1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2018, The Linux Foundation. All rights reserved.
4 */
5
6 /*
7 * In Certain QCOM SoCs like apq8096 and msm8996 that have KRYO processors,
8 * the CPU frequency subset and voltage value of each OPP varies
9 * based on the silicon variant in use. Qualcomm Process Voltage Scaling Tables
10 * defines the voltage and frequency value based on the msm-id in SMEM
11 * and speedbin blown in the efuse combination.
12 * The qcom-cpufreq-nvmem driver reads the msm-id and efuse value from the SoC
13 * to provide the OPP framework with required information.
14 * This is used to determine the voltage and frequency value for each OPP of
15 * operating-points-v2 table when it is parsed by the OPP framework.
16 */
17
18 #include <linux/cpu.h>
19 #include <linux/err.h>
20 #include <linux/init.h>
21 #include <linux/kernel.h>
22 #include <linux/module.h>
23 #include <linux/nvmem-consumer.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_domain.h>
28 #include <linux/pm_opp.h>
29 #include <linux/slab.h>
30 #include <linux/soc/qcom/smem.h>
31
32 #define MSM_ID_SMEM 137
33
34 enum _msm_id {
35 MSM8996V3 = 0xF6ul,
36 APQ8096V3 = 0x123ul,
37 MSM8996SG = 0x131ul,
38 APQ8096SG = 0x138ul,
39 };
40
41 enum _msm8996_version {
42 MSM8996_V3,
43 MSM8996_SG,
44 NUM_OF_MSM8996_VERSIONS,
45 };
46
47 struct qcom_cpufreq_drv;
48
49 struct qcom_cpufreq_match_data {
50 int (*get_version)(struct device *cpu_dev,
51 struct nvmem_cell *speedbin_nvmem,
52 char **pvs_name,
53 struct qcom_cpufreq_drv *drv);
54 const char **genpd_names;
55 };
56
57 struct qcom_cpufreq_drv {
58 struct opp_table **names_opp_tables;
59 struct opp_table **hw_opp_tables;
60 struct opp_table **genpd_opp_tables;
61 u32 versions;
62 const struct qcom_cpufreq_match_data *data;
63 };
64
65 static struct platform_device *cpufreq_dt_pdev, *cpufreq_pdev;
66
get_krait_bin_format_a(struct device * cpu_dev,int * speed,int * pvs,int * pvs_ver,struct nvmem_cell * pvs_nvmem,u8 * buf)67 static void get_krait_bin_format_a(struct device *cpu_dev,
68 int *speed, int *pvs, int *pvs_ver,
69 struct nvmem_cell *pvs_nvmem, u8 *buf)
70 {
71 u32 pte_efuse;
72
73 pte_efuse = *((u32 *)buf);
74
75 *speed = pte_efuse & 0xf;
76 if (*speed == 0xf)
77 *speed = (pte_efuse >> 4) & 0xf;
78
79 if (*speed == 0xf) {
80 *speed = 0;
81 dev_warn(cpu_dev, "Speed bin: Defaulting to %d\n", *speed);
82 } else {
83 dev_dbg(cpu_dev, "Speed bin: %d\n", *speed);
84 }
85
86 *pvs = (pte_efuse >> 10) & 0x7;
87 if (*pvs == 0x7)
88 *pvs = (pte_efuse >> 13) & 0x7;
89
90 if (*pvs == 0x7) {
91 *pvs = 0;
92 dev_warn(cpu_dev, "PVS bin: Defaulting to %d\n", *pvs);
93 } else {
94 dev_dbg(cpu_dev, "PVS bin: %d\n", *pvs);
95 }
96 }
97
get_krait_bin_format_b(struct device * cpu_dev,int * speed,int * pvs,int * pvs_ver,struct nvmem_cell * pvs_nvmem,u8 * buf)98 static void get_krait_bin_format_b(struct device *cpu_dev,
