1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * prepare to run common code
4 *
5 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #define DISABLE_BRANCH_PROFILING
9
10 /* cpu_feature_enabled() cannot be used this early */
11 #define USE_EARLY_PGTABLE_L5
12
13 #include <linux/init.h>
14 #include <linux/linkage.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/string.h>
18 #include <linux/percpu.h>
19 #include <linux/start_kernel.h>
20 #include <linux/io.h>
21 #include <linux/memblock.h>
22 #include <linux/cc_platform.h>
23 #include <linux/pgtable.h>
24
25 #include <asm/processor.h>
26 #include <asm/proto.h>
27 #include <asm/smp.h>
28 #include <asm/setup.h>
29 #include <asm/desc.h>
30 #include <asm/tlbflush.h>
31 #include <asm/sections.h>
32 #include <asm/kdebug.h>
33 #include <asm/e820/api.h>
34 #include <asm/bios_ebda.h>
35 #include <asm/bootparam_utils.h>
36 #include <asm/microcode.h>
37 #include <asm/kasan.h>
38 #include <asm/fixmap.h>
39 #include <asm/realmode.h>
40 #include <asm/extable.h>
41 #include <asm/trapnr.h>
42 #include <asm/sev.h>
43
44 /*
45 * Manage page tables very early on.
46 */
47 extern pmd_t early_dynamic_pgts[EARLY_DYNAMIC_PAGE_TABLES][PTRS_PER_PMD];
48 static unsigned int __initdata next_early_pgt;
49 pmdval_t early_pmd_flags = __PAGE_KERNEL_LARGE & ~(_PAGE_GLOBAL | _PAGE_NX);
50
51 #ifdef CONFIG_X86_5LEVEL
52 unsigned int __pgtable_l5_enabled __ro_after_init;
53 unsigned int pgdir_shift __ro_after_init = 39;
54 EXPORT_SYMBOL(pgdir_shift);
55 unsigned int ptrs_per_p4d __ro_after_init = 1;
56 EXPORT_SYMBOL(ptrs_per_p4d);
57 #endif
58
59 #ifdef CONFIG_DYNAMIC_MEMORY_LAYOUT
60 unsigned long page_offset_base __ro_after_init = __PAGE_OFFSET_BASE_L4;
61 EXPORT_SYMBOL(page_offset_base);
62 unsigned long vmalloc_base __ro_after_init = __VMALLOC_BASE_L4;
63 EXPORT_SYMBOL(vmalloc_base);
64 unsigned long vmemmap_base __ro_after_init = __VMEMMAP_BASE_L4;
65 EXPORT_SYMBOL(vmemmap_base);
66 #endif
67
68 /*
69 * GDT used on the boot CPU before switching to virtual addresses.
70 */
71 static struct desc_struct startup_gdt[GDT_ENTRIES] = {
72 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
73 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
74 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
75 };
76
77 /*
78 * Address needs to be set at runtime because it references the startup_gdt
79 * while the kernel still uses a direct mapping.
80 */
81 static struct desc_ptr startup_gdt_descr = {
82 .size = sizeof(startup_gdt),
83 .address = 0,
84 };
85
86 #define __head __section(".head.text")
87
fixup_pointer(void * ptr,unsigned long physaddr)88 static void __head *fixup_pointer(void *ptr, unsigned long physaddr)
89 {
90 return ptr - (void *)_text + (void *)physaddr;
91 }
92
fixup_long(void * ptr,unsigned long physaddr)93 static unsigned long __head *fixup_long(void *ptr, unsigned long physaddr)
94 {
95 return fixup_pointer(ptr, physaddr);
96 }
97
98 #ifdef CONFIG_X86_5LEVEL
fixup_int(void * ptr,unsigned long physaddr)99 static unsigned int __head *fixup_int(void *ptr, unsigned long physaddr)
100 {
101 return fixup_pointer(ptr, physaddr);
102 }
103
check_la57_support(unsigned long physaddr)104 static bool __head check_la57_support(unsigned long physaddr)
105 {
106 /*
107 * 5-level paging is detected and enabled at kernel decompression
108 * stage. Only check if it has been enabled there.
