1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Arch specific cpu topology information
4 *
5 * Copyright (C) 2016, ARM Ltd.
6 * Written by: Juri Lelli, ARM Ltd.
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/device.h>
13 #include <linux/of.h>
14 #include <linux/slab.h>
15 #include <linux/sched/topology.h>
16 #include <linux/cpuset.h>
17 #include <linux/cpumask.h>
18 #include <linux/init.h>
19 #include <linux/rcupdate.h>
20 #include <linux/sched.h>
21
22 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
23 static struct cpumask scale_freq_counters_mask;
24 static bool scale_freq_invariant;
25
supports_scale_freq_counters(const struct cpumask * cpus)26 static bool supports_scale_freq_counters(const struct cpumask *cpus)
27 {
28 return cpumask_subset(cpus, &scale_freq_counters_mask);
29 }
30
topology_scale_freq_invariant(void)31 bool topology_scale_freq_invariant(void)
32 {
33 return cpufreq_supports_freq_invariance() ||
34 supports_scale_freq_counters(cpu_online_mask);
35 }
36
update_scale_freq_invariant(bool status)37 static void update_scale_freq_invariant(bool status)
38 {
39 if (scale_freq_invariant == status)
40 return;
41
42 /*
43 * Task scheduler behavior depends on frequency invariance support,
44 * either cpufreq or counter driven. If the support status changes as
45 * a result of counter initialisation and use, retrigger the build of
46 * scheduling domains to ensure the information is propagated properly.
47 */
48 if (topology_scale_freq_invariant() == status) {
49 scale_freq_invariant = status;
50 rebuild_sched_domains_energy();
51 }
52 }
53
topology_set_scale_freq_source(struct scale_freq_data * data,const struct cpumask * cpus)54 void topology_set_scale_freq_source(struct scale_freq_data *data,
55 const struct cpumask *cpus)
56 {
57 struct scale_freq_data *sfd;
58 int cpu;
59
60 /*
61 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
62 * supported by cpufreq.
63 */
64 if (cpumask_empty(&scale_freq_counters_mask))
65 scale_freq_invariant = topology_scale_freq_invariant();
66
67 rcu_read_lock();
68
69 for_each_cpu(cpu, cpus) {
70 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
71
72 /* Use ARCH provided counters whenever possible */
73 if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
74 rcu_assign_pointer(per_cpu(sft_data, cpu), data);
75 cpumask_set_cpu(cpu, &scale_freq_counters_mask);
76 }
77 }
78
79 rcu_read_unlock();
80
81 update_scale_freq_invariant(true);
82 }
83 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
84
topology_clear_scale_freq_source(enum scale_freq_source source,const struct cpumask * cpus)85 void topology_clear_scale_freq_source(enum scale_freq_source source,
86 const struct cpumask *cpus)
87 {
88 struct scale_freq_data *sfd;
89 int cpu;
90
91 rcu_read_lock();
92
93 for_each_cpu(cpu, cpus) {
94 sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
95
96 if (sfd && sfd->source == source) {
97 rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
98 cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
99 }
100 }
101
102 rcu_read_unlock();
103
104 /*
105 * Make sure all references to previous sft_data are dropped to avoid
106 * use-after-free races.
107 */
108 synchronize_rcu();
109
110 update_scale_freq_invariant(false);
111 }
112 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
113
topology_scale_freq_tick(void)114 void topology_scale_freq_tick(void)
115 {
116 struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
117
118 if (sfd)
119 sfd->set_freq_scale();
120 }
121
122 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
123 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
124
topology_set_freq_scale(const struct cpumask * cpus,unsigned long cur_freq,unsigned long max_freq)125 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
126 unsigned long max_freq)
127 {
128 unsigned long scale;
129 int i;
130
131 if (WARN_ON_ONCE(!cur_freq || !max_freq))
132 return;
133
134 /*
135 * If the use of counters for FIE is enabled, just return as we don't
136 * want to update the scale factor with information from CPUFREQ.
137 * Instead the scale factor will be updated from arch_scale_freq_tick.
