1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Arch specific cpu topology information
4  *
5  * Copyright (C) 2016, ARM Ltd.
6  * Written by: Juri Lelli, ARM Ltd.
7  */
8 
9 #include <linux/acpi.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/device.h>
13 #include <linux/of.h>
14 #include <linux/slab.h>
15 #include <linux/sched/topology.h>
16 #include <linux/cpuset.h>
17 #include <linux/cpumask.h>
18 #include <linux/init.h>
19 #include <linux/rcupdate.h>
20 #include <linux/sched.h>
21 
22 static DEFINE_PER_CPU(struct scale_freq_data __rcu *, sft_data);
23 static struct cpumask scale_freq_counters_mask;
24 static bool scale_freq_invariant;
25 
supports_scale_freq_counters(const struct cpumask * cpus)26 static bool supports_scale_freq_counters(const struct cpumask *cpus)
27 {
28 	return cpumask_subset(cpus, &scale_freq_counters_mask);
29 }
30 
topology_scale_freq_invariant(void)31 bool topology_scale_freq_invariant(void)
32 {
33 	return cpufreq_supports_freq_invariance() ||
34 	       supports_scale_freq_counters(cpu_online_mask);
35 }
36 
update_scale_freq_invariant(bool status)37 static void update_scale_freq_invariant(bool status)
38 {
39 	if (scale_freq_invariant == status)
40 		return;
41 
42 	/*
43 	 * Task scheduler behavior depends on frequency invariance support,
44 	 * either cpufreq or counter driven. If the support status changes as
45 	 * a result of counter initialisation and use, retrigger the build of
46 	 * scheduling domains to ensure the information is propagated properly.
47 	 */
48 	if (topology_scale_freq_invariant() == status) {
49 		scale_freq_invariant = status;
50 		rebuild_sched_domains_energy();
51 	}
52 }
53 
topology_set_scale_freq_source(struct scale_freq_data * data,const struct cpumask * cpus)54 void topology_set_scale_freq_source(struct scale_freq_data *data,
55 				    const struct cpumask *cpus)
56 {
57 	struct scale_freq_data *sfd;
58 	int cpu;
59 
60 	/*
61 	 * Avoid calling rebuild_sched_domains() unnecessarily if FIE is
62 	 * supported by cpufreq.
63 	 */
64 	if (cpumask_empty(&scale_freq_counters_mask))
65 		scale_freq_invariant = topology_scale_freq_invariant();
66 
67 	rcu_read_lock();
68 
69 	for_each_cpu(cpu, cpus) {
70 		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
71 
72 		/* Use ARCH provided counters whenever possible */
73 		if (!sfd || sfd->source != SCALE_FREQ_SOURCE_ARCH) {
74 			rcu_assign_pointer(per_cpu(sft_data, cpu), data);
75 			cpumask_set_cpu(cpu, &scale_freq_counters_mask);
76 		}
77 	}
78 
79 	rcu_read_unlock();
80 
81 	update_scale_freq_invariant(true);
82 }
83 EXPORT_SYMBOL_GPL(topology_set_scale_freq_source);
84 
topology_clear_scale_freq_source(enum scale_freq_source source,const struct cpumask * cpus)85 void topology_clear_scale_freq_source(enum scale_freq_source source,
86 				      const struct cpumask *cpus)
87 {
88 	struct scale_freq_data *sfd;
89 	int cpu;
90 
91 	rcu_read_lock();
92 
93 	for_each_cpu(cpu, cpus) {
94 		sfd = rcu_dereference(*per_cpu_ptr(&sft_data, cpu));
95 
96 		if (sfd && sfd->source == source) {
97 			rcu_assign_pointer(per_cpu(sft_data, cpu), NULL);
98 			cpumask_clear_cpu(cpu, &scale_freq_counters_mask);
99 		}
100 	}
101 
102 	rcu_read_unlock();
103 
104 	/*
105 	 * Make sure all references to previous sft_data are dropped to avoid
106 	 * use-after-free races.