99 int *speed, int *pvs, int *pvs_ver,
100 struct nvmem_cell *pvs_nvmem, u8 *buf)
101 {
102 u32 pte_efuse, redundant_sel;
103
104 pte_efuse = *((u32 *)buf);
105 redundant_sel = (pte_efuse >> 24) & 0x7;
106
107 *pvs_ver = (pte_efuse >> 4) & 0x3;
108
109 switch (redundant_sel) {
110 case 1:
111 *pvs = ((pte_efuse >> 28) & 0x8) | ((pte_efuse >> 6) & 0x7);
112 *speed = (pte_efuse >> 27) & 0xf;
113 break;
114 case 2:
115 *pvs = (pte_efuse >> 27) & 0xf;
116 *speed = pte_efuse & 0x7;
117 break;
118 default:
119 /* 4 bits of PVS are in efuse register bits 31, 8-6. */
120 *pvs = ((pte_efuse >> 28) & 0x8) | ((pte_efuse >> 6) & 0x7);
121 *speed = pte_efuse & 0x7;
122 }
123
124 /* Check SPEED_BIN_BLOW_STATUS */
125 if (pte_efuse & BIT(3)) {
126 dev_dbg(cpu_dev, "Speed bin: %d\n", *speed);
127 } else {
128 dev_warn(cpu_dev, "Speed bin not set. Defaulting to 0!\n");
129 *speed = 0;
130 }
131
132 /* Check PVS_BLOW_STATUS */
133 pte_efuse = *(((u32 *)buf) + 4);
134 pte_efuse &= BIT(21);
135 if (pte_efuse) {
136 dev_dbg(cpu_dev, "PVS bin: %d\n", *pvs);
137 } else {
138 dev_warn(cpu_dev, "PVS bin not set. Defaulting to 0!\n");
139 *pvs = 0;
140 }
141
142 dev_dbg(cpu_dev, "PVS version: %d\n", *pvs_ver);
143 }
144
qcom_cpufreq_get_msm_id(void)145 static enum _msm8996_version qcom_cpufreq_get_msm_id(void)
146 {
147 size_t len;
148 u32 *msm_id;
149 enum _msm8996_version version;
150
151 msm_id = qcom_smem_get(QCOM_SMEM_HOST_ANY, MSM_ID_SMEM, &len);
152 if (IS_ERR(msm_id))
153 return NUM_OF_MSM8996_VERSIONS;
154
155 /* The first 4 bytes are format, next to them is the actual msm-id */
156 msm_id++;
157
158 switch ((enum _msm_id)*msm_id) {
159 case MSM8996V3:
160 case APQ8096V3:
161 version = MSM8996_V3;
162 break;
163 case MSM8996SG:
164 case APQ8096SG:
165 version = MSM8996_SG;
166 break;
167 default:
168 version = NUM_OF_MSM8996_VERSIONS;
169 }
170
171 return version;
172 }
173
qcom_cpufreq_kryo_name_version(struct device * cpu_dev,struct nvmem_cell * speedbin_nvmem,char ** pvs_name,struct qcom_cpufreq_drv * drv)174 static int qcom_cpufreq_kryo_name_version(struct device *cpu_dev,
175 struct nvmem_cell *speedbin_nvmem,
176 char **pvs_name,
177 struct qcom_cpufreq_drv *drv)
178 {
179 size_t len;
180 u8 *speedbin;
181 enum _msm8996_version msm8996_version;
182 *pvs_name = NULL;
183
184 msm8996_version = qcom_cpufreq_get_msm_id();
185 if (NUM_OF_MSM8996_VERSIONS == msm8996_version) {
186 dev_err(cpu_dev, "Not Snapdragon 820/821!");
187 return -ENODEV;
188 }
189
190 speedbin = nvmem_cell_read(speedbin_nvmem, &len);
191 if (IS_ERR(speedbin))
192 return PTR_ERR(speedbin);
193
194 switch (msm8996_version) {
195 case MSM8996_V3:
196 drv->versions = 1 << (unsigned int)(*speedbin);
197 break;
198 case MSM8996_SG:
199 drv->versions = 1 << ((unsigned int)(*speedbin) + 4);