109 */
110 if (!(native_read_cr4() & X86_CR4_LA57))
111 return false;
112
113 *fixup_int(&__pgtable_l5_enabled, physaddr) = 1;
114 *fixup_int(&pgdir_shift, physaddr) = 48;
115 *fixup_int(&ptrs_per_p4d, physaddr) = 512;
116 *fixup_long(&page_offset_base, physaddr) = __PAGE_OFFSET_BASE_L5;
117 *fixup_long(&vmalloc_base, physaddr) = __VMALLOC_BASE_L5;
118 *fixup_long(&vmemmap_base, physaddr) = __VMEMMAP_BASE_L5;
119
120 return true;
121 }
122 #else
check_la57_support(unsigned long physaddr)123 static bool __head check_la57_support(unsigned long physaddr)
124 {
125 return false;
126 }
127 #endif
128
129 /* Code in __startup_64() can be relocated during execution, but the compiler
130 * doesn't have to generate PC-relative relocations when accessing globals from
131 * that function. Clang actually does not generate them, which leads to
132 * boot-time crashes. To work around this problem, every global pointer must
133 * be adjusted using fixup_pointer().
134 */
__startup_64(unsigned long physaddr,struct boot_params * bp)135 unsigned long __head __startup_64(unsigned long physaddr,
136 struct boot_params *bp)
137 {
138 unsigned long vaddr, vaddr_end;
139 unsigned long load_delta, *p;
140 unsigned long pgtable_flags;
141 pgdval_t *pgd;
142 p4dval_t *p4d;
143 pudval_t *pud;
144 pmdval_t *pmd, pmd_entry;
145 pteval_t *mask_ptr;
146 bool la57;
147 int i;
148 unsigned int *next_pgt_ptr;
149
150 la57 = check_la57_support(physaddr);
151
152 /* Is the address too large? */
153 if (physaddr >> MAX_PHYSMEM_BITS)
154 for (;;);
155
156 /*
157 * Compute the delta between the address I am compiled to run at
158 * and the address I am actually running at.
159 */
160 load_delta = physaddr - (unsigned long)(_text - __START_KERNEL_map);
161
162 /* Is the address not 2M aligned? */
163 if (load_delta & ~PMD_PAGE_MASK)
164 for (;;);
165
166 /* Activate Secure Memory Encryption (SME) if supported and enabled */
167 sme_enable(bp);
168
169 /* Include the SME encryption mask in the fixup value */
170 load_delta += sme_get_me_mask();
171
172 /* Fixup the physical addresses in the page table */
173
174 pgd = fixup_pointer(&early_top_pgt, physaddr);
175 p = pgd + pgd_index(__START_KERNEL_map);
176 if (la57)
177 *p = (unsigned long)level4_kernel_pgt;
178 else
179 *p = (unsigned long)level3_kernel_pgt;
180 *p += _PAGE_TABLE_NOENC - __START_KERNEL_map + load_delta;
181
182 if (la57) {
183 p4d = fixup_pointer(&level4_kernel_pgt, physaddr);
184 p4d[511] += load_delta;
185 }
186
187 pud = fixup_pointer(&level3_kernel_pgt, physaddr);
188 pud[510] += load_delta;
189 pud[511] += load_delta;
190
191 pmd = fixup_pointer(level2_fixmap_pgt, physaddr);
192 for (i = FIXMAP_PMD_TOP; i > FIXMAP_PMD_TOP - FIXMAP_PMD_NUM; i--)
193 pmd[i] += load_delta;
194
195 /*
196 * Set up the identity mapping for the switchover. These
197 * entries should *NOT* have the global bit set! This also
198 * creates a bunch of nonsense entries but that is fine --
199 * it avoids problems around wraparound.
