1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Virtual cpu timer based timer functions.
4 *
5 * Copyright IBM Corp. 2004, 2012
6 * Author(s): Jan Glauber <jan.glauber@de.ibm.com>
7 */
8
9 #include <linux/kernel_stat.h>
10 #include <linux/sched/cputime.h>
11 #include <linux/export.h>
12 #include <linux/kernel.h>
13 #include <linux/timex.h>
14 #include <linux/types.h>
15 #include <linux/time.h>
16 #include <asm/alternative.h>
17 #include <asm/vtimer.h>
18 #include <asm/vtime.h>
19 #include <asm/cpu_mf.h>
20 #include <asm/smp.h>
21
22 #include "entry.h"
23
24 static void virt_timer_expire(void);
25
26 static LIST_HEAD(virt_timer_list);
27 static DEFINE_SPINLOCK(virt_timer_lock);
28 static atomic64_t virt_timer_current;
29 static atomic64_t virt_timer_elapsed;
30
31 DEFINE_PER_CPU(u64, mt_cycles[8]);
32 static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
33 static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
34 static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
35
get_vtimer(void)36 static inline u64 get_vtimer(void)
37 {
38 u64 timer;
39
40 asm volatile("stpt %0" : "=Q" (timer));
41 return timer;
42 }
43
set_vtimer(u64 expires)44 static inline void set_vtimer(u64 expires)
45 {
46 u64 timer;
47
48 asm volatile(
49 " stpt %0\n" /* Store current cpu timer value */
50 " spt %1" /* Set new value imm. afterwards */
51 : "=Q" (timer) : "Q" (expires));
52 S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
53 S390_lowcore.last_update_timer = expires;
54 }
55
virt_timer_forward(u64 elapsed)56 static inline int virt_timer_forward(u64 elapsed)
57 {
58 BUG_ON(!irqs_disabled());
59
60 if (list_empty(&virt_timer_list))
61 return 0;
62 elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
63 return elapsed >= atomic64_read(&virt_timer_current);
64 }
65
update_mt_scaling(void)66 static void update_mt_scaling(void)
67 {
68 u64 cycles_new[8], *cycles_old;
69 u64 delta, fac, mult, div;
70 int i;
71
72 stcctm(MT_DIAG, smp_cpu_mtid + 1, cycles_new);
73 cycles_old = this_cpu_ptr(mt_cycles);
74 fac = 1;
75 mult = div = 0;
76 for (i = 0; i <= smp_cpu_mtid; i++) {
77 delta = cycles_new[i] - cycles_old[i];
78 div += delta;
79 mult *= i + 1;
80 mult += delta * fac;
81 fac *= i + 1;
82 }
83 div *= fac;
84 if (div > 0) {
85 /* Update scaling factor */
86 __this_cpu_write(mt_scaling_mult, mult);
87 __this_cpu_write(mt_scaling_div, div);
88 memcpy(cycles_old, cycles_new,
89 sizeof(u64) * (smp_cpu_mtid + 1));
90 }
91 __this_cpu_write(mt_scaling_jiffies, jiffies_64);
92 }
93
update_tsk_timer(unsigned long * tsk_vtime,u64 new)94 static inline u64 update_tsk_timer(unsigned long *tsk_vtime, u64 new)
95 {
96 u64 delta;
97
98 delta = new - *tsk_vtime;
99 *tsk_vtime = new;
100 return delta;
101 }
102
103
scale_vtime(u64 vtime)104 static inline u64 scale_vtime(u64 vtime)
105 {
106 u64 mult = __this_cpu_read(mt_scaling_mult);
107 u64 div = __this_cpu_read(mt_scaling_div);
108
109 if (smp_cpu_mtid)
110 return vtime * mult / div;
111 return vtime;
112 }
113
account_system_index_scaled(struct task_struct * p,u64 cputime,enum cpu_usage_stat index)114 static void account_system_index_scaled(struct task_struct *p, u64 cputime,
115 enum cpu_usage_stat index)
116 {
117 p->stimescaled += cputime_to_nsecs(scale_vtime(cputime));
118 account_system_index_time(p, cputime_to_nsecs(cputime), index);
119 }
120
121 /*
122 * Update process times based on virtual cpu times stored by entry.S
123 * to the lowcore fields user_timer, system_timer & steal_clock.
