1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * x86 SMP booting functions
4 *
5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7 * Copyright 2001 Andi Kleen, SuSE Labs.
8 *
9 * Much of the core SMP work is based on previous work by Thomas Radke, to
10 * whom a great many thanks are extended.
11 *
12 * Thanks to Intel for making available several different Pentium,
13 * Pentium Pro and Pentium-II/Xeon MP machines.
14 * Original development of Linux SMP code supported by Caldera.
15 *
16 * Fixes
17 * Felix Koop : NR_CPUS used properly
18 * Jose Renau : Handle single CPU case.
19 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
20 * Greg Wright : Fix for kernel stacks panic.
21 * Erich Boleyn : MP v1.4 and additional changes.
22 * Matthias Sattler : Changes for 2.1 kernel map.
23 * Michel Lespinasse : Changes for 2.1 kernel map.
24 * Michael Chastain : Change trampoline.S to gnu as.
25 * Alan Cox : Dumb bug: 'B' step PPro's are fine
26 * Ingo Molnar : Added APIC timers, based on code
27 * from Jose Renau
28 * Ingo Molnar : various cleanups and rewrites
29 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
30 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
31 * Andi Kleen : Changed for SMP boot into long mode.
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
35 * Andi Kleen : Converted to new state machine.
36 * Ashok Raj : CPU hotplug support
37 * Glauber Costa : i386 and x86_64 integration
38 */
39
40 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42 #include <linux/init.h>
43 #include <linux/smp.h>
44 #include <linux/export.h>
45 #include <linux/sched.h>
46 #include <linux/sched/topology.h>
47 #include <linux/sched/hotplug.h>
48 #include <linux/sched/task_stack.h>
49 #include <linux/percpu.h>
50 #include <linux/memblock.h>
51 #include <linux/err.h>
52 #include <linux/nmi.h>
53 #include <linux/tboot.h>
54 #include <linux/gfp.h>
55 #include <linux/cpuidle.h>
56 #include <linux/numa.h>
57 #include <linux/pgtable.h>
58 #include <linux/overflow.h>
59 #include <linux/syscore_ops.h>
60
61 #include <asm/acpi.h>
62 #include <asm/desc.h>
63 #include <asm/nmi.h>
64 #include <asm/irq.h>
65 #include <asm/realmode.h>
66 #include <asm/cpu.h>
67 #include <asm/numa.h>
68 #include <asm/tlbflush.h>
69 #include <asm/mtrr.h>
70 #include <asm/mwait.h>
71 #include <asm/apic.h>
72 #include <asm/io_apic.h>
73 #include <asm/fpu/api.h>
74 #include <asm/setup.h>
75 #include <asm/uv/uv.h>
76 #include <linux/mc146818rtc.h>
77 #include <asm/i8259.h>
78 #include <asm/misc.h>
79 #include <asm/qspinlock.h>
80 #include <asm/intel-family.h>
81 #include <asm/cpu_device_id.h>
82 #include <asm/spec-ctrl.h>
83 #include <asm/hw_irq.h>
84 #include <asm/stackprotector.h>
85
86 #ifdef CONFIG_ACPI_CPPC_LIB
87 #include <acpi/cppc_acpi.h>
88 #endif
89
90 /* representing HT siblings of each logical CPU */
91 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
92 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
93
94 /* representing HT and core siblings of each logical CPU */
95 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
96 EXPORT_PER_CPU_SYMBOL(cpu_core_map);
97
98 /* representing HT, core, and die siblings of each logical CPU */
99 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
100 EXPORT_PER_CPU_SYMBOL(cpu_die_map);
101
102 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
103
104 DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_l2c_shared_map);
105
106 /* Per CPU bogomips and other parameters */
107 DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
108 EXPORT_PER_CPU_SYMBOL(cpu_info);
109
110 /* Logical package management. We might want to allocate that dynamically */
111 unsigned int __max_logical_packages __read_mostly;
112 EXPORT_SYMBOL(__max_logical_packages);
113 static unsigned int logical_packages __read_mostly;
114 static unsigned int logical_die __read_mostly;
115
116 /* Maximum number of SMT threads on any online core */
117 int __read_mostly __max_smt_threads = 1;
118
119 /* Flag to indicate if a complete sched domain rebuild is required */
120 bool x86_topology_update;
121
arch_update_cpu_topology(void)122 int arch_update_cpu_topology(void)
123 {
124 int retval = x86_topology_update;
125
126 x86_topology_update = false;
127 return retval;
128 }
129
smpboot_setup_warm_reset_vector(unsigned long start_eip)130 static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
131 {
132 unsigned long flags;
133
134 spin_lock_irqsave(&rtc_lock, flags);
135 CMOS_WRITE(0xa, 0xf);
136 spin_unlock_irqrestore(&rtc_lock, flags);
137 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) =
138 start_eip >> 4;
139 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) =
140 start_eip & 0xf;
141 }
142
smpboot_restore_warm_reset_vector(void)143 static inline void smpboot_restore_warm_reset_vector(void)
144 {
145 unsigned long flags;
146
147 /*
148 * Paranoid: Set warm reset code and vector here back
149 * to default values.
150 */
151 spin_lock_irqsave(&rtc_lock, flags);
152 CMOS_WRITE(0, 0xf);
153 spin_unlock_irqrestore(&rtc_lock, flags);
154
155 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
156 }
157
158 static void init_freq_invariance(bool secondary, bool cppc_ready);
159
160 /*
161 * Report back to the Boot Processor during boot time or to the caller processor
162 * during CPU online.
163 */
smp_callin(void)164 static void smp_callin(void)
165 {
166 int cpuid;
167
168 /*
169 * If waken up by an INIT in an 82489DX configuration
170 * cpu_callout_mask guarantees we don't get here before
171 * an INIT_deassert IPI reaches our local APIC, so it is
172 * now safe to touch our local APIC.
173 */
174 cpuid = smp_processor_id();
175
176 /*
177 * the boot CPU has finished the init stage and is spinning
178 * on callin_map until we finish. We are free to set up this
179 * CPU, first the APIC. (this is probably redundant on most
180 * boards)
181 */
182 apic_ap_setup();
183
184 /*
185 * Save our processor parameters. Note: this information
186 * is needed for clock calibration.
187 */
188 smp_store_cpu_info(cpuid);
189
190 /*
191 * The topology information must be up to date before
192 * calibrate_delay() and notify_cpu_starting().
193 */
194 set_cpu_sibling_map(raw_smp_processor_id());
195
196 init_freq_invariance(true, false);
197
198 /*
199 * Get our bogomips.
200 * Update loops_per_jiffy in cpu_data. Previous call to
201 * smp_store_cpu_info() stored a value that is close but not as
202 * accurate as the value just calculated.
203 */
204 calibrate_delay();
205 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
206 pr_debug("Stack at about %p\n", &cpuid);
207
208 wmb();
209
210 notify_cpu_starting(cpuid);
211
212 /*
213 * Allow the master to continue.
214 */
215 cpumask_set_cpu(cpuid, cpu_callin_mask);
216 }
217
218 static int cpu0_logical_apicid;
219 static int enable_start_cpu0;
220 /*
221 * Activate a secondary processor.
222 */
start_secondary(void * unused)223 static void notrace start_secondary(void *unused)
224 {
225 /*
226 * Don't put *anything* except direct CPU state initialization
227 * before cpu_init(), SMP booting is too fragile that we want to
228 * limit the things done here to the most necessary things.
229 */
230 cr4_init();
231
232 #ifdef CONFIG_X86_32
233 /* switch away from the initial page table */
234 load_cr3(swapper_pg_dir);
235 __flush_tlb_all();
236 #endif
237 cpu_init_secondary();
238 rcu_cpu_starting(raw_smp_processor_id());
239 x86_cpuinit.early_percpu_clock_init();
240 smp_callin();
241
242 enable_start_cpu0 = 0;
243
244 /* otherwise gcc will move up smp_processor_id before the cpu_init */
245 barrier();
246 /*
247 * Check TSC synchronization with the boot CPU:
248 */
249 check_tsc_sync_target();
250
251 speculative_store_bypass_ht_init();
252
253 /*
254 * Lock vector_lock, set CPU online and bring the vector
255 * allocator online. Online must be set with vector_lock held
256 * to prevent a concurrent irq setup/teardown from seeing a
257 * half valid vector space.