200 */
201
202 next_pgt_ptr = fixup_pointer(&next_early_pgt, physaddr);
203 pud = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++], physaddr);
204 pmd = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++], physaddr);
205
206 pgtable_flags = _KERNPG_TABLE_NOENC + sme_get_me_mask();
207
208 if (la57) {
209 p4d = fixup_pointer(early_dynamic_pgts[(*next_pgt_ptr)++],
210 physaddr);
211
212 i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD;
213 pgd[i + 0] = (pgdval_t)p4d + pgtable_flags;
214 pgd[i + 1] = (pgdval_t)p4d + pgtable_flags;
215
216 i = physaddr >> P4D_SHIFT;
217 p4d[(i + 0) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags;
218 p4d[(i + 1) % PTRS_PER_P4D] = (pgdval_t)pud + pgtable_flags;
219 } else {
220 i = (physaddr >> PGDIR_SHIFT) % PTRS_PER_PGD;
221 pgd[i + 0] = (pgdval_t)pud + pgtable_flags;
222 pgd[i + 1] = (pgdval_t)pud + pgtable_flags;
223 }
224
225 i = physaddr >> PUD_SHIFT;
226 pud[(i + 0) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags;
227 pud[(i + 1) % PTRS_PER_PUD] = (pudval_t)pmd + pgtable_flags;
228
229 pmd_entry = __PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL;
230 /* Filter out unsupported __PAGE_KERNEL_* bits: */
231 mask_ptr = fixup_pointer(&__supported_pte_mask, physaddr);
232 pmd_entry &= *mask_ptr;
233 pmd_entry += sme_get_me_mask();
234 pmd_entry += physaddr;
235
236 for (i = 0; i < DIV_ROUND_UP(_end - _text, PMD_SIZE); i++) {
237 int idx = i + (physaddr >> PMD_SHIFT);
238
239 pmd[idx % PTRS_PER_PMD] = pmd_entry + i * PMD_SIZE;
240 }
241
242 /*
243 * Fixup the kernel text+data virtual addresses. Note that
244 * we might write invalid pmds, when the kernel is relocated
245 * cleanup_highmap() fixes this up along with the mappings
246 * beyond _end.
247 *
248 * Only the region occupied by the kernel image has so far
249 * been checked against the table of usable memory regions
250 * provided by the firmware, so invalidate pages outside that
251 * region. A page table entry that maps to a reserved area of
252 * memory would allow processor speculation into that area,
253 * and on some hardware (particularly the UV platform) even
254 * speculative access to some reserved areas is caught as an
255 * error, causing the BIOS to halt the system.
256 */
257
258 pmd = fixup_pointer(level2_kernel_pgt, physaddr);
259
260 /* invalidate pages before the kernel image */
261 for (i = 0; i < pmd_index((unsigned long)_text); i++)
262 pmd[i] &= ~_PAGE_PRESENT;
263
264 /* fixup pages that are part of the kernel image */
265 for (; i <= pmd_index((unsigned long)_end); i++)
266 if (pmd[i] & _PAGE_PRESENT)
267 pmd[i] += load_delta;
268
269 /* invalidate pages after the kernel image */
270 for (; i < PTRS_PER_PMD; i++)
271 pmd[i] &= ~_PAGE_PRESENT;
272
273 /*
274 * Fixup phys_base - remove the memory encryption mask to obtain
275 * the true physical address.
276 */
277 *fixup_long(&phys_base, physaddr) += load_delta - sme_get_me_mask();
278
279 /* Encrypt the kernel and related (if SME is active) */
280 sme_encrypt_kernel(bp);
281
282 /*
283 * Clear the memory encryption mask from the .bss..decrypted section.
284 * The bss section will be memset to zero later in the initialization so
285 * there is no need to zero it after changing the memory encryption
286 * attribute.
287 *
288 * This is early code, use an open coded check for SME instead of
289 * using cc_platform_has(). This eliminates worries about removing
290 * instrumentation or checking boot_cpu_data in the cc_platform_has()
291 * function.
292 */
293 if (sme_get_me_mask()) {
294 vaddr = (unsigned long)__start_bss_decrypted;
295 vaddr_end = (unsigned long)__end_bss_decrypted;
296 for (; vaddr < vaddr_end; vaddr += PMD_SIZE) {
297 i = pmd_index(vaddr);
298 pmd[i] -= sme_get_me_mask();
299 }
300 }
301
302 /*
303 * Return the SME encryption mask (if SME is active) to be used as a
304 * modifier for the initial pgdir entry programmed into CR3.