124 */
do_account_vtime(struct task_struct * tsk)125 static int do_account_vtime(struct task_struct *tsk)
126 {
127 u64 timer, clock, user, guest, system, hardirq, softirq;
128
129 timer = S390_lowcore.last_update_timer;
130 clock = S390_lowcore.last_update_clock;
131 /* Use STORE CLOCK by default, STORE CLOCK FAST if available. */
132 alternative_io("stpt %0\n .insn s,0xb2050000,%1\n",
133 "stpt %0\n .insn s,0xb27c0000,%1\n",
134 25,
135 ASM_OUTPUT2("=Q" (S390_lowcore.last_update_timer),
136 "=Q" (S390_lowcore.last_update_clock)),
137 ASM_NO_INPUT_CLOBBER("cc"));
138 clock = S390_lowcore.last_update_clock - clock;
139 timer -= S390_lowcore.last_update_timer;
140
141 if (hardirq_count())
142 S390_lowcore.hardirq_timer += timer;
143 else
144 S390_lowcore.system_timer += timer;
145
146 /* Update MT utilization calculation */
147 if (smp_cpu_mtid &&
148 time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
149 update_mt_scaling();
150
151 /* Calculate cputime delta */
152 user = update_tsk_timer(&tsk->thread.user_timer,
153 READ_ONCE(S390_lowcore.user_timer));
154 guest = update_tsk_timer(&tsk->thread.guest_timer,
155 READ_ONCE(S390_lowcore.guest_timer));
156 system = update_tsk_timer(&tsk->thread.system_timer,
157 READ_ONCE(S390_lowcore.system_timer));
158 hardirq = update_tsk_timer(&tsk->thread.hardirq_timer,
159 READ_ONCE(S390_lowcore.hardirq_timer));
160 softirq = update_tsk_timer(&tsk->thread.softirq_timer,
161 READ_ONCE(S390_lowcore.softirq_timer));
162 S390_lowcore.steal_timer +=
163 clock - user - guest - system - hardirq - softirq;
164
165 /* Push account value */
166 if (user) {
167 account_user_time(tsk, cputime_to_nsecs(user));
168 tsk->utimescaled += cputime_to_nsecs(scale_vtime(user));
169 }
170
171 if (guest) {
172 account_guest_time(tsk, cputime_to_nsecs(guest));
173 tsk->utimescaled += cputime_to_nsecs(scale_vtime(guest));
174 }
175
176 if (system)
177 account_system_index_scaled(tsk, system, CPUTIME_SYSTEM);
178 if (hardirq)
179 account_system_index_scaled(tsk, hardirq, CPUTIME_IRQ);
180 if (softirq)
181 account_system_index_scaled(tsk, softirq, CPUTIME_SOFTIRQ);
182
183 return virt_timer_forward(user + guest + system + hardirq + softirq);
184 }
185
vtime_task_switch(struct task_struct * prev)186 void vtime_task_switch(struct task_struct *prev)
187 {
188 do_account_vtime(prev);
189 prev->thread.user_timer = S390_lowcore.user_timer;
190 prev->thread.guest_timer = S390_lowcore.guest_timer;
191 prev->thread.system_timer = S390_lowcore.system_timer;
192 prev->thread.hardirq_timer = S390_lowcore.hardirq_timer;
193 prev->thread.softirq_timer = S390_lowcore.softirq_timer;
194 S390_lowcore.user_timer = current->thread.user_timer;
195 S390_lowcore.guest_timer = current->thread.guest_timer;
196 S390_lowcore.system_timer = current->thread.system_timer;
197 S390_lowcore.hardirq_timer = current->thread.hardirq_timer;
198 S390_lowcore.softirq_timer = current->thread.softirq_timer;
199 }
200
201 /*
202 * In s390, accounting pending user time also implies
203 * accounting system time in order to correctly compute
204 * the stolen time accounting.