138 */
139 if (supports_scale_freq_counters(cpus))
140 return;
141
142 scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
143
144 for_each_cpu(i, cpus)
145 per_cpu(arch_freq_scale, i) = scale;
146 }
147
148 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
149 EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
150
topology_set_cpu_scale(unsigned int cpu,unsigned long capacity)151 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
152 {
153 per_cpu(cpu_scale, cpu) = capacity;
154 }
155
156 DEFINE_PER_CPU(unsigned long, thermal_pressure);
157
topology_set_thermal_pressure(const struct cpumask * cpus,unsigned long th_pressure)158 void topology_set_thermal_pressure(const struct cpumask *cpus,
159 unsigned long th_pressure)
160 {
161 int cpu;
162
163 for_each_cpu(cpu, cpus)
164 WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
165 }
166 EXPORT_SYMBOL_GPL(topology_set_thermal_pressure);
167
cpu_capacity_show(struct device * dev,struct device_attribute * attr,char * buf)168 static ssize_t cpu_capacity_show(struct device *dev,
169 struct device_attribute *attr,
170 char *buf)
171 {
172 struct cpu *cpu = container_of(dev, struct cpu, dev);
173
174 return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
175 }
176
177 static void update_topology_flags_workfn(struct work_struct *work);
178 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
179
180 static DEVICE_ATTR_RO(cpu_capacity);
181
register_cpu_capacity_sysctl(void)182 static int register_cpu_capacity_sysctl(void)
183 {
184 int i;
185 struct device *cpu;
186
187 for_each_possible_cpu(i) {
188 cpu = get_cpu_device(i);
189 if (!cpu) {
190 pr_err("%s: too early to get CPU%d device!\n",
191 __func__, i);
192 continue;
193 }
194 device_create_file(cpu, &dev_attr_cpu_capacity);
195 }
196
197 return 0;
198 }
199 subsys_initcall(register_cpu_capacity_sysctl);
200
201 static int update_topology;
202
topology_update_cpu_topology(void)203 int topology_update_cpu_topology(void)
204 {
205 return update_topology;
206 }
207
208 /*
209 * Updating the sched_domains can't be done directly from cpufreq callbacks
210 * due to locking, so queue the work for later.
211 */
update_topology_flags_workfn(struct work_struct * work)212 static void update_topology_flags_workfn(struct work_struct *work)
213 {
214 update_topology = 1;
215 rebuild_sched_domains();
216 pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
217 update_topology = 0;
218 }
219
220 static DEFINE_PER_CPU(u32, freq_factor) = 1;
221 static u32 *raw_capacity;
222
free_raw_capacity(void)223 static int free_raw_capacity(void)
224 {
225 kfree(raw_capacity);
226 raw_capacity = NULL;
227
228 return 0;
229 }
230
topology_normalize_cpu_scale(void)231 void topology_normalize_cpu_scale(void)
232 {
233 u64 capacity;
234 u64 capacity_scale;
235 int cpu;
236
237 if (!raw_capacity)
238 return;
239
240 capacity_scale = 1;
241 for_each_possible_cpu(cpu) {
242 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
243 capacity_scale = max(capacity, capacity_scale);
244 }
245
246 pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
247 for_each_possible_cpu(cpu) {
248 capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
249 capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
250 capacity_scale);
251 topology_set_cpu_scale(cpu, capacity);
252 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
253 cpu, topology_get_cpu_scale(cpu));
254 }
255 }
256
topology_parse_cpu_capacity(struct device_node * cpu_node,int cpu)257 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
258 {
259 struct clk *cpu_clk;
260 static bool cap_parsing_failed;
261 int ret;
262 u32 cpu_capacity;
263
264 if (cap_parsing_failed)
265 return false;
266
267 ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
268 &cpu_capacity);
269 if (!ret) {
270 if (!raw_capacity) {
271 raw_capacity = kcalloc(num_possible_cpus(),
272 sizeof(*raw_capacity),
273 GFP_KERNEL);
274 if (!raw_capacity) {
275 cap_parsing_failed = true;
276 return false;
277 }
278 }
279 raw_capacity[cpu] = cpu_capacity;
280 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
281 cpu_node, raw_capacity[cpu]);
282
283 /*
284 * Update freq_factor for calculating early boot cpu capacities.