258 */
259 lock_vector_lock();
260 set_cpu_online(smp_processor_id(), true);
261 lapic_online();
262 unlock_vector_lock();
263 cpu_set_state_online(smp_processor_id());
264 x86_platform.nmi_init();
265
266 /* enable local interrupts */
267 local_irq_enable();
268
269 x86_cpuinit.setup_percpu_clockev();
270
271 wmb();
272 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
273 }
274
275 /**
276 * topology_is_primary_thread - Check whether CPU is the primary SMT thread
277 * @cpu: CPU to check
278 */
topology_is_primary_thread(unsigned int cpu)279 bool topology_is_primary_thread(unsigned int cpu)
280 {
281 return apic_id_is_primary_thread(per_cpu(x86_cpu_to_apicid, cpu));
282 }
283
284 /**
285 * topology_smt_supported - Check whether SMT is supported by the CPUs
286 */
topology_smt_supported(void)287 bool topology_smt_supported(void)
288 {
289 return smp_num_siblings > 1;
290 }
291
292 /**
293 * topology_phys_to_logical_pkg - Map a physical package id to a logical
294 *
295 * Returns logical package id or -1 if not found
296 */
topology_phys_to_logical_pkg(unsigned int phys_pkg)297 int topology_phys_to_logical_pkg(unsigned int phys_pkg)
298 {
299 int cpu;
300
301 for_each_possible_cpu(cpu) {
302 struct cpuinfo_x86 *c = &cpu_data(cpu);
303
304 if (c->initialized && c->phys_proc_id == phys_pkg)
305 return c->logical_proc_id;
306 }
307 return -1;
308 }
309 EXPORT_SYMBOL(topology_phys_to_logical_pkg);
310 /**
311 * topology_phys_to_logical_die - Map a physical die id to logical
312 *
313 * Returns logical die id or -1 if not found
314 */
topology_phys_to_logical_die(unsigned int die_id,unsigned int cur_cpu)315 int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
316 {
317 int cpu;
318 int proc_id = cpu_data(cur_cpu).phys_proc_id;
319
320 for_each_possible_cpu(cpu) {
321 struct cpuinfo_x86 *c = &cpu_data(cpu);
322
323 if (c->initialized && c->cpu_die_id == die_id &&
324 c->phys_proc_id == proc_id)
325 return c->logical_die_id;
326 }
327 return -1;
328 }
329 EXPORT_SYMBOL(topology_phys_to_logical_die);
330
331 /**
332 * topology_update_package_map - Update the physical to logical package map
333 * @pkg: The physical package id as retrieved via CPUID
334 * @cpu: The cpu for which this is updated
335 */
topology_update_package_map(unsigned int pkg,unsigned int cpu)336 int topology_update_package_map(unsigned int pkg, unsigned int cpu)
337 {
338 int new;
339
340 /* Already available somewhere? */
341 new = topology_phys_to_logical_pkg(pkg);
342 if (new >= 0)
343 goto found;
344
345 new = logical_packages++;
346 if (new != pkg) {
347 pr_info("CPU %u Converting physical %u to logical package %u\n",
348 cpu, pkg, new);
349 }
350 found:
351 cpu_data(cpu).logical_proc_id = new;
352 return 0;
353 }
354 /**
355 * topology_update_die_map - Update the physical to logical die map
356 * @die: The die id as retrieved via CPUID
357 * @cpu: The cpu for which this is updated
358 */
topology_update_die_map(unsigned int die,unsigned int cpu)359 int topology_update_die_map(unsigned int die, unsigned int cpu)
360 {
361 int new;
362
363 /* Already available somewhere? */
364 new = topology_phys_to_logical_die(die, cpu);
365 if (new >= 0)
366 goto found;
367
368 new = logical_die++;
369 if (new != die) {
370 pr_info("CPU %u Converting physical %u to logical die %u\n",
371 cpu, die, new);
372 }
373 found:
374 cpu_data(cpu).logical_die_id = new;
375 return 0;
376 }
377
smp_store_boot_cpu_info(void)378 void __init smp_store_boot_cpu_info(void)
379 {
380 int id = 0; /* CPU 0 */
381 struct cpuinfo_x86 *c = &cpu_data(id);
382
383 *c = boot_cpu_data;
384 c->cpu_index = id;
385 topology_update_package_map(c->phys_proc_id, id);
386 topology_update_die_map(c->cpu_die_id, id);
387 c->initialized = true;
388 }
389
390 /*
391 * The bootstrap kernel entry code has set these up. Save them for
392 * a given CPU
393 */
smp_store_cpu_info(int id)394 void smp_store_cpu_info(int id)
395 {
396 struct cpuinfo_x86 *c = &cpu_data(id);
397
398 /* Copy boot_cpu_data only on the first bringup */
399 if (!c->initialized)
400 *c = boot_cpu_data;
401 c->cpu_index = id;
402 /*
403 * During boot time, CPU0 has this setup already. Save the info when
404 * bringing up AP or offlined CPU0.
405 */
406 identify_secondary_cpu(c);
407 c->initialized = true;
408 }
409
410 static bool
topology_same_node(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)411 topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
412 {
413 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
414
415 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
416 }
417
418 static bool
topology_sane(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o,const char * name)419 topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
420 {
421 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
422
423 return !WARN_ONCE(!topology_same_node(c, o),
424 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
425 "[node: %d != %d]. Ignoring dependency.\n",
426 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
427 }
428
429 #define link_mask(mfunc, c1, c2) \
430 do { \
431 cpumask_set_cpu((c1), mfunc(c2)); \
432 cpumask_set_cpu((c2), mfunc(c1)); \
433 } while (0)
434
match_smt(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)435 static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
436 {
437 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
438 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
439
440 if (c->phys_proc_id == o->phys_proc_id &&
441 c->cpu_die_id == o->cpu_die_id &&
442 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2)) {
443 if (c->cpu_core_id == o->cpu_core_id)
444 return topology_sane(c, o, "smt");
445
446 if ((c->cu_id != 0xff) &&
447 (o->cu_id != 0xff) &&
448 (c->cu_id == o->cu_id))
449 return topology_sane(c, o, "smt");
450 }
451
452 } else if (c->phys_proc_id == o->phys_proc_id &&
453 c->cpu_die_id == o->cpu_die_id &&
454 c->cpu_core_id == o->cpu_core_id) {
455 return topology_sane(c, o, "smt");
456 }
457
458 return false;
459 }
460
match_die(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)461 static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
462 {
463 if (c->phys_proc_id == o->phys_proc_id &&
464 c->cpu_die_id == o->cpu_die_id)
465 return true;
466 return false;
467 }
468
match_l2c(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)469 static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
470 {
471 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
472
473 /* If the arch didn't set up l2c_id, fall back to SMT */
474 if (per_cpu(cpu_l2c_id, cpu1) == BAD_APICID)
475 return match_smt(c, o);
476
477 /* Do not match if L2 cache id does not match: */
478 if (per_cpu(cpu_l2c_id, cpu1) != per_cpu(cpu_l2c_id, cpu2))
479 return false;
480
481 return topology_sane(c, o, "l2c");
482 }
483
484 /*
485 * Unlike the other levels, we do not enforce keeping a
486 * multicore group inside a NUMA node. If this happens, we will
487 * discard the MC level of the topology later.
488 */
match_pkg(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)489 static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
490 {
491 if (c->phys_proc_id == o->phys_proc_id)
492 return true;
493 return false;
494 }
495
496 /*
497 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
498 *
499 * Any Intel CPU that has multiple nodes per package and does not
500 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
501 *
502 * When in SNC mode, these CPUs enumerate an LLC that is shared
503 * by multiple NUMA nodes. The LLC is shared for off-package data
504 * access but private to the NUMA node (half of the package) for
505 * on-package access. CPUID (the source of the information about
506 * the LLC) can only enumerate the cache as shared or unshared,
507 * but not this particular configuration.
508 */
509
510 static const struct x86_cpu_id intel_cod_cpu[] = {
511 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0), /* COD */
512 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0), /* COD */
513 X86_MATCH_INTEL_FAM6_MODEL(ANY, 1), /* SNC */
514 {}
515 };
516
match_llc(struct cpuinfo_x86 * c,struct cpuinfo_x86 * o)517 static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
518 {
519 const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
520 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
521 bool intel_snc = id && id->driver_data;
522
523 /* Do not match if we do not have a valid APICID for cpu: */
524 if (per_cpu(cpu_llc_id, cpu1) == BAD_APICID)
525 return false;
526
527 /* Do not match if LLC id does not match: */
528 if (per_cpu(cpu_llc_id, cpu1) != per_cpu(cpu_llc_id, cpu2))
529 return false;
530
531 /*
532 * Allow the SNC topology without warning. Return of false
533 * means 'c' does not share the LLC of 'o'. This will be
534 * reflected to userspace.