107 	 */
108 	synchronize_rcu();
109 
110 	update_scale_freq_invariant(false);
111 }
112 EXPORT_SYMBOL_GPL(topology_clear_scale_freq_source);
113 
topology_scale_freq_tick(void)114 void topology_scale_freq_tick(void)
115 {
116 	struct scale_freq_data *sfd = rcu_dereference_sched(*this_cpu_ptr(&sft_data));
117 
118 	if (sfd)
119 		sfd->set_freq_scale();
120 }
121 
122 DEFINE_PER_CPU(unsigned long, arch_freq_scale) = SCHED_CAPACITY_SCALE;
123 EXPORT_PER_CPU_SYMBOL_GPL(arch_freq_scale);
124 
topology_set_freq_scale(const struct cpumask * cpus,unsigned long cur_freq,unsigned long max_freq)125 void topology_set_freq_scale(const struct cpumask *cpus, unsigned long cur_freq,
126 			     unsigned long max_freq)
127 {
128 	unsigned long scale;
129 	int i;
130 
131 	if (WARN_ON_ONCE(!cur_freq || !max_freq))
132 		return;
133 
134 	/*
135 	 * If the use of counters for FIE is enabled, just return as we don't
136 	 * want to update the scale factor with information from CPUFREQ.
137 	 * Instead the scale factor will be updated from arch_scale_freq_tick.
138 	 */
139 	if (supports_scale_freq_counters(cpus))
140 		return;
141 
142 	scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
143 
144 	for_each_cpu(i, cpus)
145 		per_cpu(arch_freq_scale, i) = scale;
146 }
147 
148 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
149 EXPORT_PER_CPU_SYMBOL_GPL(cpu_scale);
150 
topology_set_cpu_scale(unsigned int cpu,unsigned long capacity)151 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
152 {
153 	per_cpu(cpu_scale, cpu) = capacity;
154 }
155 
156 DEFINE_PER_CPU(unsigned long, thermal_pressure);
157 
topology_set_thermal_pressure(const struct cpumask * cpus,unsigned long th_pressure)158 void topology_set_thermal_pressure(const struct cpumask *cpus,
159 			       unsigned long th_pressure)
160 {
161 	int cpu;
162 
163 	for_each_cpu(cpu, cpus)
164 		WRITE_ONCE(per_cpu(thermal_pressure, cpu), th_pressure);
165 }
166 EXPORT_SYMBOL_GPL(topology_set_thermal_pressure);
167 
cpu_capacity_show(struct device * dev,struct device_attribute * attr,char * buf)168 static ssize_t cpu_capacity_show(struct device *dev,
169 				 struct device_attribute *attr,
170 				 char *buf)
171 {
172 	struct cpu *cpu = container_of(dev, struct cpu, dev);
173 
174 	return sysfs_emit(buf, "%lu\n", topology_get_cpu_scale(cpu->dev.id));
175 }
176 
177 static void update_topology_flags_workfn(struct work_struct *work);
178 static DECLARE_WORK(update_topology_flags_work, update_topology_flags_workfn);
179 
180 static DEVICE_ATTR_RO(cpu_capacity);
181 
register_cpu_capacity_sysctl(void)182 static int register_cpu_capacity_sysctl(void)
183 {
184 	int i;
185 	struct device *cpu;
186 
187 	for_each_possible_cpu(i) {
188 		cpu = get_cpu_device(i);
189 		if (!cpu) {
190 			pr_err("%s: too early to get CPU%d device!\n",
191 			       __func__, i);
192 			continue;
193 		}
194 		device_create_file(cpu, &dev_attr_cpu_capacity);
195 	}
196 
197 	return 0;
198 }
199 subsys_initcall(register_cpu_capacity_sysctl);
200 
201 static int update_topology;
202 
topology_update_cpu_topology(void)203 int topology_update_cpu_topology(void)
204 {
205 	return update_topology;
206 }
207 
208 /*
209  * Updating the sched_domains can't be done directly from cpufreq callbacks
210  * due to locking, so queue the work for later.