305 */
306 return sme_get_me_mask();
307 }
308
__startup_secondary_64(void)309 unsigned long __startup_secondary_64(void)
310 {
311 /*
312 * Return the SME encryption mask (if SME is active) to be used as a
313 * modifier for the initial pgdir entry programmed into CR3.
314 */
315 return sme_get_me_mask();
316 }
317
318 /* Wipe all early page tables except for the kernel symbol map */
reset_early_page_tables(void)319 static void __init reset_early_page_tables(void)
320 {
321 memset(early_top_pgt, 0, sizeof(pgd_t)*(PTRS_PER_PGD-1));
322 next_early_pgt = 0;
323 write_cr3(__sme_pa_nodebug(early_top_pgt));
324 }
325
326 /* Create a new PMD entry */
__early_make_pgtable(unsigned long address,pmdval_t pmd)327 bool __init __early_make_pgtable(unsigned long address, pmdval_t pmd)
328 {
329 unsigned long physaddr = address - __PAGE_OFFSET;
330 pgdval_t pgd, *pgd_p;
331 p4dval_t p4d, *p4d_p;
332 pudval_t pud, *pud_p;
333 pmdval_t *pmd_p;
334
335 /* Invalid address or early pgt is done ? */
336 if (physaddr >= MAXMEM || read_cr3_pa() != __pa_nodebug(early_top_pgt))
337 return false;
338
339 again:
340 pgd_p = &early_top_pgt[pgd_index(address)].pgd;
341 pgd = *pgd_p;
342
343 /*
344 * The use of __START_KERNEL_map rather than __PAGE_OFFSET here is
345 * critical -- __PAGE_OFFSET would point us back into the dynamic
346 * range and we might end up looping forever...
347 */
348 if (!pgtable_l5_enabled())
349 p4d_p = pgd_p;
350 else if (pgd)
351 p4d_p = (p4dval_t *)((pgd & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
352 else {
353 if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
354 reset_early_page_tables();
355 goto again;
356 }
357
358 p4d_p = (p4dval_t *)early_dynamic_pgts[next_early_pgt++];
359 memset(p4d_p, 0, sizeof(*p4d_p) * PTRS_PER_P4D);
360 *pgd_p = (pgdval_t)p4d_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
361 }
362 p4d_p += p4d_index(address);
363 p4d = *p4d_p;
364
365 if (p4d)
366 pud_p = (pudval_t *)((p4d & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
367 else {
368 if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
369 reset_early_page_tables();
370 goto again;
371 }
372
373 pud_p = (pudval_t *)early_dynamic_pgts[next_early_pgt++];
374 memset(pud_p, 0, sizeof(*pud_p) * PTRS_PER_PUD);
375 *p4d_p = (p4dval_t)pud_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
376 }
377 pud_p += pud_index(address);
378 pud = *pud_p;
379
380 if (pud)
381 pmd_p = (pmdval_t *)((pud & PTE_PFN_MASK) + __START_KERNEL_map - phys_base);
382 else {
383 if (next_early_pgt >= EARLY_DYNAMIC_PAGE_TABLES) {
384 reset_early_page_tables();
385 goto again;
386 }
387
388 pmd_p = (pmdval_t *)early_dynamic_pgts[next_early_pgt++];
389 memset(pmd_p, 0, sizeof(*pmd_p) * PTRS_PER_PMD);
390 *pud_p = (pudval_t)pmd_p - __START_KERNEL_map + phys_base + _KERNPG_TABLE;
391 }
392 pmd_p[pmd_index(address)] = pmd;
393
394 return true;
395 }
396
early_make_pgtable(unsigned long address)397 static bool __init early_make_pgtable(unsigned long address)
398 {
399 unsigned long physaddr = address - __PAGE_OFFSET;
400 pmdval_t pmd;
401
402 pmd = (physaddr & PMD_MASK) + early_pmd_flags;
403
404 return __early_make_pgtable(address, pmd);