535 */
536 if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
537 return false;
538
539 return topology_sane(c, o, "llc");
540 }
541
542
543 #if defined(CONFIG_SCHED_SMT) || defined(CONFIG_SCHED_CLUSTER) || defined(CONFIG_SCHED_MC)
x86_sched_itmt_flags(void)544 static inline int x86_sched_itmt_flags(void)
545 {
546 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
547 }
548
549 #ifdef CONFIG_SCHED_MC
x86_core_flags(void)550 static int x86_core_flags(void)
551 {
552 return cpu_core_flags() | x86_sched_itmt_flags();
553 }
554 #endif
555 #ifdef CONFIG_SCHED_SMT
x86_smt_flags(void)556 static int x86_smt_flags(void)
557 {
558 return cpu_smt_flags() | x86_sched_itmt_flags();
559 }
560 #endif
561 #ifdef CONFIG_SCHED_CLUSTER
x86_cluster_flags(void)562 static int x86_cluster_flags(void)
563 {
564 return cpu_cluster_flags() | x86_sched_itmt_flags();
565 }
566 #endif
567 #endif
568
569 static struct sched_domain_topology_level x86_numa_in_package_topology[] = {
570 #ifdef CONFIG_SCHED_SMT
571 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
572 #endif
573 #ifdef CONFIG_SCHED_CLUSTER
574 { cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS) },
575 #endif
576 #ifdef CONFIG_SCHED_MC
577 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
578 #endif
579 { NULL, },
580 };
581
582 static struct sched_domain_topology_level x86_hybrid_topology[] = {
583 #ifdef CONFIG_SCHED_SMT
584 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
585 #endif
586 #ifdef CONFIG_SCHED_MC
587 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
588 #endif
589 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
590 { NULL, },
591 };
592
593 static struct sched_domain_topology_level x86_topology[] = {
594 #ifdef CONFIG_SCHED_SMT
595 { cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT) },
596 #endif
597 #ifdef CONFIG_SCHED_CLUSTER
598 { cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS) },
599 #endif
600 #ifdef CONFIG_SCHED_MC
601 { cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC) },
602 #endif
603 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
604 { NULL, },
605 };
606
607 /*
608 * Set if a package/die has multiple NUMA nodes inside.
609 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
610 * Sub-NUMA Clustering have this.
611 */
612 static bool x86_has_numa_in_package;
613
set_cpu_sibling_map(int cpu)614 void set_cpu_sibling_map(int cpu)
615 {
616 bool has_smt = smp_num_siblings > 1;
617 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
618 struct cpuinfo_x86 *c = &cpu_data(cpu);
619 struct cpuinfo_x86 *o;
620 int i, threads;
621
622 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
623
624 if (!has_mp) {
625 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
626 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
627 cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
628 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
629 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
630 c->booted_cores = 1;
631 return;
632 }
633
634 for_each_cpu(i, cpu_sibling_setup_mask) {
635 o = &cpu_data(i);
636
637 if (match_pkg(c, o) && !topology_same_node(c, o))
638 x86_has_numa_in_package = true;
639
640 if ((i == cpu) || (has_smt && match_smt(c, o)))
641 link_mask(topology_sibling_cpumask, cpu, i);
642
643 if ((i == cpu) || (has_mp && match_llc(c, o)))
644 link_mask(cpu_llc_shared_mask, cpu, i);
645
646 if ((i == cpu) || (has_mp && match_l2c(c, o)))
647 link_mask(cpu_l2c_shared_mask, cpu, i);
648
649 if ((i == cpu) || (has_mp && match_die(c, o)))
650 link_mask(topology_die_cpumask, cpu, i);
651 }
652
653 threads = cpumask_weight(topology_sibling_cpumask(cpu));
654 if (threads > __max_smt_threads)
655 __max_smt_threads = threads;
656
657 for_each_cpu(i, topology_sibling_cpumask(cpu))
658 cpu_data(i).smt_active = threads > 1;
659
660 /*
661 * This needs a separate iteration over the cpus because we rely on all
662 * topology_sibling_cpumask links to be set-up.
663 */
664 for_each_cpu(i, cpu_sibling_setup_mask) {
665 o = &cpu_data(i);
666
667 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
668 link_mask(topology_core_cpumask, cpu, i);
669
670 /*
671 * Does this new cpu bringup a new core?
672 */
673 if (threads == 1) {
674 /*
675 * for each core in package, increment
676 * the booted_cores for this new cpu
677 */
678 if (cpumask_first(
679 topology_sibling_cpumask(i)) == i)
680 c->booted_cores++;
681 /*
682 * increment the core count for all
683 * the other cpus in this package
684 */
685 if (i != cpu)
686 cpu_data(i).booted_cores++;
687 } else if (i != cpu && !c->booted_cores)
688 c->booted_cores = cpu_data(i).booted_cores;
689 }
690 }
691 }
692
693 /* maps the cpu to the sched domain representing multi-core */
cpu_coregroup_mask(int cpu)694 const struct cpumask *cpu_coregroup_mask(int cpu)
695 {
696 return cpu_llc_shared_mask(cpu);
697 }
698
cpu_clustergroup_mask(int cpu)699 const struct cpumask *cpu_clustergroup_mask(int cpu)
700 {
701 return cpu_l2c_shared_mask(cpu);
702 }
703
impress_friends(void)704 static void impress_friends(void)
705 {
706 int cpu;
707 unsigned long bogosum = 0;
708 /*
709 * Allow the user to impress friends.
710 */
711 pr_debug("Before bogomips\n");
712 for_each_possible_cpu(cpu)
713 if (cpumask_test_cpu(cpu, cpu_callout_mask))
714 bogosum += cpu_data(cpu).loops_per_jiffy;
715 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
716 num_online_cpus(),
717 bogosum/(500000/HZ),
718 (bogosum/(5000/HZ))%100);
719
720 pr_debug("Before bogocount - setting activated=1\n");
721 }
722
__inquire_remote_apic(int apicid)723 void __inquire_remote_apic(int apicid)
724 {
725 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
726 const char * const names[] = { "ID", "VERSION", "SPIV" };
727 int timeout;
728 u32 status;
729
730 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
731
732 for (i = 0; i < ARRAY_SIZE(regs); i++) {
733 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
734
735 /*
736 * Wait for idle.
737 */
738 status = safe_apic_wait_icr_idle();
739 if (status)
740 pr_cont("a previous APIC delivery may have failed\n");
741
742 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
743
744 timeout = 0;
745 do {
746 udelay(100);
747 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
748 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
749
750 switch (status) {
751 case APIC_ICR_RR_VALID:
752 status = apic_read(APIC_RRR);
753 pr_cont("%08x\n", status);
754 break;
755 default:
756 pr_cont("failed\n");
757 }
758 }
759 }
760
761 /*
762 * The Multiprocessor Specification 1.4 (1997) example code suggests
763 * that there should be a 10ms delay between the BSP asserting INIT
764 * and de-asserting INIT, when starting a remote processor.
765 * But that slows boot and resume on modern processors, which include
766 * many cores and don't require that delay.
767 *
768 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
769 * Modern processor families are quirked to remove the delay entirely.
770 */
771 #define UDELAY_10MS_DEFAULT 10000
772
773 static unsigned int init_udelay = UINT_MAX;
774
cpu_init_udelay(char * str)775 static int __init cpu_init_udelay(char *str)
776 {
777 get_option(&str, &init_udelay);
778
779 return 0;
780 }
781 early_param("cpu_init_udelay", cpu_init_udelay);
782
smp_quirk_init_udelay(void)783 static void __init smp_quirk_init_udelay(void)
784 {
785 /* if cmdline changed it from default, leave it alone */
786 if (init_udelay != UINT_MAX)
787 return;
788
789 /* if modern processor, use no delay */
790 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
791 ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
792 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
793 init_udelay = 0;
794 return;
795 }
796 /* else, use legacy delay */
797 init_udelay = UDELAY_10MS_DEFAULT;
798 }
799
800 /*
801 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
802 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
803 * won't ... remember to clear down the APIC, etc later.
804 */
805 int
wakeup_secondary_cpu_via_nmi(int apicid,unsigned long start_eip)806 wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
807 {
808 u32 dm = apic->dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
809 unsigned long send_status, accept_status = 0;
810 int maxlvt;
811
812 /* Target chip */
813 /* Boot on the stack */
814 /* Kick the second */
815 apic_icr_write(APIC_DM_NMI | dm, apicid);
816
817 pr_debug("Waiting for send to finish...\n");
818 send_status = safe_apic_wait_icr_idle();
819
820 /*
821 * Give the other CPU some time to accept the IPI.
822 */
823 udelay(200);
824 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
825 maxlvt = lapic_get_maxlvt();
826 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
827 apic_write(APIC_ESR, 0);
828 accept_status = (apic_read(APIC_ESR) & 0xEF);
829 }
830 pr_debug("NMI sent\n");
831
832 if (send_status)
833 pr_err("APIC never delivered???\n");
834 if (accept_status)
835 pr_err("APIC delivery error (%lx)\n", accept_status);
836
837 return (send_status | accept_status);
838 }
839
840 static int
wakeup_secondary_cpu_via_init(int phys_apicid,unsigned long start_eip)841 wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
842 {
843 unsigned long send_status = 0, accept_status = 0;
844 int maxlvt, num_starts, j;
845
846 maxlvt = lapic_get_maxlvt();
847
848 /*
849 * Be paranoid about clearing APIC errors.
850 */
851 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
852 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
853 apic_write(APIC_ESR, 0);
854 apic_read(APIC_ESR);
855 }
856
857 pr_debug("Asserting INIT\n");
858
859 /*
860 * Turn INIT on target chip
861 */
862 /*
863 * Send IPI
864 */
865 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
866 phys_apicid);
867
868 pr_debug("Waiting for send to finish...\n");
869 send_status = safe_apic_wait_icr_idle();
870
871 udelay(init_udelay);
872
873 pr_debug("Deasserting INIT\n");
874
875 /* Target chip */
876 /* Send IPI */
877 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
878
879 pr_debug("Waiting for send to finish...\n");
880 send_status = safe_apic_wait_icr_idle();
881
882 mb();
883
884 /*
885 * Should we send STARTUP IPIs ?