205 */
vtime_flush(struct task_struct * tsk)206 void vtime_flush(struct task_struct *tsk)
207 {
208 u64 steal, avg_steal;
209
210 if (do_account_vtime(tsk))
211 virt_timer_expire();
212
213 steal = S390_lowcore.steal_timer;
214 avg_steal = S390_lowcore.avg_steal_timer / 2;
215 if ((s64) steal > 0) {
216 S390_lowcore.steal_timer = 0;
217 account_steal_time(cputime_to_nsecs(steal));
218 avg_steal += steal;
219 }
220 S390_lowcore.avg_steal_timer = avg_steal;
221 }
222
vtime_delta(void)223 static u64 vtime_delta(void)
224 {
225 u64 timer = S390_lowcore.last_update_timer;
226
227 S390_lowcore.last_update_timer = get_vtimer();
228
229 return timer - S390_lowcore.last_update_timer;
230 }
231
232 /*
233 * Update process times based on virtual cpu times stored by entry.S
234 * to the lowcore fields user_timer, system_timer & steal_clock.
235 */
vtime_account_kernel(struct task_struct * tsk)236 void vtime_account_kernel(struct task_struct *tsk)
237 {
238 u64 delta = vtime_delta();
239
240 if (tsk->flags & PF_VCPU)
241 S390_lowcore.guest_timer += delta;
242 else
243 S390_lowcore.system_timer += delta;
244
245 virt_timer_forward(delta);
246 }
247 EXPORT_SYMBOL_GPL(vtime_account_kernel);
248
vtime_account_softirq(struct task_struct * tsk)249 void vtime_account_softirq(struct task_struct *tsk)
250 {
251 u64 delta = vtime_delta();
252
253 S390_lowcore.softirq_timer += delta;
254
255 virt_timer_forward(delta);
256 }
257
vtime_account_hardirq(struct task_struct * tsk)258 void vtime_account_hardirq(struct task_struct *tsk)
259 {
260 u64 delta = vtime_delta();
261
262 S390_lowcore.hardirq_timer += delta;
263
264 virt_timer_forward(delta);
265 }
266
267 /*
268 * Sorted add to a list. List is linear searched until first bigger
269 * element is found.
270 */
list_add_sorted(struct vtimer_list * timer,struct list_head * head)271 static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
272 {
273 struct vtimer_list *tmp;
274
275 list_for_each_entry(tmp, head, entry) {
276 if (tmp->expires > timer->expires) {
277 list_add_tail(&timer->entry, &tmp->entry);
278 return;
279 }
280 }
281 list_add_tail(&timer->entry, head);
282 }
283
284 /*
285 * Handler for expired virtual CPU timer.
286 */
virt_timer_expire(void)287 static void virt_timer_expire(void)
288 {
289 struct vtimer_list *timer, *tmp;
290 unsigned long elapsed;
291 LIST_HEAD(cb_list);
292
293 /* walk timer list, fire all expired timers */
294 spin_lock(&virt_timer_lock);
295 elapsed = atomic64_read(&virt_timer_elapsed);
296 list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
297 if (timer->expires < elapsed)
298 /* move expired timer to the callback queue */
299 list_move_tail(&timer->entry, &cb_list);
300 else
301 timer->expires -= elapsed;
302 }
303 if (!list_empty(&virt_timer_list)) {
304 timer = list_first_entry(&virt_timer_list,
305 struct vtimer_list, entry);
306 atomic64_set(&virt_timer_current, timer->expires);
307 }
308 atomic64_sub(elapsed, &virt_timer_elapsed);
309 spin_unlock(&virt_timer_lock);
310
311 /* Do callbacks and recharge periodic timers */
312 list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
313 list_del_init(&timer->entry);
314 timer->function(timer->data);
315 if (timer->interval) {
316 /* Recharge interval timer */
317 timer->expires = timer->interval +
318 atomic64_read(&virt_timer_elapsed);
319 spin_lock(&virt_timer_lock);
320 list_add_sorted(timer, &virt_timer_list);
321 spin_unlock(&virt_timer_lock);
322 }
323 }
324 }
325
init_virt_timer(struct vtimer_list * timer)326 void init_virt_timer(struct vtimer_list *timer)
327 {
328 timer->function = NULL;
329 INIT_LIST_HEAD(&timer->entry);
330 }
331 EXPORT_SYMBOL(init_virt_timer);
332
vtimer_pending(struct vtimer_list * timer)333 static inline int vtimer_pending(struct vtimer_list *timer)
334 {
335 return !list_empty(&timer->entry);
