t * ctx)54 static int realloc_context_ids(mm_context_t *ctx)
55 {
56 int i, id;
57
58 /*
59 * id 0 (aka. ctx->id) is special, we always allocate a new one, even if
60 * there wasn't one allocated previously (which happens in the exec
61 * case where ctx is newly allocated).
62 *
63 * We have to be a bit careful here. We must keep the existing ids in
64 * the array, so that we can test if they're non-zero to decide if we
65 * need to allocate a new one. However in case of error we must free the
66 * ids we've allocated but *not* any of the existing ones (or risk a
67 * UAF). That's why we decrement i at the start of the error handling
68 * loop, to skip the id that we just tested but couldn't reallocate.
69 */
70 for (i = 0; i < ARRAY_SIZE(ctx->extended_id); i++) {
71 if (i == 0 || ctx->extended_id[i]) {
72 id = hash__alloc_context_id();
73 if (id < 0)
74 goto error;
75
76 ctx->extended_id[i] = id;
77 }
78 }
79
80 /* The caller expects us to return id */
81 return ctx->id;
82
83 error:
84 for (i--; i >= 0; i--) {
85 if (ctx->extended_id[i])
86 ida_free(&mmu_context_ida, ctx->extended_id[i]);
87 }
88
89 return id;
90 }
91
hash__init_new_context(struct mm_struct * mm)92 static int hash__init_new_context(struct mm_struct *mm)
93 {
94 int index;
95
96 mm->context.hash_context = kmalloc(sizeof(struct hash_mm_context),
97 GFP_KERNEL);
98 if (!mm->context.hash_context)
99 return -ENOMEM;
100
101 /*
102 * The old code would re-promote on fork, we don't do that when using
103 * slices as it could cause problem promoting slices that have been
104 * forced down to 4K.
105 *
106 * For book3s we have MMU_NO_CONTEXT set to be ~0. Hence check
107 * explicitly against context.id == 0. This ensures that we properly
108 * initialize context slice details for newly allocated mm's (which will
109 * have id == 0) and don't alter context slice inherited via fork (which
110 * will have id != 0).
111 *
112 * We should not be calling init_new_context() on init_mm. Hence a
113 * check against 0 is OK.
114 */
115 if (mm->context.id == 0) {
116 memset(mm->context.hash_context, 0, sizeof(struct hash_mm_context));
117 slice_init_new_context_exec(mm);
118 } else {
119 /* This is fork. Copy hash_context details from current->mm */
120 memcpy(mm->context.hash_context, current->mm->context.hash_context, sizeof(struct hash_mm_context));
121 #ifdef CONFIG_PPC_SUBPAGE_PROT
122 /* inherit subpage prot details if we have one. */
123 if (current->mm->context.hash_context->spt) {
124 mm->context.hash_context->spt = kmalloc(sizeof(struct subpage_prot_table),
125 GFP_KERNEL);
126 if (!mm->context.hash_context->spt) {
127 kfree(mm->context.hash_context);
128 return -ENOMEM;
129 }
130 }
131 #endif
132 }
133
134 index = realloc_context_ids(&mm->context);
135 if (index < 0) {
136 #ifdef CONFIG_PPC_SUBPAGE_PROT
137 kfree(mm->context.hash_context->spt);
138 #endif
139 kfree(mm->context.hash_context);
140 return index;
141 }
142
143 pkey_mm_init(mm);
144 return index;
145 }
146
hash__setup_new_exec(void)147 void hash__setup_new_exec(void)
148 {
149 slice_setup_new_exec();
150
151 slb_setup_new_exec();
152 }
153
radix__init_new_context(struct mm_struct * mm)154 static int radix__init_new_context(struct mm_struct *mm)
155 {
156 unsigned long rts_field;
157 int index, max_id;
158
159 max_id = (1 << mmu_pid_bits) - 1;
160 index = alloc_context_id(mmu_base_pid, max_id);
161 if (index < 0)
162 return index;
163
164 /*
165 * set the process table entry,
166 */
167 rts_field = radix__get_tree_size();
168 process_tb[index].prtb0 = cpu_to_be64(rts_field | __pa(mm->pgd) | RADIX_PGD_INDEX_SIZE);
169
170 /*
171 * Order the above store with subsequent update of the PID
172 * register (at which point HW can start loading/caching
173 * the entry) and the corresponding load by the MMU from
174 * the L2 cache.