886 *
887 * Determine this based on the APIC version.
888 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
889 */
890 if (APIC_INTEGRATED(boot_cpu_apic_version))
891 num_starts = 2;
892 else
893 num_starts = 0;
894
895 /*
896 * Run STARTUP IPI loop.
897 */
898 pr_debug("#startup loops: %d\n", num_starts);
899
900 for (j = 1; j <= num_starts; j++) {
901 pr_debug("Sending STARTUP #%d\n", j);
902 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
903 apic_write(APIC_ESR, 0);
904 apic_read(APIC_ESR);
905 pr_debug("After apic_write\n");
906
907 /*
908 * STARTUP IPI
909 */
910
911 /* Target chip */
912 /* Boot on the stack */
913 /* Kick the second */
914 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
915 phys_apicid);
916
917 /*
918 * Give the other CPU some time to accept the IPI.
919 */
920 if (init_udelay == 0)
921 udelay(10);
922 else
923 udelay(300);
924
925 pr_debug("Startup point 1\n");
926
927 pr_debug("Waiting for send to finish...\n");
928 send_status = safe_apic_wait_icr_idle();
929
930 /*
931 * Give the other CPU some time to accept the IPI.
932 */
933 if (init_udelay == 0)
934 udelay(10);
935 else
936 udelay(200);
937
938 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
939 apic_write(APIC_ESR, 0);
940 accept_status = (apic_read(APIC_ESR) & 0xEF);
941 if (send_status || accept_status)
942 break;
943 }
944 pr_debug("After Startup\n");
945
946 if (send_status)
947 pr_err("APIC never delivered???\n");
948 if (accept_status)
949 pr_err("APIC delivery error (%lx)\n", accept_status);
950
951 return (send_status | accept_status);
952 }
953
954 /* reduce the number of lines printed when booting a large cpu count system */
announce_cpu(int cpu,int apicid)955 static void announce_cpu(int cpu, int apicid)
956 {
957 static int current_node = NUMA_NO_NODE;
958 int node = early_cpu_to_node(cpu);
959 static int width, node_width;
960
961 if (!width)
962 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
963
964 if (!node_width)
965 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
966
967 if (cpu == 1)
968 printk(KERN_INFO "x86: Booting SMP configuration:\n");
969
970 if (system_state < SYSTEM_RUNNING) {
971 if (node != current_node) {
972 if (current_node > (-1))
973 pr_cont("\n");
974 current_node = node;
975
976 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
977 node_width - num_digits(node), " ", node);
978 }
979
980 /* Add padding for the BSP */
981 if (cpu == 1)
982 pr_cont("%*s", width + 1, " ");
983
984 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
985
986 } else
987 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
988 node, cpu, apicid);
989 }
990
wakeup_cpu0_nmi(unsigned int cmd,struct pt_regs * regs)991 static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
992 {
993 int cpu;
994
995 cpu = smp_processor_id();
996 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
997 return NMI_HANDLED;
998
999 return NMI_DONE;
1000 }
1001
1002 /*
1003 * Wake up AP by INIT, INIT, STARTUP sequence.
1004 *
1005 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
1006 * boot-strap code which is not a desired behavior for waking up BSP. To
1007 * void the boot-strap code, wake up CPU0 by NMI instead.
1008 *
1009 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
1010 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
1011 * We'll change this code in the future to wake up hard offlined CPU0 if
1012 * real platform and request are available.
1013 */
1014 static int
wakeup_cpu_via_init_nmi(int cpu,unsigned long start_ip,int apicid,int * cpu0_nmi_registered)1015 wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
1016 int *cpu0_nmi_registered)
1017 {
1018 int id;
1019 int boot_error;
1020
1021 preempt_disable();
1022
1023 /*
1024 * Wake up AP by INIT, INIT, STARTUP sequence.
1025 */
1026 if (cpu) {
1027 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
1028 goto out;
1029 }
1030
1031 /*
1032 * Wake up BSP by nmi.
1033 *
1034 * Register a NMI handler to help wake up CPU0.
1035 */
1036 boot_error = register_nmi_handler(NMI_LOCAL,
1037 wakeup_cpu0_nmi, 0, "wake_cpu0");
1038
1039 if (!boot_error) {
1040 enable_start_cpu0 = 1;
1041 *cpu0_nmi_registered = 1;
1042 id = apic->dest_mode_logical ? cpu0_logical_apicid : apicid;
1043 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
1044 }
1045
1046 out:
1047 preempt_enable();
1048
1049 return boot_error;
1050 }
1051
common_cpu_up(unsigned int cpu,struct task_struct * idle)1052 int common_cpu_up(unsigned int cpu, struct task_struct *idle)
1053 {
1054 int ret;
1055
1056 /* Just in case we booted with a single CPU. */
1057 alternatives_enable_smp();
1058
1059 per_cpu(current_task, cpu) = idle;
1060 cpu_init_stack_canary(cpu, idle);
1061
1062 /* Initialize the interrupt stack(s) */
1063 ret = irq_init_percpu_irqstack(cpu);
1064 if (ret)
1065 return ret;
1066
1067 #ifdef CONFIG_X86_32
1068 /* Stack for startup_32 can be just as for start_secondary onwards */
1069 per_cpu(cpu_current_top_of_stack, cpu) = task_top_of_stack(idle);
1070 #else
1071 initial_gs = per_cpu_offset(cpu);
1072 #endif
1073 return 0;
1074 }
1075
1076 /*
1077 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
1078 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
1079 * Returns zero if CPU booted OK, else error code from
1080 * ->wakeup_secondary_cpu.
1081 */
do_boot_cpu(int apicid,int cpu,struct task_struct * idle,int * cpu0_nmi_registered)1082 static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle,
1083 int *cpu0_nmi_registered)
1084 {
1085 /* start_ip had better be page-aligned! */
1086 unsigned long start_ip = real_mode_header->trampoline_start;
1087
1088 unsigned long boot_error = 0;
1089 unsigned long timeout;
1090
1091 idle->thread.sp = (unsigned long)task_pt_regs(idle);
1092 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1093 initial_code = (unsigned long)start_secondary;
1094 initial_stack = idle->thread.sp;
1095
1096 /* Enable the espfix hack for this CPU */
1097 init_espfix_ap(cpu);
1098
1099 /* So we see what's up */
1100 announce_cpu(cpu, apicid);
1101
1102 /*
1103 * This grunge runs the startup process for
1104 * the targeted processor.
1105 */
1106
1107 if (x86_platform.legacy.warm_reset) {
1108
1109 pr_debug("Setting warm reset code and vector.\n");
1110
1111 smpboot_setup_warm_reset_vector(start_ip);
1112 /*
1113 * Be paranoid about clearing APIC errors.
1114 */
1115 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1116 apic_write(APIC_ESR, 0);
1117 apic_read(APIC_ESR);
1118 }
1119 }
1120
1121 /*
1122 * AP might wait on cpu_callout_mask in cpu_init() with
1123 * cpu_initialized_mask set if previous attempt to online
1124 * it timed-out. Clear cpu_initialized_mask so that after
1125 * INIT/SIPI it could start with a clean state.
1126 */
1127 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1128 smp_mb();
1129
1130 /*
1131 * Wake up a CPU in difference cases:
1132 * - Use the method in the APIC driver if it's defined
1133 * Otherwise,
1134 * - Use an INIT boot APIC message for APs or NMI for BSP.
1135 */
1136 if (apic->wakeup_secondary_cpu)
1137 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
1138 else
1139 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
1140 cpu0_nmi_registered);
1141
1142 if (!boot_error) {
1143 /*
1144 * Wait 10s total for first sign of life from AP
1145 */
1146 boot_error = -1;
1147 timeout = jiffies + 10*HZ;
1148 while (time_before(jiffies, timeout)) {
1149 if (cpumask_test_cpu(cpu, cpu_initialized_mask)) {
1150 /*
1151 * Tell AP to proceed with initialization
1152 */
1153 cpumask_set_cpu(cpu, cpu_callout_mask);
1154 boot_error = 0;
1155 break;
1156 }
1157 schedule();
1158 }
1159 }
1160
1161 if (!boot_error) {
1162 /*
1163 * Wait till AP completes initial initialization
1164 */
1165 while (!cpumask_test_cpu(cpu, cpu_callin_mask)) {
1166 /*
1167 * Allow other tasks to run while we wait for the
1168 * AP to come online. This also gives a chance
1169 * for the MTRR work(triggered by the AP coming online)
1170 * to be completed in the stop machine context.
1171 */
1172 schedule();
1173 }
1174 }
1175
1176 if (x86_platform.legacy.warm_reset) {
1177 /*
1178 * Cleanup possible dangling ends...