336 }
337
internal_add_vtimer(struct vtimer_list * timer)338 static void internal_add_vtimer(struct vtimer_list *timer)
339 {
340 if (list_empty(&virt_timer_list)) {
341 /* First timer, just program it. */
342 atomic64_set(&virt_timer_current, timer->expires);
343 atomic64_set(&virt_timer_elapsed, 0);
344 list_add(&timer->entry, &virt_timer_list);
345 } else {
346 /* Update timer against current base. */
347 timer->expires += atomic64_read(&virt_timer_elapsed);
348 if (likely((s64) timer->expires <
349 (s64) atomic64_read(&virt_timer_current)))
350 /* The new timer expires before the current timer. */
351 atomic64_set(&virt_timer_current, timer->expires);
352 /* Insert new timer into the list. */
353 list_add_sorted(timer, &virt_timer_list);
354 }
355 }
356
__add_vtimer(struct vtimer_list * timer,int periodic)357 static void __add_vtimer(struct vtimer_list *timer, int periodic)
358 {
359 unsigned long flags;
360
361 timer->interval = periodic ? timer->expires : 0;
362 spin_lock_irqsave(&virt_timer_lock, flags);
363 internal_add_vtimer(timer);
364 spin_unlock_irqrestore(&virt_timer_lock, flags);
365 }
366
367 /*
368 * add_virt_timer - add a oneshot virtual CPU timer
369 */
add_virt_timer(struct vtimer_list * timer)370 void add_virt_timer(struct vtimer_list *timer)
371 {
372 __add_vtimer(timer, 0);
373 }
374 EXPORT_SYMBOL(add_virt_timer);
375
376 /*
377 * add_virt_timer_int - add an interval virtual CPU timer
378 */
add_virt_timer_periodic(struct vtimer_list * timer)379 void add_virt_timer_periodic(struct vtimer_list *timer)
380 {
381 __add_vtimer(timer, 1);
382 }
383 EXPORT_SYMBOL(add_virt_timer_periodic);
384
__mod_vtimer(struct vtimer_list * timer,u64 expires,int periodic)385 static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
386 {
387 unsigned long flags;
388 int rc;
389
390 BUG_ON(!timer->function);
391
392 if (timer->expires == expires && vtimer_pending(timer))
393 return 1;
394 spin_lock_irqsave(&virt_timer_lock, flags);
395 rc = vtimer_pending(timer);
396 if (rc)
397 list_del_init(&timer->entry);
398 timer->interval = periodic ? expires : 0;
399 timer->expires = expires;
400 internal_add_vtimer(timer);
401 spin_unlock_irqrestore(&virt_timer_lock, flags);
402 return rc;
403 }
404
405 /*
406 * returns whether it has modified a pending timer (1) or not (0)
407 */
mod_virt_timer(struct vtimer_list * timer,u64 expires)408 int mod_virt_timer(struct vtimer_list *timer, u64 expires)
409 {
410 return __mod_vtimer(timer, expires, 0);
411 }
412 EXPORT_SYMBOL(mod_virt_timer);
413
414 /*
415 * returns whether it has modified a pending timer (1) or not (0)
416 */
mod_virt_timer_periodic(struct vtimer_list * timer,u64 expires)417 int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
418 {
419 return __mod_vtimer(timer, expires, 1);
420 }
421 EXPORT_SYMBOL(mod_virt_timer_periodic);
422
423 /*
424 * Delete a virtual timer.
425 *
426 * returns whether the deleted timer was pending (1) or not (0)
427 */
del_virt_timer(struct vtimer_list * timer)428 int del_virt_timer(struct vtimer_list *timer)
429 {
430 unsigned long flags;
431
432 if (!vtimer_pending(timer))
433 return 0;
434 spin_lock_irqsave(&virt_timer_lock, flags);
435 list_del_init(&timer->entry);
436 spin_unlock_irqrestore(&virt_timer_lock, flags);
437 return 1;
438 }
439 EXPORT_SYMBOL(del_virt_timer);
440
441 /*
442 * Start the virtual CPU timer on the current CPU.
443 */
vtime_init(void)444 void vtime_init(void)
445 {
446 /* set initial cpu timer */
447 set_vtimer(VTIMER_MAX_SLICE);
448 /* Setup initial MT scaling values */
449 if (smp_cpu_mtid) {
450 __this_cpu_write(mt_scaling_jiffies, jiffies);
451 __this_cpu_write(mt_scaling_mult, 1);
452 __this_cpu_write(mt_scaling_div, 1);
453 stcctm(MT_DIAG, smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
454 }
455 }
456