200 break;
201 default:
202 BUG();
203 break;
204 }
205
206 kfree(speedbin);
207 return 0;
208 }
209
qcom_cpufreq_krait_name_version(struct device * cpu_dev,struct nvmem_cell * speedbin_nvmem,char ** pvs_name,struct qcom_cpufreq_drv * drv)210 static int qcom_cpufreq_krait_name_version(struct device *cpu_dev,
211 struct nvmem_cell *speedbin_nvmem,
212 char **pvs_name,
213 struct qcom_cpufreq_drv *drv)
214 {
215 int speed = 0, pvs = 0, pvs_ver = 0;
216 u8 *speedbin;
217 size_t len;
218
219 speedbin = nvmem_cell_read(speedbin_nvmem, &len);
220
221 if (IS_ERR(speedbin))
222 return PTR_ERR(speedbin);
223
224 switch (len) {
225 case 4:
226 get_krait_bin_format_a(cpu_dev, &speed, &pvs, &pvs_ver,
227 speedbin_nvmem, speedbin);
228 break;
229 case 8:
230 get_krait_bin_format_b(cpu_dev, &speed, &pvs, &pvs_ver,
231 speedbin_nvmem, speedbin);
232 break;
233 default:
234 dev_err(cpu_dev, "Unable to read nvmem data. Defaulting to 0!\n");
235 return -ENODEV;
236 }
237
238 snprintf(*pvs_name, sizeof("speedXX-pvsXX-vXX"), "speed%d-pvs%d-v%d",
239 speed, pvs, pvs_ver);
240
241 drv->versions = (1 << speed);
242
243 kfree(speedbin);
244 return 0;
245 }
246
247 static const struct qcom_cpufreq_match_data match_data_kryo = {
248 .get_version = qcom_cpufreq_kryo_name_version,
249 };
250
251 static const struct qcom_cpufreq_match_data match_data_krait = {
252 .get_version = qcom_cpufreq_krait_name_version,
253 };
254
255 static const char *qcs404_genpd_names[] = { "cpr", NULL };
256
257 static const struct qcom_cpufreq_match_data match_data_qcs404 = {
258 .genpd_names = qcs404_genpd_names,
259 };
260
qcom_cpufreq_probe(struct platform_device * pdev)261 static int qcom_cpufreq_probe(struct platform_device *pdev)
262 {
263 struct qcom_cpufreq_drv *drv;
264 struct nvmem_cell *speedbin_nvmem;
265 struct device_node *np;
266 struct device *cpu_dev;
267 char *pvs_name = "speedXX-pvsXX-vXX";
268 unsigned cpu;
269 const struct of_device_id *match;
270 int ret;
271
272 cpu_dev = get_cpu_device(0);
273 if (!cpu_dev)
274 return -ENODEV;
275
276 np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
277 if (!np)
278 return -ENOENT;
279
280 ret = of_device_is_compatible(np, "operating-points-v2-kryo-cpu");
281 if (!ret) {
282 of_node_put(np);
283 return -ENOENT;
284 }
285
286 drv = kzalloc(sizeof(*drv), GFP_KERNEL);
287 if (!drv)
288 return -ENOMEM;
289
290 match = pdev->dev.platform_data;
291 drv->data = match->data;
292 if (!drv->data) {
293 ret = -ENODEV;
294 goto free_drv;
295 }
296
297 if (drv->data->get_version) {
298 speedbin_nvmem = of_nvmem_cell_get(np, NULL);
299 if (IS_ERR(speedbin_nvmem)) {
300 if (PTR_ERR(speedbin_nvmem) != -EPROBE_DEFER)
301 dev_err(cpu_dev,
302 "Could not get nvmem cell: %ld\n",
303 PTR_ERR(speedbin_nvmem));
304 ret = PTR_ERR(speedbin_nvmem);
305 goto free_drv;
306 }
307