1179 */
1180 smpboot_restore_warm_reset_vector();
1181 }
1182
1183 return boot_error;
1184 }
1185
native_cpu_up(unsigned int cpu,struct task_struct * tidle)1186 int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
1187 {
1188 int apicid = apic->cpu_present_to_apicid(cpu);
1189 int cpu0_nmi_registered = 0;
1190 unsigned long flags;
1191 int err, ret = 0;
1192
1193 lockdep_assert_irqs_enabled();
1194
1195 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1196
1197 if (apicid == BAD_APICID ||
1198 !physid_isset(apicid, phys_cpu_present_map) ||
1199 !apic->apic_id_valid(apicid)) {
1200 pr_err("%s: bad cpu %d\n", __func__, cpu);
1201 return -EINVAL;
1202 }
1203
1204 /*
1205 * Already booted CPU?
1206 */
1207 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
1208 pr_debug("do_boot_cpu %d Already started\n", cpu);
1209 return -ENOSYS;
1210 }
1211
1212 /*
1213 * Save current MTRR state in case it was changed since early boot
1214 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1215 */
1216 mtrr_save_state();
1217
1218 /* x86 CPUs take themselves offline, so delayed offline is OK. */
1219 err = cpu_check_up_prepare(cpu);
1220 if (err && err != -EBUSY)
1221 return err;
1222
1223 /* the FPU context is blank, nobody can own it */
1224 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1225
1226 err = common_cpu_up(cpu, tidle);
1227 if (err)
1228 return err;
1229
1230 err = do_boot_cpu(apicid, cpu, tidle, &cpu0_nmi_registered);
1231 if (err) {
1232 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1233 ret = -EIO;
1234 goto unreg_nmi;
1235 }
1236
1237 /*
1238 * Check TSC synchronization with the AP (keep irqs disabled
1239 * while doing so):
1240 */
1241 local_irq_save(flags);
1242 check_tsc_sync_source(cpu);
1243 local_irq_restore(flags);
1244
1245 while (!cpu_online(cpu)) {
1246 cpu_relax();
1247 touch_nmi_watchdog();
1248 }
1249
1250 unreg_nmi:
1251 /*
1252 * Clean up the nmi handler. Do this after the callin and callout sync
1253 * to avoid impact of possible long unregister time.
1254 */
1255 if (cpu0_nmi_registered)
1256 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
1257
1258 return ret;
1259 }
1260
1261 /**
1262 * arch_disable_smp_support() - disables SMP support for x86 at runtime
1263 */
arch_disable_smp_support(void)1264 void arch_disable_smp_support(void)
1265 {
1266 disable_ioapic_support();
1267 }
1268
1269 /*
1270 * Fall back to non SMP mode after errors.
1271 *
1272 * RED-PEN audit/test this more. I bet there is more state messed up here.
1273 */
disable_smp(void)1274 static __init void disable_smp(void)
1275 {
1276 pr_info("SMP disabled\n");
1277
1278 disable_ioapic_support();
1279
1280 init_cpu_present(cpumask_of(0));
1281 init_cpu_possible(cpumask_of(0));
1282
1283 if (smp_found_config)
1284 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1285 else
1286 physid_set_mask_of_physid(0, &phys_cpu_present_map);
1287 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1288 cpumask_set_cpu(0, topology_core_cpumask(0));
1289 cpumask_set_cpu(0, topology_die_cpumask(0));
1290 }
1291
1292 /*
1293 * Various sanity checks.
1294 */
smp_sanity_check(void)1295 static void __init smp_sanity_check(void)
1296 {
1297 preempt_disable();
1298
1299 #if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
1300 if (def_to_bigsmp && nr_cpu_ids > 8) {
1301 unsigned int cpu;
1302 unsigned nr;
1303
1304 pr_warn("More than 8 CPUs detected - skipping them\n"
1305 "Use CONFIG_X86_BIGSMP\n");
1306
1307 nr = 0;
1308 for_each_present_cpu(cpu) {
1309 if (nr >= 8)
1310 set_cpu_present(cpu, false);
1311 nr++;
1312 }
1313
1314 nr = 0;
1315 for_each_possible_cpu(cpu) {
1316 if (nr >= 8)
1317 set_cpu_possible(cpu, false);
1318 nr++;
1319 }
1320
1321 nr_cpu_ids = 8;
1322 }
1323 #endif
1324
1325 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1326 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1327 hard_smp_processor_id());
1328
1329 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1330 }
1331
1332 /*
1333 * Should not be necessary because the MP table should list the boot
1334 * CPU too, but we do it for the sake of robustness anyway.
1335 */
1336 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1337 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1338 boot_cpu_physical_apicid);
1339 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1340 }
1341 preempt_enable();
1342 }
1343
smp_cpu_index_default(void)1344 static void __init smp_cpu_index_default(void)
1345 {
1346 int i;
1347 struct cpuinfo_x86 *c;
1348
1349 for_each_possible_cpu(i) {
1350 c = &cpu_data(i);
1351 /* mark all to hotplug */
1352 c->cpu_index = nr_cpu_ids;
1353 }
1354 }
1355
smp_get_logical_apicid(void)1356 static void __init smp_get_logical_apicid(void)
1357 {
1358 if (x2apic_mode)
1359 cpu0_logical_apicid = apic_read(APIC_LDR);
1360 else
1361 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1362 }
1363
smp_prepare_cpus_common(void)1364 void __init smp_prepare_cpus_common(void)
1365 {
1366 unsigned int i;
1367
1368 smp_cpu_index_default();
1369
1370 /*
1371 * Setup boot CPU information
1372 */
1373 smp_store_boot_cpu_info(); /* Final full version of the data */
1374 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1375 mb();
1376
1377 for_each_possible_cpu(i) {
1378 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1379 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1380 zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1381 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1382 zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
1383 }
1384
1385 /*
1386 * Set 'default' x86 topology, this matches default_topology() in that
1387 * it has NUMA nodes as a topology level. See also
1388 * native_smp_cpus_done().
1389 *
1390 * Must be done before set_cpus_sibling_map() is ran.
1391 */
1392 set_sched_topology(x86_topology);
1393
1394 set_cpu_sibling_map(0);
1395 }
1396
1397 /*
1398 * Prepare for SMP bootup.
1399 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1400 * for common interface support.
1401 */
native_smp_prepare_cpus(unsigned int max_cpus)1402 void __init native_smp_prepare_cpus(unsigned int max_cpus)
1403 {
1404 smp_prepare_cpus_common();
1405
1406 init_freq_invariance(false, false);
1407 smp_sanity_check();
1408
1409 switch (apic_intr_mode) {
1410 case APIC_PIC:
1411 case APIC_VIRTUAL_WIRE_NO_CONFIG:
1412 disable_smp();
1413 return;
1414 case APIC_SYMMETRIC_IO_NO_ROUTING:
1415 disable_smp();
1416 /* Setup local timer */
1417 x86_init.timers.setup_percpu_clockev();
1418 return;
1419 case APIC_VIRTUAL_WIRE:
1420 case APIC_SYMMETRIC_IO:
1421 break;
1422 }
1423
1424 /* Setup local timer */
1425 x86_init.timers.setup_percpu_clockev();
1426
1427 smp_get_logical_apicid();
1428
1429 pr_info("CPU0: ");
1430 print_cpu_info(&cpu_data(0));
1431
1432 uv_system_init();
1433
1434 set_mtrr_aps_delayed_init();
1435
1436 smp_quirk_init_udelay();
1437
1438 speculative_store_bypass_ht_init();
1439 }
1440
arch_thaw_secondary_cpus_begin(void)1441 void arch_thaw_secondary_cpus_begin(void)
1442 {
1443 set_mtrr_aps_delayed_init();
1444 }
1445
arch_thaw_secondary_cpus_end(void)1446 void arch_thaw_secondary_cpus_end(void)
1447 {
1448 mtrr_aps_init();
1449 }
1450
1451 /*
1452 * Early setup to make printk work.
1453 */
native_smp_prepare_boot_cpu(void)1454 void __init native_smp_prepare_boot_cpu(void)
1455 {
1456 int me = smp_processor_id();
1457 switch_to_new_gdt(me);
1458 /* already set me in cpu_online_mask in boot_cpu_init() */
1459 cpumask_set_cpu(me, cpu_callout_mask);
1460 cpu_set_state_online(me);
1461 native_pv_lock_init();
1462 }
1463
calculate_max_logical_packages(void)1464 void __init calculate_max_logical_packages(void)
1465 {
1466 int ncpus;
1467
1468 /*
1469 * Today neither Intel nor AMD support heterogeneous systems so
1470 * extrapolate the boot cpu's data to all packages.