211  */
update_topology_flags_workfn(struct work_struct * work)212 static void update_topology_flags_workfn(struct work_struct *work)
213 {
214 	update_topology = 1;
215 	rebuild_sched_domains();
216 	pr_debug("sched_domain hierarchy rebuilt, flags updated\n");
217 	update_topology = 0;
218 }
219 
220 static DEFINE_PER_CPU(u32, freq_factor) = 1;
221 static u32 *raw_capacity;
222 
free_raw_capacity(void)223 static int free_raw_capacity(void)
224 {
225 	kfree(raw_capacity);
226 	raw_capacity = NULL;
227 
228 	return 0;
229 }
230 
topology_normalize_cpu_scale(void)231 void topology_normalize_cpu_scale(void)
232 {
233 	u64 capacity;
234 	u64 capacity_scale;
235 	int cpu;
236 
237 	if (!raw_capacity)
238 		return;
239 
240 	capacity_scale = 1;
241 	for_each_possible_cpu(cpu) {
242 		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
243 		capacity_scale = max(capacity, capacity_scale);
244 	}
245 
246 	pr_debug("cpu_capacity: capacity_scale=%llu\n", capacity_scale);
247 	for_each_possible_cpu(cpu) {
248 		capacity = raw_capacity[cpu] * per_cpu(freq_factor, cpu);
249 		capacity = div64_u64(capacity << SCHED_CAPACITY_SHIFT,
250 			capacity_scale);
251 		topology_set_cpu_scale(cpu, capacity);
252 		pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
253 			cpu, topology_get_cpu_scale(cpu));
254 	}
255 }
256 
topology_parse_cpu_capacity(struct device_node * cpu_node,int cpu)257 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
258 {
259 	struct clk *cpu_clk;
260 	static bool cap_parsing_failed;
261 	int ret;
262 	u32 cpu_capacity;
263 
264 	if (cap_parsing_failed)
265 		return false;
266 
267 	ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
268 				   &cpu_capacity);
269 	if (!ret) {
270 		if (!raw_capacity) {
271 			raw_capacity = kcalloc(num_possible_cpus(),
272 					       sizeof(*raw_capacity),
273 					       GFP_KERNEL);
274 			if (!raw_capacity) {
275 				cap_parsing_failed = true;
276 				return false;
277 			}
278 		}
279 		raw_capacity[cpu] = cpu_capacity;
280 		pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
281 			cpu_node, raw_capacity[cpu]);
282 
283 		/*
284 		 * Update freq_factor for calculating early boot cpu capacities.
285 		 * For non-clk CPU DVFS mechanism, there's no way to get the
286 		 * frequency value now, assuming they are running at the same
287 		 * frequency (by keeping the initial freq_factor value).
288 		 */
289 		cpu_clk = of_clk_get(cpu_node, 0);
290 		if (!PTR_ERR_OR_ZERO(cpu_clk)) {
291 			per_cpu(freq_factor, cpu) =
292 				clk_get_rate(cpu_clk) / 1000;
293 			clk_put(cpu_clk);
294 		}
295 	} else {
296 		if (raw_capacity) {
297 			pr_err("cpu_capacity: missing %pOF raw capacity\n",
298 				cpu_node);
299 			pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
300 		}
301 		cap_parsing_failed = true;
302 		free_raw_capacity();
303 	}
304 
305 	return !ret;
306 }
307 
308 #ifdef CONFIG_CPU_FREQ
309 static cpumask_var_t cpus_to_visit;
310 static void parsing_done_workfn(struct work_struct *work);
311 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
312 
313 static int
init_cpu_capacity_callback(struct notifier_block * nb,unsigned long val,void * data)314 init_cpu_capacity_callback(struct notifier_block *nb,
315 			   unsigned long val,
316 			   void *data)
317 {
318 	struct cpufreq_policy *policy = data;
319 	int cpu;
320 
321 	if (!raw_capacity)
322 		return 0;
323 
324 	if (val != CPUFREQ_CREATE_POLICY)
325 		return 0;
326 
327 	pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
328 		 cpumask_pr_args(policy->related_cpus),
329 		 cpumask_pr_args(cpus_to_visit));
330 
331 	cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
332 
333 	for_each_cpu(cpu, policy->related_cpus)
334 		per_cpu(freq_factor, cpu) = policy->cpuinfo.max_freq / 1000;
335 
336 	if (cpumask_empty(cpus_to_visit)) {
337 		topology_normalize_cpu_scale();
338 		schedule_work(&update_topology_flags_work);
339 		free_raw_capacity();
340 		pr_debug("cpu_capacity: parsing done\n");
341 		schedule_work(&parsing_done_work);
342 	}
343 
344 	return 0;
345 }
346 
347 static struct notifier_block init_cpu_capacity_notifier = {
348 	.notifier_call = init_cpu_capacity_callback,
349 };
350 
register_cpufreq_notifier(void)351 static int __init register_cpufreq_notifier(void)
352 {
353 	int ret;
354 
355 	/*
356 	 * on ACPI-based systems we need to use the default cpu capacity
357 	 * until we have the necessary code to parse the cpu capacity, so
358 	 * skip registering cpufreq notifier.