175 */
176 asm volatile("ptesync;isync" : : : "memory");
177
178 mm->context.hash_context = NULL;
179
180 return index;
181 }
182
init_new_context(struct task_struct * tsk,struct mm_struct * mm)183 int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
184 {
185 int index;
186
187 if (radix_enabled())
188 index = radix__init_new_context(mm);
189 else
190 index = hash__init_new_context(mm);
191
192 if (index < 0)
193 return index;
194
195 mm->context.id = index;
196
197 mm->context.pte_frag = NULL;
198 mm->context.pmd_frag = NULL;
199 #ifdef CONFIG_SPAPR_TCE_IOMMU
200 mm_iommu_init(mm);
201 #endif
202 atomic_set(&mm->context.active_cpus, 0);
203 atomic_set(&mm->context.copros, 0);
204
205 return 0;
206 }
207
__destroy_context(int context_id)208 void __destroy_context(int context_id)
209 {
210 ida_free(&mmu_context_ida, context_id);
211 }
212 EXPORT_SYMBOL_GPL(__destroy_context);
213
destroy_contexts(mm_context_t * ctx)214 static void destroy_contexts(mm_context_t *ctx)
215 {
216 int index, context_id;
217
218 for (index = 0; index < ARRAY_SIZE(ctx->extended_id); index++) {
219 context_id = ctx->extended_id[index];
220 if (context_id)
221 ida_free(&mmu_context_ida, context_id);
222 }
223 kfree(ctx->hash_context);
224 }
225
pmd_frag_destroy(void * pmd_frag)226 static void pmd_frag_destroy(void *pmd_frag)
227 {
228 int count;
229 struct page *page;
230
231 page = virt_to_page(pmd_frag);
232 /* drop all the pending references */
233 count = ((unsigned long)pmd_frag & ~PAGE_MASK) >> PMD_FRAG_SIZE_SHIFT;
234 /* We allow PTE_FRAG_NR fragments from a PTE page */
235 if (atomic_sub_and_test(PMD_FRAG_NR - count, &page->pt_frag_refcount)) {
236 pgtable_pmd_page_dtor(page);
237 __free_page(page);
238 }
239 }
240
destroy_pagetable_cache(struct mm_struct * mm)241 static void destroy_pagetable_cache(struct mm_struct *mm)
242 {
243 void *frag;
244
245 frag = mm->context.pte_frag;
246 if (frag)
247 pte_frag_destroy(frag);
248
249 frag = mm->context.pmd_frag;
250 if (frag)
251 pmd_frag_destroy(frag);
252 return;
253 }
254
destroy_context(struct mm_struct * mm)255 void destroy_context(struct mm_struct *mm)
256 {
257 #ifdef CONFIG_SPAPR_TCE_IOMMU
258 WARN_ON_ONCE(!list_empty(&mm->context.iommu_group_mem_list));
259 #endif
260 /*
261 * For tasks which were successfully initialized we end up calling
262 * arch_exit_mmap() which clears the process table entry. And
263 * arch_exit_mmap() is called before the required fullmm TLB flush
264 * which does a RIC=2 flush. Hence for an initialized task, we do clear
265 * any cached process table entries.
266 *
267 * The condition below handles the error case during task init. We have
268 * set the process table entry early and if we fail a task
269 * initialization, we need to ensure the process table entry is zeroed.
270 * We need not worry about process table entry caches because the task
271 * never ran with the PID value.
272 */
273 if (radix_enabled())
274 process_tb[mm->context.id].prtb0 = 0;
275 else
276 subpage_prot_free(mm);
277 destroy_contexts(&mm->context);
278 mm->context.id = MMU_NO_CONTEXT;
279 }
280
arch_exit_mmap(struct mm_struct * mm)281 void arch_exit_mmap(struct mm_struct *mm)
282 {
283 destroy_pagetable_cache(mm);
284
285 if (radix_enabled()) {
286 /*
287 * Radix doesn't have a valid bit in the process table
288 * entries. However we know that at least P9 implementation
289 * will avoid caching an entry with an invalid RTS field,
290 * and 0 is invalid. So this will do.
291 *
292 * This runs before the "fullmm" tlb flush in exit_mmap,
293 * which does a RIC=2 tlbie to clear the process table
294 * entry. See the "fullmm" comments in tlb-radix.c.
295 *
296 * No barrier required here after the store because
297 * this process will do the invalidate, which starts with
298 * ptesync.
299 */
300 process_tb[mm->context.id].prtb0 = 0;
301 }
302 }
303
304 #ifdef CONFIG_PPC_RADIX_MMU
radix__switch_mmu_context(struct mm_struct * prev,struct mm_struct * next)305 void radix__switch_mmu_context(struct mm_struct *prev, struct mm_struct *next)
306 {
307 mtspr(SPRN_PID, next->context.id);
308 isync();
309 }
310 #endif
311
312 /**
313 * cleanup_cpu_mmu_context - Clean up MMU details for this CPU (newly offlined)
314 *
315 * This clears the CPU from mm_cpumask for all processes, and then flushes the
316 * local TLB to ensure TLB coherency in case the CPU is onlined again.
317 *
318 * KVM guest translations are not necessarily flushed here. If KVM started
319 * using mm_cpumask or the Linux APIs which do, this would have to be resolved.
320 */
321 #ifdef CONFIG_HOTPLUG_CPU
cleanup_cpu_mmu_context(void)322 void cleanup_cpu_mmu_context(void)
323 {
324 int cpu = smp_processor_id();
325
326 clear_tasks_mm_cpumask(cpu);
327 tlbiel_all();
328 }
329 #endif
330