1471 */
1472 ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1473 __max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1474 pr_info("Max logical packages: %u\n", __max_logical_packages);
1475 }
1476
native_smp_cpus_done(unsigned int max_cpus)1477 void __init native_smp_cpus_done(unsigned int max_cpus)
1478 {
1479 pr_debug("Boot done\n");
1480
1481 calculate_max_logical_packages();
1482
1483 /* XXX for now assume numa-in-package and hybrid don't overlap */
1484 if (x86_has_numa_in_package)
1485 set_sched_topology(x86_numa_in_package_topology);
1486 if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
1487 set_sched_topology(x86_hybrid_topology);
1488
1489 nmi_selftest();
1490 impress_friends();
1491 mtrr_aps_init();
1492 }
1493
1494 static int __initdata setup_possible_cpus = -1;
_setup_possible_cpus(char * str)1495 static int __init _setup_possible_cpus(char *str)
1496 {
1497 get_option(&str, &setup_possible_cpus);
1498 return 0;
1499 }
1500 early_param("possible_cpus", _setup_possible_cpus);
1501
1502
1503 /*
1504 * cpu_possible_mask should be static, it cannot change as cpu's
1505 * are onlined, or offlined. The reason is per-cpu data-structures
1506 * are allocated by some modules at init time, and don't expect to
1507 * do this dynamically on cpu arrival/departure.
1508 * cpu_present_mask on the other hand can change dynamically.
1509 * In case when cpu_hotplug is not compiled, then we resort to current
1510 * behaviour, which is cpu_possible == cpu_present.
1511 * - Ashok Raj
1512 *
1513 * Three ways to find out the number of additional hotplug CPUs:
1514 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1515 * - The user can overwrite it with possible_cpus=NUM
1516 * - Otherwise don't reserve additional CPUs.
1517 * We do this because additional CPUs waste a lot of memory.
1518 * -AK
1519 */
prefill_possible_map(void)1520 __init void prefill_possible_map(void)
1521 {
1522 int i, possible;
1523
1524 /* No boot processor was found in mptable or ACPI MADT */
1525 if (!num_processors) {
1526 if (boot_cpu_has(X86_FEATURE_APIC)) {
1527 int apicid = boot_cpu_physical_apicid;
1528 int cpu = hard_smp_processor_id();
1529
1530 pr_warn("Boot CPU (id %d) not listed by BIOS\n", cpu);
1531
1532 /* Make sure boot cpu is enumerated */
1533 if (apic->cpu_present_to_apicid(0) == BAD_APICID &&
1534 apic->apic_id_valid(apicid))
1535 generic_processor_info(apicid, boot_cpu_apic_version);
1536 }
1537
1538 if (!num_processors)
1539 num_processors = 1;
1540 }
1541
1542 i = setup_max_cpus ?: 1;
1543 if (setup_possible_cpus == -1) {
1544 possible = num_processors;
1545 #ifdef CONFIG_HOTPLUG_CPU
1546 if (setup_max_cpus)
1547 possible += disabled_cpus;
1548 #else
1549 if (possible > i)
1550 possible = i;
1551 #endif
1552 } else
1553 possible = setup_possible_cpus;
1554
1555 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1556
1557 /* nr_cpu_ids could be reduced via nr_cpus= */
1558 if (possible > nr_cpu_ids) {
1559 pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1560 possible, nr_cpu_ids);
1561 possible = nr_cpu_ids;
1562 }
1563
1564 #ifdef CONFIG_HOTPLUG_CPU
1565 if (!setup_max_cpus)
1566 #endif
1567 if (possible > i) {
1568 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1569 possible, setup_max_cpus);
1570 possible = i;
1571 }
1572
1573 nr_cpu_ids = possible;
1574
1575 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1576 possible, max_t(int, possible - num_processors, 0));
1577
1578 reset_cpu_possible_mask();
1579
1580 for (i = 0; i < possible; i++)
1581 set_cpu_possible(i, true);
1582 }
1583
1584 #ifdef CONFIG_HOTPLUG_CPU
1585
1586 /* Recompute SMT state for all CPUs on offline */
recompute_smt_state(void)1587 static void recompute_smt_state(void)
1588 {
1589 int max_threads, cpu;
1590
1591 max_threads = 0;
1592 for_each_online_cpu (cpu) {
1593 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1594
1595 if (threads > max_threads)
1596 max_threads = threads;
1597 }
1598 __max_smt_threads = max_threads;
1599 }
1600
remove_siblinginfo(int cpu)1601 static void remove_siblinginfo(int cpu)
1602 {
1603 int sibling;
1604 struct cpuinfo_x86 *c = &cpu_data(cpu);
1605
1606 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1607 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1608 /*/
1609 * last thread sibling in this cpu core going down
1610 */
1611 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1612 cpu_data(sibling).booted_cores--;
1613 }
1614
1615 for_each_cpu(sibling, topology_die_cpumask(cpu))
1616 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1617
1618 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1619 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1620 if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1621 cpu_data(sibling).smt_active = false;
1622 }
1623
1624 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1625 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1626 for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1627 cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1628 cpumask_clear(cpu_llc_shared_mask(cpu));
1629 cpumask_clear(cpu_l2c_shared_mask(cpu));
1630 cpumask_clear(topology_sibling_cpumask(cpu));
1631 cpumask_clear(topology_core_cpumask(cpu));
1632 cpumask_clear(topology_die_cpumask(cpu));
1633 c->cpu_core_id = 0;
1634 c->booted_cores = 0;
1635 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1636 recompute_smt_state();
1637 }
1638
remove_cpu_from_maps(int cpu)1639 static void remove_cpu_from_maps(int cpu)
1640 {
1641 set_cpu_online(cpu, false);
1642 cpumask_clear_cpu(cpu, cpu_callout_mask);
1643 cpumask_clear_cpu(cpu, cpu_callin_mask);
1644 /* was set by cpu_init() */
1645 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1646 numa_remove_cpu(cpu);
1647 }
1648
cpu_disable_common(void)1649 void cpu_disable_common(void)
1650 {
1651 int cpu = smp_processor_id();
1652
1653 remove_siblinginfo(cpu);
1654
1655 /* It's now safe to remove this processor from the online map */
1656 lock_vector_lock();
1657 remove_cpu_from_maps(cpu);
1658 unlock_vector_lock();
1659 fixup_irqs();
1660 lapic_offline();
1661 }
1662
native_cpu_disable(void)1663 int native_cpu_disable(void)
1664 {
1665 int ret;
1666
1667 ret = lapic_can_unplug_cpu();
1668 if (ret)
1669 return ret;
1670
1671 cpu_disable_common();
1672
1673 /*
1674 * Disable the local APIC. Otherwise IPI broadcasts will reach
1675 * it. It still responds normally to INIT, NMI, SMI, and SIPI
1676 * messages.
1677 *
1678 * Disabling the APIC must happen after cpu_disable_common()
1679 * which invokes fixup_irqs().
1680 *
1681 * Disabling the APIC preserves already set bits in IRR, but
1682 * an interrupt arriving after disabling the local APIC does not
1683 * set the corresponding IRR bit.
1684 *
1685 * fixup_irqs() scans IRR for set bits so it can raise a not
1686 * yet handled interrupt on the new destination CPU via an IPI
1687 * but obviously it can't do so for IRR bits which are not set.
1688 * IOW, interrupts arriving after disabling the local APIC will
1689 * be lost.
1690 */
1691 apic_soft_disable();
1692
1693 return 0;
1694 }
1695
common_cpu_die(unsigned int cpu)1696 int common_cpu_die(unsigned int cpu)
1697 {
1698 int ret = 0;
1699
1700 /* We don't do anything here: idle task is faking death itself. */
1701
1702 /* They ack this in play_dead() by setting CPU_DEAD */
1703 if (cpu_wait_death(cpu, 5)) {
1704 if (system_state == SYSTEM_RUNNING)
1705 pr_info("CPU %u is now offline\n", cpu);
1706 } else {
1707 pr_err("CPU %u didn't die...\n", cpu);
1708 ret = -1;
1709 }
1710
1711 return ret;
1712 }
1713
native_cpu_die(unsigned int cpu)1714 void native_cpu_die(unsigned int cpu)
1715 {
1716 common_cpu_die(cpu);
1717 }
1718
play_dead_common(void)1719 void play_dead_common(void)
1720 {
1721 idle_task_exit();
1722
1723 /* Ack it */
1724 (void)cpu_report_death();
1725
1726 /*
1727 * With physical CPU hotplug, we should halt the cpu
1728 */
1729 local_irq_disable();
1730 }
1731
1732 /**
1733 * cond_wakeup_cpu0 - Wake up CPU0 if needed.
1734 *
1735 * If NMI wants to wake up CPU0, start CPU0.
1736 */
cond_wakeup_cpu0(void)1737 void cond_wakeup_cpu0(void)
1738 {
1739 if (smp_processor_id() == 0 && enable_start_cpu0)
1740 start_cpu0();
1741 }
1742 EXPORT_SYMBOL_GPL(cond_wakeup_cpu0);
1743
1744 /*
1745 * We need to flush the caches before going to sleep, lest we have
1746 * dirty data in our caches when we come back up.
1747 */
mwait_play_dead(void)1748 static inline void mwait_play_dead(void)
1749 {
1750 unsigned int eax, ebx, ecx, edx;
1751 unsigned int highest_cstate = 0;
1752 unsigned int highest_subcstate = 0;
1753 void *mwait_ptr;
1754 int i;
1755
1756 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1757 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1758 return;
1759 if (!this_cpu_has(X86_FEATURE_MWAIT))
1760 return;
1761 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1762 return;
1763 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1764 return;
1765
1766 eax = CPUID_MWAIT_LEAF;
1767 ecx = 0;
1768 native_cpuid(&eax, &ebx, &ecx, &edx);
1769
1770 /*
1771 * eax will be 0 if EDX enumeration is not valid.