308 ret = drv->data->get_version(cpu_dev,
309 speedbin_nvmem, &pvs_name, drv);
310 if (ret) {
311 nvmem_cell_put(speedbin_nvmem);
312 goto free_drv;
313 }
314 nvmem_cell_put(speedbin_nvmem);
315 }
316 of_node_put(np);
317
318 drv->names_opp_tables = kcalloc(num_possible_cpus(),
319 sizeof(*drv->names_opp_tables),
320 GFP_KERNEL);
321 if (!drv->names_opp_tables) {
322 ret = -ENOMEM;
323 goto free_drv;
324 }
325 drv->hw_opp_tables = kcalloc(num_possible_cpus(),
326 sizeof(*drv->hw_opp_tables),
327 GFP_KERNEL);
328 if (!drv->hw_opp_tables) {
329 ret = -ENOMEM;
330 goto free_opp_names;
331 }
332
333 drv->genpd_opp_tables = kcalloc(num_possible_cpus(),
334 sizeof(*drv->genpd_opp_tables),
335 GFP_KERNEL);
336 if (!drv->genpd_opp_tables) {
337 ret = -ENOMEM;
338 goto free_opp;
339 }
340
341 for_each_possible_cpu(cpu) {
342 cpu_dev = get_cpu_device(cpu);
343 if (NULL == cpu_dev) {
344 ret = -ENODEV;
345 goto free_genpd_opp;
346 }
347
348 if (drv->data->get_version) {
349
350 if (pvs_name) {
351 drv->names_opp_tables[cpu] = dev_pm_opp_set_prop_name(
352 cpu_dev,
353 pvs_name);
354 if (IS_ERR(drv->names_opp_tables[cpu])) {
355 ret = PTR_ERR(drv->names_opp_tables[cpu]);
356 dev_err(cpu_dev, "Failed to add OPP name %s\n",
357 pvs_name);
358 goto free_opp;
359 }
360 }
361
362 drv->hw_opp_tables[cpu] = dev_pm_opp_set_supported_hw(
363 cpu_dev, &drv->versions, 1);
364 if (IS_ERR(drv->hw_opp_tables[cpu])) {
365 ret = PTR_ERR(drv->hw_opp_tables[cpu]);
366 dev_err(cpu_dev,
367 "Failed to set supported hardware\n");
368 goto free_genpd_opp;
369 }
370 }
371
372 if (drv->data->genpd_names) {
373 drv->genpd_opp_tables[cpu] =
374 dev_pm_opp_attach_genpd(cpu_dev,
375 drv->data->genpd_names,
376 NULL);
377 if (IS_ERR(drv->genpd_opp_tables[cpu])) {
378 ret = PTR_ERR(drv->genpd_opp_tables[cpu]);
379 if (ret != -EPROBE_DEFER)
380 dev_err(cpu_dev,
381 "Could not attach to pm_domain: %d\n",
382 ret);
383 goto free_genpd_opp;
384 }
385 }
386 }
387
388 cpufreq_dt_pdev = platform_device_register_simple("cpufreq-dt", -1,
389 NULL, 0);
390 if (!IS_ERR(cpufreq_dt_pdev)) {
391 platform_set_drvdata(pdev, drv);
392 return 0;
393 }
394
395 ret = PTR_ERR(cpufreq_dt_pdev);
396 dev_err(cpu_dev, "Failed to register platform device\n");
397
398 free_genpd_opp:
399 for_each_possible_cpu(cpu) {
400 if (IS_ERR(drv->genpd_opp_tables[cpu]))
401 break;
402 dev_pm_opp_detach_genpd(drv->genpd_opp_tables[cpu]);
403 }
404 kfree(drv->genpd_opp_tables);
405 free_opp:
406 for_each_possible_cpu(cpu) {
407 if (IS_ERR(drv->names_opp_tables[cpu]))
408 break;
409 dev_pm_opp_put_prop_name(drv->names_opp_tables[cpu]);
410 }
411 for_each_possible_cpu(cpu) {
412 if (IS_ERR(drv->hw_opp_tables[cpu]))
413 break;
414 dev_pm_opp_put_supported_hw(drv->hw_opp_tables[cpu]);
415 }
416 kfree(drv->hw_opp_tables);
417 free_opp_names:
418 kfree(drv->names_opp_tables);