285 * For non-clk CPU DVFS mechanism, there's no way to get the
286 * frequency value now, assuming they are running at the same
287 * frequency (by keeping the initial freq_factor value).
288 */
289 cpu_clk = of_clk_get(cpu_node, 0);
290 if (!PTR_ERR_OR_ZERO(cpu_clk)) {
291 per_cpu(freq_factor, cpu) =
292 clk_get_rate(cpu_clk) / 1000;
293 clk_put(cpu_clk);
294 }
295 } else {
296 if (raw_capacity) {
297 pr_err("cpu_capacity: missing %pOF raw capacity\n",
298 cpu_node);
299 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
300 }
301 cap_parsing_failed = true;
302 free_raw_capacity();
303 }
304
305 return !ret;
306 }
307
308 #ifdef CONFIG_CPU_FREQ
309 static cpumask_var_t cpus_to_visit;
310 static void parsing_done_workfn(struct work_struct *work);
311 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
312
313 static int
init_cpu_capacity_callback(struct notifier_block * nb,unsigned long val,void * data)314 init_cpu_capacity_callback(struct notifier_block *nb,
315 unsigned long val,
316 void *data)
317 {
318 struct cpufreq_policy *policy = data;
319 int cpu;
320
321 if (!raw_capacity)
322 return 0;
323
324 if (val != CPUFREQ_CREATE_POLICY)
325 return 0;
326
327 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
328 cpumask_pr_args(policy->related_cpus),
329 cpumask_pr_args(cpus_to_visit));
330
331 cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
332
333 for_each_cpu(cpu, policy->related_cpus)
334 per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
335
336 if (cpumask_empty(cpus_to_visit)) {
337 topology_normalize_cpu_scale();
338 schedule_work(&update_topology_flags_work);
339 free_raw_capacity();
340 pr_debug("cpu_capacity: parsing done\n");
341 schedule_work(&parsing_done_work);
342 }
343
344 return 0;
345 }
346
347 static struct notifier_block init_cpu_capacity_notifier = {
348 .notifier_call = init_cpu_capacity_callback,
349 };
350
register_cpufreq_notifier(void)351 static int __init register_cpufreq_notifier(void)
352 {
353 int ret;
354
355 /*
356 * on ACPI-based systems we need to use the default cpu capacity
357 * until we have the necessary code to parse the cpu capacity, so
358 * skip registering cpufreq notifier.
359 */
360 if (!acpi_disabled || !raw_capacity)
361 return -EINVAL;
362
363 if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
364 return -ENOMEM;
365
366 cpumask_copy(cpus_to_visit, cpu_possible_mask);
367
368 ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
369 CPUFREQ_POLICY_NOTIFIER);
370
371 if (ret)
372 free_cpumask_var(cpus_to_visit);
373
374 return ret;
375 }
376 core_initcall(register_cpufreq_notifier);
377
parsing_done_workfn(struct work_struct * work)378 static void parsing_done_workfn(struct work_struct *work)
379 {
380 cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
381 CPUFREQ_POLICY_NOTIFIER);
382 free_cpumask_var(cpus_to_visit);
383 }
384
385 #else
386 core_initcall(free_raw_capacity);
387 #endif
388
389 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
390 /*
391 * This function returns the logic cpu number of the node.
392 * There are basically three kinds of return values:
393 * (1) logic cpu number which is > 0.
394 * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
395 * there is no possible logical CPU in the kernel to match. This happens
396 * when CONFIG_NR_CPUS is configure to be smaller than the number of
397 * CPU nodes in DT. We need to just ignore this case.