1772 * Initialized below to cstate, sub_cstate value when EDX is valid.
1773 */
1774 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1775 eax = 0;
1776 } else {
1777 edx >>= MWAIT_SUBSTATE_SIZE;
1778 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1779 if (edx & MWAIT_SUBSTATE_MASK) {
1780 highest_cstate = i;
1781 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1782 }
1783 }
1784 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1785 (highest_subcstate - 1);
1786 }
1787
1788 /*
1789 * This should be a memory location in a cache line which is
1790 * unlikely to be touched by other processors. The actual
1791 * content is immaterial as it is not actually modified in any way.
1792 */
1793 mwait_ptr = ¤t_thread_info()->flags;
1794
1795 wbinvd();
1796
1797 while (1) {
1798 /*
1799 * The CLFLUSH is a workaround for erratum AAI65 for
1800 * the Xeon 7400 series. It's not clear it is actually
1801 * needed, but it should be harmless in either case.
1802 * The WBINVD is insufficient due to the spurious-wakeup
1803 * case where we return around the loop.
1804 */
1805 mb();
1806 clflush(mwait_ptr);
1807 mb();
1808 __monitor(mwait_ptr, 0, 0);
1809 mb();
1810 __mwait(eax, 0);
1811
1812 cond_wakeup_cpu0();
1813 }
1814 }
1815
hlt_play_dead(void)1816 void hlt_play_dead(void)
1817 {
1818 if (__this_cpu_read(cpu_info.x86) >= 4)
1819 wbinvd();
1820
1821 while (1) {
1822 native_halt();
1823
1824 cond_wakeup_cpu0();
1825 }
1826 }
1827
native_play_dead(void)1828 void native_play_dead(void)
1829 {
1830 play_dead_common();
1831 tboot_shutdown(TB_SHUTDOWN_WFS);
1832
1833 mwait_play_dead(); /* Only returns on failure */
1834 if (cpuidle_play_dead())
1835 hlt_play_dead();
1836 }
1837
1838 #else /* ... !CONFIG_HOTPLUG_CPU */
native_cpu_disable(void)1839 int native_cpu_disable(void)
1840 {
1841 return -ENOSYS;
1842 }
1843
native_cpu_die(unsigned int cpu)1844 void native_cpu_die(unsigned int cpu)
1845 {
1846 /* We said "no" in __cpu_disable */
1847 BUG();
1848 }
1849
native_play_dead(void)1850 void native_play_dead(void)
1851 {
1852 BUG();
1853 }
1854
1855 #endif
1856
1857 #ifdef CONFIG_X86_64
1858 /*
1859 * APERF/MPERF frequency ratio computation.
1860 *
1861 * The scheduler wants to do frequency invariant accounting and needs a <1
1862 * ratio to account for the 'current' frequency, corresponding to
1863 * freq_curr / freq_max.
1864 *
1865 * Since the frequency freq_curr on x86 is controlled by micro-controller and
1866 * our P-state setting is little more than a request/hint, we need to observe
1867 * the effective frequency 'BusyMHz', i.e. the average frequency over a time
1868 * interval after discarding idle time. This is given by:
1869 *
1870 * BusyMHz = delta_APERF / delta_MPERF * freq_base
1871 *
1872 * where freq_base is the max non-turbo P-state.
1873 *
1874 * The freq_max term has to be set to a somewhat arbitrary value, because we
1875 * can't know which turbo states will be available at a given point in time:
1876 * it all depends on the thermal headroom of the entire package. We set it to
1877 * the turbo level with 4 cores active.
1878 *
1879 * Benchmarks show that's a good compromise between the 1C turbo ratio
1880 * (freq_curr/freq_max would rarely reach 1) and something close to freq_base,
1881 * which would ignore the entire turbo range (a conspicuous part, making
1882 * freq_curr/freq_max always maxed out).
1883 *
1884 * An exception to the heuristic above is the Atom uarch, where we choose the
1885 * highest turbo level for freq_max since Atom's are generally oriented towards
1886 * power efficiency.
1887 *
1888 * Setting freq_max to anything less than the 1C turbo ratio makes the ratio
1889 * freq_curr / freq_max to eventually grow >1, in which case we clip it to 1.
1890 */
1891
1892 DEFINE_STATIC_KEY_FALSE(arch_scale_freq_key);
1893
1894 static DEFINE_PER_CPU(u64, arch_prev_aperf);
1895 static DEFINE_PER_CPU(u64, arch_prev_mperf);
1896 static u64 arch_turbo_freq_ratio = SCHED_CAPACITY_SCALE;
1897 static u64 arch_max_freq_ratio = SCHED_CAPACITY_SCALE;
1898
arch_set_max_freq_ratio(bool turbo_disabled)1899 void arch_set_max_freq_ratio(bool turbo_disabled)
1900 {
1901 arch_max_freq_ratio = turbo_disabled ? SCHED_CAPACITY_SCALE :
1902 arch_turbo_freq_ratio;
1903 }
1904 EXPORT_SYMBOL_GPL(arch_set_max_freq_ratio);
1905
turbo_disabled(void)1906 static bool turbo_disabled(void)
1907 {
1908 u64 misc_en;
1909 int err;
1910
1911 err = rdmsrl_safe(MSR_IA32_MISC_ENABLE, &misc_en);
1912 if (err)
1913 return false;
1914
1915 return (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
1916 }
1917
slv_set_max_freq_ratio(u64 * base_freq,u64 * turbo_freq)1918 static bool slv_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
1919 {
1920 int err;
1921
1922 err = rdmsrl_safe(MSR_ATOM_CORE_RATIOS, base_freq);
1923 if (err)
1924 return false;
1925
1926 err = rdmsrl_safe(MSR_ATOM_CORE_TURBO_RATIOS, turbo_freq);
1927 if (err)
1928 return false;
1929
1930 *base_freq = (*base_freq >> 16) & 0x3F; /* max P state */
1931 *turbo_freq = *turbo_freq & 0x3F; /* 1C turbo */
1932
1933 return true;
1934 }
1935
1936 #define X86_MATCH(model) \
1937 X86_MATCH_VENDOR_FAM_MODEL_FEATURE(INTEL, 6, \
1938 INTEL_FAM6_##model, X86_FEATURE_APERFMPERF, NULL)
1939
1940 static const struct x86_cpu_id has_knl_turbo_ratio_limits[] = {
1941 X86_MATCH(XEON_PHI_KNL),
1942 X86_MATCH(XEON_PHI_KNM),
1943 {}
1944 };
1945
1946 static const struct x86_cpu_id has_skx_turbo_ratio_limits[] = {
1947 X86_MATCH(SKYLAKE_X),
1948 {}
1949 };
1950
1951 static const struct x86_cpu_id has_glm_turbo_ratio_limits[] = {
1952 X86_MATCH(ATOM_GOLDMONT),
1953 X86_MATCH(ATOM_GOLDMONT_D),
1954 X86_MATCH(ATOM_GOLDMONT_PLUS),
1955 {}
1956 };
1957
knl_set_max_freq_ratio(u64 * base_freq,u64 * turbo_freq,int num_delta_fratio)1958 static bool knl_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq,
1959 int num_delta_fratio)
1960 {
1961 int fratio, delta_fratio, found;
1962 int err, i;
1963 u64 msr;
1964
1965 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
1966 if (err)
1967 return false;
1968
1969 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
1970
1971 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
1972 if (err)
1973 return false;
1974
1975 fratio = (msr >> 8) & 0xFF;
1976 i = 16;
1977 found = 0;
1978 do {
1979 if (found >= num_delta_fratio) {
1980 *turbo_freq = fratio;
1981 return true;
1982 }
1983
1984 delta_fratio = (msr >> (i + 5)) & 0x7;
1985
1986 if (delta_fratio) {
1987 found += 1;
1988 fratio -= delta_fratio;
1989 }
1990
1991 i += 8;
1992 } while (i < 64);
1993
1994 return true;
1995 }
1996
skx_set_max_freq_ratio(u64 * base_freq,u64 * turbo_freq,int size)1997 static bool skx_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq, int size)
1998 {
1999 u64 ratios, counts;
2000 u32 group_size;
2001 int err, i;
2002
2003 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
2004 if (err)
2005 return false;
2006
2007 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
2008
2009 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &ratios);
2010 if (err)
2011 return false;
2012
2013 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT1, &counts);
2014 if (err)
2015 return false;
2016
2017 for (i = 0; i < 64; i += 8) {
2018 group_size = (counts >> i) & 0xFF;
2019 if (group_size >= size) {
2020 *turbo_freq = (ratios >> i) & 0xFF;
2021 return true;
2022 }
2023 }
2024
2025 return false;
2026 }
2027
core_set_max_freq_ratio(u64 * base_freq,u64 * turbo_freq)2028 static bool core_set_max_freq_ratio(u64 *base_freq, u64 *turbo_freq)
2029 {
2030 u64 msr;
2031 int err;
2032
2033 err = rdmsrl_safe(MSR_PLATFORM_INFO, base_freq);
2034 if (err)
2035 return false;
2036
2037 err = rdmsrl_safe(MSR_TURBO_RATIO_LIMIT, &msr);
2038 if (err)
2039 return false;
2040
2041 *base_freq = (*base_freq >> 8) & 0xFF; /* max P state */
2042 *turbo_freq = (msr >> 24) & 0xFF; /* 4C turbo */
2043
2044 /* The CPU may have less than 4 cores */
2045 if (!*turbo_freq)
2046 *turbo_freq = msr & 0xFF; /* 1C turbo */
2047
2048 return true;
2049 }
2050
intel_set_max_freq_ratio(void)2051 static bool intel_set_max_freq_ratio(void)
2052 {
2053 u64 base_freq, turbo_freq;
2054 u64 turbo_ratio;
2055
2056 if (slv_set_max_freq_ratio(&base_freq, &turbo_freq))
2057 goto out;
2058
2059 if (x86_match_cpu(has_glm_turbo_ratio_limits) &&
2060 skx_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
2061 goto out;
2062
2063 if (x86_match_cpu(has_knl_turbo_ratio_limits) &&
2064 knl_set_max_freq_ratio(&base_freq, &turbo_freq, 1))
2065 goto out;
2066
2067 if (x86_match_cpu(has_skx_turbo_ratio_limits) &&
2068 skx_set_max_freq_ratio(&base_freq, &turbo_freq, 4))
2069 goto out;
2070
2071 if (core_set_max_freq_ratio(&base_freq, &turbo_freq))
2072 goto out;
2073
2074 return false;
2075
2076 out:
2077 /*
2078 * Some hypervisors advertise X86_FEATURE_APERFMPERF
2079 * but then fill all MSR's with zeroes.