405 }
406
do_early_exception(struct pt_regs * regs,int trapnr)407 void __init do_early_exception(struct pt_regs *regs, int trapnr)
408 {
409 if (trapnr == X86_TRAP_PF &&
410 early_make_pgtable(native_read_cr2()))
411 return;
412
413 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT) &&
414 trapnr == X86_TRAP_VC && handle_vc_boot_ghcb(regs))
415 return;
416
417 early_fixup_exception(regs, trapnr);
418 }
419
420 /* Don't add a printk in there. printk relies on the PDA which is not initialized
421 yet. */
clear_bss(void)422 static void __init clear_bss(void)
423 {
424 memset(__bss_start, 0,
425 (unsigned long) __bss_stop - (unsigned long) __bss_start);
426 }
427
get_cmd_line_ptr(void)428 static unsigned long get_cmd_line_ptr(void)
429 {
430 unsigned long cmd_line_ptr = boot_params.hdr.cmd_line_ptr;
431
432 cmd_line_ptr |= (u64)boot_params.ext_cmd_line_ptr << 32;
433
434 return cmd_line_ptr;
435 }
436
copy_bootdata(char * real_mode_data)437 static void __init copy_bootdata(char *real_mode_data)
438 {
439 char * command_line;
440 unsigned long cmd_line_ptr;
441
442 /*
443 * If SME is active, this will create decrypted mappings of the
444 * boot data in advance of the copy operations.
445 */
446 sme_map_bootdata(real_mode_data);
447
448 memcpy(&boot_params, real_mode_data, sizeof(boot_params));
449 sanitize_boot_params(&boot_params);
450 cmd_line_ptr = get_cmd_line_ptr();
451 if (cmd_line_ptr) {
452 command_line = __va(cmd_line_ptr);
453 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
454 }
455
456 /*
457 * The old boot data is no longer needed and won't be reserved,
458 * freeing up that memory for use by the system. If SME is active,
459 * we need to remove the mappings that were created so that the
460 * memory doesn't remain mapped as decrypted.
461 */
462 sme_unmap_bootdata(real_mode_data);
463 }
464
x86_64_start_kernel(char * real_mode_data)465 asmlinkage __visible void __init x86_64_start_kernel(char * real_mode_data)
466 {
467 /*
468 * Build-time sanity checks on the kernel image and module
469 * area mappings. (these are purely build-time and produce no code)
470 */
471 BUILD_BUG_ON(MODULES_VADDR < __START_KERNEL_map);
472 BUILD_BUG_ON(MODULES_VADDR - __START_KERNEL_map < KERNEL_IMAGE_SIZE);
473 BUILD_BUG_ON(MODULES_LEN + KERNEL_IMAGE_SIZE > 2*PUD_SIZE);
474 BUILD_BUG_ON((__START_KERNEL_map & ~PMD_MASK) != 0);
475 BUILD_BUG_ON((MODULES_VADDR & ~PMD_MASK) != 0);
476 BUILD_BUG_ON(!(MODULES_VADDR > __START_KERNEL));
477 MAYBE_BUILD_BUG_ON(!(((MODULES_END - 1) & PGDIR_MASK) ==
478 (__START_KERNEL & PGDIR_MASK)));
479 BUILD_BUG_ON(__fix_to_virt(__end_of_fixed_addresses) <= MODULES_END);
480
481 cr4_init_shadow();
482
483 /* Kill off the identity-map trampoline */
484 reset_early_page_tables();
485
486 clear_bss();
487
488 clear_page(init_top_pgt);
489
490 /*
491 * SME support may update early_pmd_flags to include the memory
492 * encryption mask, so it needs to be called before anything
493 * that may generate a page fault.
494 */
495 sme_early_init();
496
497 kasan_early_init();
498
499 idt_setup_early_handler();
500
501 copy_bootdata(__va(real_mode_data));
502
503 /*
504 * Load microcode early on BSP.