359 	 */
360 	if (!acpi_disabled || !raw_capacity)
361 		return -EINVAL;
362 
363 	if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL))
364 		return -ENOMEM;
365 
366 	cpumask_copy(cpus_to_visit, cpu_possible_mask);
367 
368 	ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
369 					CPUFREQ_POLICY_NOTIFIER);
370 
371 	if (ret)
372 		free_cpumask_var(cpus_to_visit);
373 
374 	return ret;
375 }
376 core_initcall(register_cpufreq_notifier);
377 
parsing_done_workfn(struct work_struct * work)378 static void parsing_done_workfn(struct work_struct *work)
379 {
380 	cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
381 					 CPUFREQ_POLICY_NOTIFIER);
382 	free_cpumask_var(cpus_to_visit);
383 }
384 
385 #else
386 core_initcall(free_raw_capacity);
387 #endif
388 
389 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
390 /*
391  * This function returns the logic cpu number of the node.
392  * There are basically three kinds of return values:
393  * (1) logic cpu number which is > 0.
394  * (2) -ENODEV when the device tree(DT) node is valid and found in the DT but
395  * there is no possible logical CPU in the kernel to match. This happens
396  * when CONFIG_NR_CPUS is configure to be smaller than the number of
397  * CPU nodes in DT. We need to just ignore this case.
398  * (3) -1 if the node does not exist in the device tree
399  */
get_cpu_for_node(struct device_node * node)400 static int __init get_cpu_for_node(struct device_node *node)
401 {
402 	struct device_node *cpu_node;
403 	int cpu;
404 
405 	cpu_node = of_parse_phandle(node, "cpu", 0);
406 	if (!cpu_node)
407 		return -1;
408 
409 	cpu = of_cpu_node_to_id(cpu_node);
410 	if (cpu >= 0)
411 		topology_parse_cpu_capacity(cpu_node, cpu);
412 	else
413 		pr_info("CPU node for %pOF exist but the possible cpu range is :%*pbl\n",
414 			cpu_node, cpumask_pr_args(cpu_possible_mask));
415 
416 	of_node_put(cpu_node);
417 	return cpu;
418 }
419 
parse_core(struct device_node * core,int package_id,int core_id)420 static int __init parse_core(struct device_node *core, int package_id,
421 			     int core_id)
422 {
423 	char name[20];
424 	bool leaf = true;
425 	int i = 0;
426 	int cpu;
427 	struct device_node *t;
428 
429 	do {
430 		snprintf(name, sizeof(name), "thread%d", i);
431 		t = of_get_child_by_name(core, name);
432 		if (t) {
433 			leaf = false;
434 			cpu = get_cpu_for_node(t);
435 			if (cpu >= 0) {
436 				cpu_topology[cpu].package_id = package_id;
437 				cpu_topology[cpu].core_id = core_id;
438 				cpu_topology[cpu].thread_id = i;
439 			} else if (cpu != -ENODEV) {
440 				pr_err("%pOF: Can't get CPU for thread\n", t);
441 				of_node_put(t);
442 				return -EINVAL;
443 			}
444 			of_node_put(t);
445 		}
446 		i++;
447 	} while (t);
448 
449 	cpu = get_cpu_for_node(core);
450 	if (cpu >= 0) {
451 		if (!leaf) {
452 			pr_err("%pOF: Core has both threads and CPU\n",
453 			       core);
454 			return -EINVAL;
455 		}
456 
457 		cpu_topology[cpu].package_id = package_id;
458 		cpu_topology[cpu].core_id = core_id;
459 	} else if (leaf && cpu != -ENODEV) {
460 		pr_err("%pOF: Can't get CPU for leaf core\n", core);
461 		return -EINVAL;
462 	}
463 
464 	return 0;
465 }
466 
parse_cluster(struct device_node * cluster,int depth)467 static int __init parse_cluster(struct device_node *cluster, int depth)
468 {
469 	char name[20];
470 	bool leaf = true;
471 	bool has_cores = false;
472 	struct device_node *c;
473 	static int package_id __initdata;
474 	int core_id = 0;
475 	int i, ret;
476 
477 	/*
478 	 * First check for child clusters; we currently ignore any
479 	 * information about the nesting of clusters and present the
480 	 * scheduler with a flat list of them.