398 * (3) -1 if the node does not exist in the device tree
399 */
get_cpu_for_node(struct device_node * node)400 static int __init get_cpu_for_node(struct device_node *node)
401 {
402 struct device_node *cpu_node;
403 int cpu;
404
405 cpu_node = of_parse_phandle(node, "cpu", 0);
406 if (!cpu_node)
407 return -1;
408
409 cpu = of_cpu_node_to_id(cpu_node);
410 if (cpu >= 0)
411 topology_parse_cpu_capacity(cpu_node, cpu);
412 else
413 pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
414 cpu_node, cpumask_pr_args(cpu_possible_mask));
415
416 of_node_put(cpu_node);
417 return cpu;
418 }
419
parse_core(struct device_node * core,int package_id,int core_id)420 static int __init parse_core(struct device_node *core, int package_id,
421 int core_id)
422 {
423 char name[20];
424 bool leaf = true;
425 int i = 0;
426 int cpu;
427 struct device_node *t;
428
429 do {
430 snprintf(name, sizeof(name), "thread%d", i);
431 t = of_get_child_by_name(core, name);
432 if (t) {
433 leaf = false;
434 cpu = get_cpu_for_node(t);
435 if (cpu >= 0) {
436 cpu_topology[cpu].package_id = package_id;
437 cpu_topology[cpu].core_id = core_id;
438 cpu_topology[cpu].thread_id = i;
439 } else if (cpu != -ENODEV) {
440 pr_err("%pOF: Can't get CPU for thread\n", t);
441 of_node_put(t);
442 return -EINVAL;
443 }
444 of_node_put(t);
445 }
446 i++;
447 } while (t);
448
449 cpu = get_cpu_for_node(core);
450 if (cpu >= 0) {
451 if (!leaf) {
452 pr_err("%pOF: Core has both threads and CPU\n",
453 core);
454 return -EINVAL;
455 }
456
457 cpu_topology[cpu].package_id = package_id;
458 cpu_topology[cpu].core_id = core_id;
459 } else if (leaf && cpu != -ENODEV) {
460 pr_err("%pOF: Can't get CPU for leaf core\n", core);
461 return -EINVAL;
462 }
463
464 return 0;
465 }
466
parse_cluster(struct device_node * cluster,int depth)467 static int __init parse_cluster(struct device_node *cluster, int depth)
468 {
469 char name[20];
470 bool leaf = true;
471 bool has_cores = false;
472 struct device_node *c;
473 static int package_id __initdata;
474 int core_id = 0;
475 int i, ret;
476
477 /*
478 * First check for child clusters; we currently ignore any
479 * information about the nesting of clusters and present the
480 * scheduler with a flat list of them.
481 */
482 i = 0;
483 do {
484 snprintf(name, sizeof(name), "cluster%d", i);
485 c = of_get_child_by_name(cluster, name);
486 if (c) {
487 leaf = false;
488 ret = parse_cluster(c, depth + 1);
489 of_node_put(c);
490 if (ret != 0)
491 return ret;
492 }
493 i++;
494 } while (c);
495
496 /* Now check for cores */
497 i = 0;
498 do {
499 snprintf(name, sizeof(name), "core%d", i);
500 c = of_get_child_by_name(cluster, name);
501 if (c) {
502 has_cores = true;
503
504 if (depth == 0) {
505 pr_err("%pOF: cpu-map children should be clusters\n",
506 c);
507 of_node_put(c);
508 return -EINVAL;
509 }
510
511 if (leaf) {
512 ret = parse_core(c, package_id, core_id++);
513 } else {
514 pr_err("%pOF: Non-leaf cluster with core %s\n",
515 cluster, name);
516 ret = -EINVAL;
517 }
518
519 of_node_put(c);
520 if (ret != 0)
521 return ret;
522 }
523 i++;
524 } while (c);
525
526 if (leaf && !has_cores)
527 pr_warn("%pOF: empty cluster\n", cluster);
528
529 if (leaf)
530 package_id++;
531
532 return 0;
533 }
534
parse_dt_topology(void)535 static int __init parse_dt_topology(void)
536 {
537 struct device_node *cn, *map;
538 int ret = 0;
539 int cpu;
540
541 cn = of_find_node_by_path("/cpus");
542 if (!cn) {
543 pr_err("No CPU information found in DT\n");
544 return 0;
545 }
546
547 /*
548 * When topology is provided cpu-map is essentially a root
549 * cluster with restricted subnodes.
550 */
551 map = of_get_child_by_name(cn, "cpu-map");
552 if (!map)
553 goto out;
554
555 ret = parse_cluster(map, 0);
556 if (ret != 0)
557 goto out_map;
558
559 topology_normalize_cpu_scale();
560
561 /*
562 * Check that all cores are in the topology; the SMP code will
563 * only mark cores described in the DT as possible.