505 */
506 load_ucode_bsp();
507
508 /* set init_top_pgt kernel high mapping*/
509 init_top_pgt[511] = early_top_pgt[511];
510
511 x86_64_start_reservations(real_mode_data);
512 }
513
x86_64_start_reservations(char * real_mode_data)514 void __init x86_64_start_reservations(char *real_mode_data)
515 {
516 /* version is always not zero if it is copied */
517 if (!boot_params.hdr.version)
518 copy_bootdata(__va(real_mode_data));
519
520 x86_early_init_platform_quirks();
521
522 switch (boot_params.hdr.hardware_subarch) {
523 case X86_SUBARCH_INTEL_MID:
524 x86_intel_mid_early_setup();
525 break;
526 default:
527 break;
528 }
529
530 start_kernel();
531 }
532
533 /*
534 * Data structures and code used for IDT setup in head_64.S. The bringup-IDT is
535 * used until the idt_table takes over. On the boot CPU this happens in
536 * x86_64_start_kernel(), on secondary CPUs in start_secondary(). In both cases
537 * this happens in the functions called from head_64.S.
538 *
539 * The idt_table can't be used that early because all the code modifying it is
540 * in idt.c and can be instrumented by tracing or KASAN, which both don't work
541 * during early CPU bringup. Also the idt_table has the runtime vectors
542 * configured which require certain CPU state to be setup already (like TSS),
543 * which also hasn't happened yet in early CPU bringup.
544 */
545 static gate_desc bringup_idt_table[NUM_EXCEPTION_VECTORS] __page_aligned_data;
546
547 static struct desc_ptr bringup_idt_descr = {
548 .size = (NUM_EXCEPTION_VECTORS * sizeof(gate_desc)) - 1,
549 .address = 0, /* Set at runtime */
550 };
551
set_bringup_idt_handler(gate_desc * idt,int n,void * handler)552 static void set_bringup_idt_handler(gate_desc *idt, int n, void *handler)
553 {
554 #ifdef CONFIG_AMD_MEM_ENCRYPT
555 struct idt_data data;
556 gate_desc desc;
557
558 init_idt_data(&data, n, handler);
559 idt_init_desc(&desc, &data);
560 native_write_idt_entry(idt, n, &desc);
561 #endif
562 }
563
564 /* This runs while still in the direct mapping */
startup_64_load_idt(unsigned long physbase)565 static void startup_64_load_idt(unsigned long physbase)
566 {
567 struct desc_ptr *desc = fixup_pointer(&bringup_idt_descr, physbase);
568 gate_desc *idt = fixup_pointer(bringup_idt_table, physbase);
569
570
571 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT)) {
572 void *handler;
573
574 /* VMM Communication Exception */
575 handler = fixup_pointer(vc_no_ghcb, physbase);
576 set_bringup_idt_handler(idt, X86_TRAP_VC, handler);
577 }
578
579 desc->address = (unsigned long)idt;
580 native_load_idt(desc);
581 }
582
583 /* This is used when running on kernel addresses */
early_setup_idt(void)584 void early_setup_idt(void)
585 {
586 /* VMM Communication Exception */
587 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT))
588 set_bringup_idt_handler(bringup_idt_table, X86_TRAP_VC, vc_boot_ghcb);
589
590 bringup_idt_descr.address = (unsigned long)bringup_idt_table;
591 native_load_idt(&bringup_idt_descr);
592 }
593
594 /*
595 * Setup boot CPU state needed before kernel switches to virtual addresses.
596 */
startup_64_setup_env(unsigned long physbase)597 void __head startup_64_setup_env(unsigned long physbase)
598 {
599 /* Load GDT */
600 startup_gdt_descr.address = (unsigned long)fixup_pointer(startup_gdt, physbase);
601 native_load_gdt(&startup_gdt_descr);
602
603 /* New GDT is live - reload data segment registers */
604 asm volatile("movl %%eax, %%ds\n"
605 "movl %%eax, %%ss\n"
606 "movl %%eax, %%es\n" : : "a"(__KERNEL_DS) : "memory");
607
608 startup_64_load_idt(physbase);
609 }
610