481 	 */
482 	i = 0;
483 	do {
484 		snprintf(name, sizeof(name), "cluster%d", i);
485 		c = of_get_child_by_name(cluster, name);
486 		if (c) {
487 			leaf = false;
488 			ret = parse_cluster(c, depth + 1);
489 			of_node_put(c);
490 			if (ret != 0)
491 				return ret;
492 		}
493 		i++;
494 	} while (c);
495 
496 	/* Now check for cores */
497 	i = 0;
498 	do {
499 		snprintf(name, sizeof(name), "core%d", i);
500 		c = of_get_child_by_name(cluster, name);
501 		if (c) {
502 			has_cores = true;
503 
504 			if (depth == 0) {
505 				pr_err("%pOF: cpu-map children should be clusters\n",
506 				       c);
507 				of_node_put(c);
508 				return -EINVAL;
509 			}
510 
511 			if (leaf) {
512 				ret = parse_core(c, package_id, core_id++);
513 			} else {
514 				pr_err("%pOF: Non-leaf cluster with core %s\n",
515 				       cluster, name);
516 				ret = -EINVAL;
517 			}
518 
519 			of_node_put(c);
520 			if (ret != 0)
521 				return ret;
522 		}
523 		i++;
524 	} while (c);
525 
526 	if (leaf && !has_cores)
527 		pr_warn("%pOF: empty cluster\n", cluster);
528 
529 	if (leaf)
530 		package_id++;
531 
532 	return 0;
533 }
534 
parse_dt_topology(void)535 static int __init parse_dt_topology(void)
536 {
537 	struct device_node *cn, *map;
538 	int ret = 0;
539 	int cpu;
540 
541 	cn = of_find_node_by_path("/cpus");
542 	if (!cn) {
543 		pr_err("No CPU information found in DT\n");
544 		return 0;
545 	}
546 
547 	/*
548 	 * When topology is provided cpu-map is essentially a root
549 	 * cluster with restricted subnodes.
550 	 */
551 	map = of_get_child_by_name(cn, "cpu-map");
552 	if (!map)
553 		goto out;
554 
555 	ret = parse_cluster(map, 0);
556 	if (ret != 0)
557 		goto out_map;
558 
559 	topology_normalize_cpu_scale();
560 
561 	/*
562 	 * Check that all cores are in the topology; the SMP code will
563 	 * only mark cores described in the DT as possible.
564 	 */
565 	for_each_possible_cpu(cpu)
566 		if (cpu_topology[cpu].package_id == -1)
567 			ret = -EINVAL;
568 
569 out_map:
570 	of_node_put(map);
571 out:
572 	of_node_put(cn);
573 	return ret;
574 }
575 #endif
576 
577 /*
578  * cpu topology table
579  */
580 struct cpu_topology cpu_topology[NR_CPUS];
581 EXPORT_SYMBOL_GPL(cpu_topology);
582 
cpu_coregroup_mask(int cpu)583 const struct cpumask *cpu_coregroup_mask(int cpu)
584 {
585 	const cpumask_t *core_mask = cpumask_of_node(cpu_to_node(cpu));
586 
587 	/* Find the smaller of NUMA, core or LLC siblings */
588 	if (cpumask_subset(&cpu_topology[cpu].core_sibling, core_mask)) {
589 		/* not numa in package, lets use the package siblings */
590 		core_mask = &cpu_topology[cpu].core_sibling;
591 	}
592 	if (cpu_topology[cpu].llc_id != -1) {
593 		if (cpumask_subset(&cpu_topology[cpu].llc_sibling, core_mask))
594 			core_mask = &cpu_topology[cpu].llc_sibling;
595 	}
596 
597 	return core_mask;
598 }
599 
cpu_clustergroup_mask(int cpu)600 const struct cpumask *cpu_clustergroup_mask(int cpu)
601 {
602 	return &cpu_topology[cpu].cluster_sibling;
603 }
604 
update_siblings_masks(unsigned int cpuid)605 void update_siblings_masks(unsigned int cpuid)
606 {
607 	struct cpu_topology *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