2080 * Some CPUs have turbo boost but don't declare any turbo ratio
2081 * in MSR_TURBO_RATIO_LIMIT.
2082 */
2083 if (!base_freq || !turbo_freq) {
2084 pr_debug("Couldn't determine cpu base or turbo frequency, necessary for scale-invariant accounting.\n");
2085 return false;
2086 }
2087
2088 turbo_ratio = div_u64(turbo_freq * SCHED_CAPACITY_SCALE, base_freq);
2089 if (!turbo_ratio) {
2090 pr_debug("Non-zero turbo and base frequencies led to a 0 ratio.\n");
2091 return false;
2092 }
2093
2094 arch_turbo_freq_ratio = turbo_ratio;
2095 arch_set_max_freq_ratio(turbo_disabled());
2096
2097 return true;
2098 }
2099
2100 #ifdef CONFIG_ACPI_CPPC_LIB
amd_set_max_freq_ratio(void)2101 static bool amd_set_max_freq_ratio(void)
2102 {
2103 struct cppc_perf_caps perf_caps;
2104 u64 highest_perf, nominal_perf;
2105 u64 perf_ratio;
2106 int rc;
2107
2108 rc = cppc_get_perf_caps(0, &perf_caps);
2109 if (rc) {
2110 pr_debug("Could not retrieve perf counters (%d)\n", rc);
2111 return false;
2112 }
2113
2114 highest_perf = amd_get_highest_perf();
2115 nominal_perf = perf_caps.nominal_perf;
2116
2117 if (!highest_perf || !nominal_perf) {
2118 pr_debug("Could not retrieve highest or nominal performance\n");
2119 return false;
2120 }
2121
2122 perf_ratio = div_u64(highest_perf * SCHED_CAPACITY_SCALE, nominal_perf);
2123 /* midpoint between max_boost and max_P */
2124 perf_ratio = (perf_ratio + SCHED_CAPACITY_SCALE) >> 1;
2125 if (!perf_ratio) {
2126 pr_debug("Non-zero highest/nominal perf values led to a 0 ratio\n");
2127 return false;
2128 }
2129
2130 arch_turbo_freq_ratio = perf_ratio;
2131 arch_set_max_freq_ratio(false);
2132
2133 return true;
2134 }
2135 #else
amd_set_max_freq_ratio(void)2136 static bool amd_set_max_freq_ratio(void)
2137 {
2138 return false;
2139 }
2140 #endif
2141
init_counter_refs(void)2142 static void init_counter_refs(void)
2143 {
2144 u64 aperf, mperf;
2145
2146 rdmsrl(MSR_IA32_APERF, aperf);
2147 rdmsrl(MSR_IA32_MPERF, mperf);
2148
2149 this_cpu_write(arch_prev_aperf, aperf);
2150 this_cpu_write(arch_prev_mperf, mperf);
2151 }
2152
2153 #ifdef CONFIG_PM_SLEEP
2154 static struct syscore_ops freq_invariance_syscore_ops = {
2155 .resume = init_counter_refs,
2156 };
2157
register_freq_invariance_syscore_ops(void)2158 static void register_freq_invariance_syscore_ops(void)
2159 {
2160 /* Bail out if registered already. */
2161 if (freq_invariance_syscore_ops.node.prev)
2162 return;
2163
2164 register_syscore_ops(&freq_invariance_syscore_ops);
2165 }
2166 #else
register_freq_invariance_syscore_ops(void)2167 static inline void register_freq_invariance_syscore_ops(void) {}
2168 #endif
2169
init_freq_invariance(bool secondary,bool cppc_ready)2170 static void init_freq_invariance(bool secondary, bool cppc_ready)
2171 {
2172 bool ret = false;
2173
2174 if (!boot_cpu_has(X86_FEATURE_APERFMPERF))
2175 return;
2176
2177 if (secondary) {
2178 if (static_branch_likely(&arch_scale_freq_key)) {
2179 init_counter_refs();
2180 }
2181 return;
2182 }
2183
2184 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
2185 ret = intel_set_max_freq_ratio();
2186 else if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD) {
2187 if (!cppc_ready) {
2188 return;
2189 }
2190 ret = amd_set_max_freq_ratio();
2191 }
2192
2193 if (ret) {
2194 init_counter_refs();
2195 static_branch_enable(&arch_scale_freq_key);
2196 register_freq_invariance_syscore_ops();
2197 pr_info("Estimated ratio of average max frequency by base frequency (times 1024): %llu\n", arch_max_freq_ratio);
2198 } else {
2199 pr_debug("Couldn't determine max cpu frequency, necessary for scale-invariant accounting.\n");
2200 }
2201 }
2202
2203 #ifdef CONFIG_ACPI_CPPC_LIB
2204 static DEFINE_MUTEX(freq_invariance_lock);
2205
init_freq_invariance_cppc(void)2206 void init_freq_invariance_cppc(void)
2207 {
2208 static bool secondary;
2209
2210 mutex_lock(&freq_invariance_lock);
2211
2212 init_freq_invariance(secondary, true);
2213 secondary = true;
2214
2215 mutex_unlock(&freq_invariance_lock);
2216 }
2217 #endif
2218
disable_freq_invariance_workfn(struct work_struct * work)2219 static void disable_freq_invariance_workfn(struct work_struct *work)
2220 {
2221 static_branch_disable(&arch_scale_freq_key);
2222 }
2223
2224 static DECLARE_WORK(disable_freq_invariance_work,
2225 disable_freq_invariance_workfn);
2226
2227 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
2228
arch_scale_freq_tick(void)2229 void arch_scale_freq_tick(void)
2230 {
2231 u64 freq_scale;
2232 u64 aperf, mperf;
2233 u64 acnt, mcnt;
2234
2235 if (!arch_scale_freq_invariant())
2236 return;
2237
2238 rdmsrl(MSR_IA32_APERF, aperf);
2239 rdmsrl(MSR_IA32_MPERF, mperf);
2240
2241 acnt = aperf - this_cpu_read(arch_prev_aperf);
2242 mcnt = mperf - this_cpu_read(arch_prev_mperf);
2243
2244 this_cpu_write(arch_prev_aperf, aperf);
2245 this_cpu_write(arch_prev_mperf, mperf);
2246
2247 if (check_shl_overflow(acnt, 2*SCHED_CAPACITY_SHIFT, &acnt))
2248 goto error;
2249
2250 if (check_mul_overflow(mcnt, arch_max_freq_ratio, &mcnt) || !mcnt)
2251 goto error;
2252
2253 freq_scale = div64_u64(acnt, mcnt);
2254 if (!freq_scale)
2255 goto error;
2256
2257 if (freq_scale > SCHED_CAPACITY_SCALE)
2258 freq_scale = SCHED_CAPACITY_SCALE;
2259
2260 this_cpu_write(arch_freq_scale, freq_scale);
2261 return;
2262
2263 error:
2264 pr_warn("Scheduler frequency invariance went wobbly, disabling!\n");
2265 schedule_work(&disable_freq_invariance_work);
2266 }
2267 #else
init_freq_invariance(bool secondary,bool cppc_ready)2268 static inline void init_freq_invariance(bool secondary, bool cppc_ready)
2269 {
2270 }
2271 #endif /* CONFIG_X86_64 */
2272