564 */
565 for_each_possible_cpu(cpu)
566 if (cpu_topology[cpu].package_id == -1)
567 ret = -EINVAL;
568
569 out_map:
570 of_node_put(map);
571 out:
572 of_node_put(cn);
573 return ret;
574 }
575 #endif
576
577 /*
578 * cpu topology table
579 */
580 struct cpu_topology cpu_topology[NR_CPUS];
581 EXPORT_SYMBOL_GPL(cpu_topology);
582
cpu_coregroup_mask(int cpu)583 const struct cpumask *cpu_coregroup_mask(int cpu)
584 {
585 const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
586
587 /* Find the smaller of NUMA, core or LLC siblings */
588 if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
589 /* not numa in package, lets use the package siblings */
590 core_mask = &cpu_topology[cpu].core_sibling;
591 }
592 if (cpu_topology[cpu].llc_id != -1) {
593 if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
594 core_mask = &cpu_topology[cpu].llc_sibling;
595 }
596
597 return core_mask;
598 }
599
cpu_clustergroup_mask(int cpu)600 const struct cpumask *cpu_clustergroup_mask(int cpu)
601 {
602 return &cpu_topology[cpu].cluster_sibling;
603 }
604
update_siblings_masks(unsigned int cpuid)605 void update_siblings_masks(unsigned int cpuid)
606 {
607 struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
608 int cpu;
609
610 /* update core and thread sibling masks */
611 for_each_online_cpu(cpu) {
612 cpu_topo = &cpu_topology[cpu];
613
614 if (cpuid_topo->llc_id == cpu_topo->llc_id) {
615 cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
616 cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
617 }
618
619 if (cpuid_topo->package_id != cpu_topo->package_id)
620 continue;
621
622 if (cpuid_topo->cluster_id == cpu_topo->cluster_id &&
623 cpuid_topo->cluster_id != -1) {
624 cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
625 cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
626 }
627
628 cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
629 cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
630
631 if (cpuid_topo->core_id != cpu_topo->core_id)
632 continue;
633
634 cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
635 cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
636 }
637 }
638
clear_cpu_topology(int cpu)639 static void clear_cpu_topology(int cpu)
640 {
641 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
642
643 cpumask_clear(&cpu_topo->llc_sibling);
644 cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
645
646 cpumask_clear(&cpu_topo->cluster_sibling);
647 cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
648
649 cpumask_clear(&cpu_topo->core_sibling);
650 cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
651 cpumask_clear(&cpu_topo->thread_sibling);
652 cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
653 }
654
reset_cpu_topology(void)655 void __init reset_cpu_topology(void)
656 {
657 unsigned int cpu;
658
659 for_each_possible_cpu(cpu) {
660 struct cpu_topology *cpu_topo = &cpu_topology[cpu];
661
662 cpu_topo->thread_id = -1;
663 cpu_topo->core_id = -1;
664 cpu_topo->cluster_id = -1;
665 cpu_topo->package_id = -1;
666 cpu_topo->llc_id = -1;
667
668 clear_cpu_topology(cpu);
669 }
670 }
671
remove_cpu_topology(unsigned int cpu)672 void remove_cpu_topology(unsigned int cpu)
673 {
674 int sibling;
675
676 for_each_cpu(sibling, topology_core_cpumask(cpu))
677 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
678 for_each_cpu(sibling, topology_sibling_cpumask(cpu))
679 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
680 for_each_cpu(sibling, topology_cluster_cpumask(cpu))
681 cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
682 for_each_cpu(sibling, topology_llc_cpumask(cpu))
683 cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
684
685 clear_cpu_topology(cpu);
686 }
687
parse_acpi_topology(void)688 __weak int __init parse_acpi_topology(void)
689 {
690 return 0;
691 }
692
693 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
init_cpu_topology(void)694 void __init init_cpu_topology(void)
695 {
696 reset_cpu_topology();
697
698 /*
699 * Discard anything that was parsed if we hit an error so we
700 * don't use partial information.
701 */
702 if (parse_acpi_topology())
703 reset_cpu_topology();
704 else if (of_have_populated_dt() && parse_dt_topology())
705 reset_cpu_topology();
706 }
707 #endif
708