608 	int cpu;
609 
610 	/* update core and thread sibling masks */
611 	for_each_online_cpu(cpu) {
612 		cpu_topo = &cpu_topology[cpu];
613 
614 		if (cpuid_topo->llc_id == cpu_topo->llc_id) {
615 			cpumask_set_cpu(cpu, &cpuid_topo->llc_sibling);
616 			cpumask_set_cpu(cpuid, &cpu_topo->llc_sibling);
617 		}
618 
619 		if (cpuid_topo->package_id != cpu_topo->package_id)
620 			continue;
621 
622 		if (cpuid_topo->cluster_id == cpu_topo->cluster_id &&
623 		    cpuid_topo->cluster_id != -1) {
624 			cpumask_set_cpu(cpu, &cpuid_topo->cluster_sibling);
625 			cpumask_set_cpu(cpuid, &cpu_topo->cluster_sibling);
626 		}
627 
628 		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
629 		cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
630 
631 		if (cpuid_topo->core_id != cpu_topo->core_id)
632 			continue;
633 
634 		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
635 		cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
636 	}
637 }
638 
clear_cpu_topology(int cpu)639 static void clear_cpu_topology(int cpu)
640 {
641 	struct cpu_topology *cpu_topo = &cpu_topology[cpu];
642 
643 	cpumask_clear(&cpu_topo->llc_sibling);
644 	cpumask_set_cpu(cpu, &cpu_topo->llc_sibling);
645 
646 	cpumask_clear(&cpu_topo->cluster_sibling);
647 	cpumask_set_cpu(cpu, &cpu_topo->cluster_sibling);
648 
649 	cpumask_clear(&cpu_topo->core_sibling);
650 	cpumask_set_cpu(cpu, &cpu_topo->core_sibling);
651 	cpumask_clear(&cpu_topo->thread_sibling);
652 	cpumask_set_cpu(cpu, &cpu_topo->thread_sibling);
653 }
654 
reset_cpu_topology(void)655 void __init reset_cpu_topology(void)
656 {
657 	unsigned int cpu;
658 
659 	for_each_possible_cpu(cpu) {
660 		struct cpu_topology *cpu_topo = &cpu_topology[cpu];
661 
662 		cpu_topo->thread_id = -1;
663 		cpu_topo->core_id = -1;
664 		cpu_topo->cluster_id = -1;
665 		cpu_topo->package_id = -1;
666 		cpu_topo->llc_id = -1;
667 
668 		clear_cpu_topology(cpu);
669 	}
670 }
671 
remove_cpu_topology(unsigned int cpu)672 void remove_cpu_topology(unsigned int cpu)
673 {
674 	int sibling;
675 
676 	for_each_cpu(sibling, topology_core_cpumask(cpu))
677 		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
678 	for_each_cpu(sibling, topology_sibling_cpumask(cpu))
679 		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
680 	for_each_cpu(sibling, topology_cluster_cpumask(cpu))
681 		cpumask_clear_cpu(cpu, topology_cluster_cpumask(sibling));
682 	for_each_cpu(sibling, topology_llc_cpumask(cpu))
683 		cpumask_clear_cpu(cpu, topology_llc_cpumask(sibling));
684 
685 	clear_cpu_topology(cpu);
686 }
687 
parse_acpi_topology(void)688 __weak int __init parse_acpi_topology(void)
689 {
690 	return 0;
691 }
692 
693 #if defined(CONFIG_ARM64) || defined(CONFIG_RISCV)
init_cpu_topology(void)694 void __init init_cpu_topology(void)
695 {
696 	reset_cpu_topology();
697 
698 	/*
699 	 * Discard anything that was parsed if we hit an error so we
700 	 * don't use partial information.
701 	 */
702 	if (parse_acpi_topology())
703 		reset_cpu_topology();
704 	else if (of_have_populated_dt() && parse_dt_topology())
705 		reset_cpu_topology();
706 }
707 #endif
708