419 free_drv:
420 kfree(drv);
421
422 return ret;
423 }
424
qcom_cpufreq_remove(struct platform_device * pdev)425 static int qcom_cpufreq_remove(struct platform_device *pdev)
426 {
427 struct qcom_cpufreq_drv *drv = platform_get_drvdata(pdev);
428 unsigned int cpu;
429
430 platform_device_unregister(cpufreq_dt_pdev);
431
432 for_each_possible_cpu(cpu) {
433 dev_pm_opp_put_supported_hw(drv->names_opp_tables[cpu]);
434 dev_pm_opp_put_supported_hw(drv->hw_opp_tables[cpu]);
435 dev_pm_opp_detach_genpd(drv->genpd_opp_tables[cpu]);
436 }
437
438 kfree(drv->names_opp_tables);
439 kfree(drv->hw_opp_tables);
440 kfree(drv->genpd_opp_tables);
441 kfree(drv);
442
443 return 0;
444 }
445
446 static struct platform_driver qcom_cpufreq_driver = {
447 .probe = qcom_cpufreq_probe,
448 .remove = qcom_cpufreq_remove,
449 .driver = {
450 .name = "qcom-cpufreq-nvmem",
451 },
452 };
453
454 static const struct of_device_id qcom_cpufreq_match_list[] __initconst = {
455 { .compatible = "qcom,apq8096", .data = &match_data_kryo },
456 { .compatible = "qcom,msm8996", .data = &match_data_kryo },
457 { .compatible = "qcom,qcs404", .data = &match_data_qcs404 },
458 { .compatible = "qcom,ipq8064", .data = &match_data_krait },
459 { .compatible = "qcom,apq8064", .data = &match_data_krait },
460 { .compatible = "qcom,msm8974", .data = &match_data_krait },
461 { .compatible = "qcom,msm8960", .data = &match_data_krait },
462 {},
463 };
464 MODULE_DEVICE_TABLE(of, qcom_cpufreq_match_list);
465
466 /*
467 * Since the driver depends on smem and nvmem drivers, which may
468 * return EPROBE_DEFER, all the real activity is done in the probe,
469 * which may be defered as well. The init here is only registering
470 * the driver and the platform device.
471 */
qcom_cpufreq_init(void)472 static int __init qcom_cpufreq_init(void)
473 {
474 struct device_node *np = of_find_node_by_path("/");
475 const struct of_device_id *match;
476 int ret;
477
478 if (!np)
479 return -ENODEV;
480
481 match = of_match_node(qcom_cpufreq_match_list, np);
482 of_node_put(np);
483 if (!match)
484 return -ENODEV;
485
486 ret = platform_driver_register(&qcom_cpufreq_driver);
487 if (unlikely(ret < 0))
488 return ret;
489
490 cpufreq_pdev = platform_device_register_data(NULL, "qcom-cpufreq-nvmem",
491 -1, match, sizeof(*match));
492 ret = PTR_ERR_OR_ZERO(cpufreq_pdev);
493 if (0 == ret)
494 return 0;
495
496 platform_driver_unregister(&qcom_cpufreq_driver);
497 return ret;
498 }
499 module_init(qcom_cpufreq_init);
500
qcom_cpufreq_exit(void)501 static void __exit qcom_cpufreq_exit(void)
502 {
503 platform_device_unregister(cpufreq_pdev);
504 platform_driver_unregister(&qcom_cpufreq_driver);
505 }
506 module_exit(qcom_cpufreq_exit);
507
508 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. CPUfreq driver");
509 MODULE_LICENSE("GPL v2");
510