1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) ST-Ericsson SA 2010
4  * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson.
5  * Author: Jonas Linde <jonas.linde@stericsson.com> for ST-Ericsson.
6  * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
7  * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson.
8  * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
9  */
10 
11 #include <linux/errno.h>
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 
15 #include "cryp_p.h"
16 #include "cryp.h"
17 
18 /*
19  * cryp_wait_until_done - wait until the device logic is not busy
20  */
cryp_wait_until_done(struct cryp_device_data * device_data)21 void cryp_wait_until_done(struct cryp_device_data *device_data)
22 {
23 	while (cryp_is_logic_busy(device_data))
24 		cpu_relax();
25 }
26 
27 /**
28  * cryp_check - This routine checks Peripheral and PCell Id
29  * @device_data: Pointer to the device data struct for base address.
30  */
cryp_check(struct cryp_device_data * device_data)31 int cryp_check(struct cryp_device_data *device_data)
32 {
33 	int peripheralid2 = 0;
34 
35 	if (NULL == device_data)
36 		return -EINVAL;
37 
38 	peripheralid2 = readl_relaxed(&device_data->base->periphId2);
39 
40 	if (peripheralid2 != CRYP_PERIPHERAL_ID2_DB8500)
41 		return -EPERM;
42 
43 	/* Check Peripheral and Pcell Id Register for CRYP */
44 	if ((CRYP_PERIPHERAL_ID0 ==
45 		readl_relaxed(&device_data->base->periphId0))
46 	    && (CRYP_PERIPHERAL_ID1 ==
47 		    readl_relaxed(&device_data->base->periphId1))
48 	    && (CRYP_PERIPHERAL_ID3 ==
49 		    readl_relaxed(&device_data->base->periphId3))
50 	    && (CRYP_PCELL_ID0 ==
51 		    readl_relaxed(&device_data->base->pcellId0))
52 	    && (CRYP_PCELL_ID1 ==
53 		    readl_relaxed(&device_data->base->pcellId1))
54 	    && (CRYP_PCELL_ID2 ==
55 		    readl_relaxed(&device_data->base->pcellId2))
56 	    && (CRYP_PCELL_ID3 ==
57 		    readl_relaxed(&device_data->base->pcellId3))) {
58 		return 0;
59 	}
60 
61 	return -EPERM;
62 }
63 
64 /**
65  * cryp_activity - This routine enables/disable the cryptography function.
66  * @device_data: Pointer to the device data struct for base address.
67  * @cryp_crypen: Enable/Disable functionality
68  */
cryp_activity(struct cryp_device_data * device_data,enum cryp_crypen cryp_crypen)69 void cryp_activity(struct cryp_device_data *device_data,
70 		   enum cryp_crypen cryp_crypen)
71 {
72 	CRYP_PUT_BITS(&device_data->base->cr,
73 		      cryp_crypen,
74 		      CRYP_CR_CRYPEN_POS,
75 		      CRYP_CR_CRYPEN_MASK);
76 }
77 
78 /**
79  * cryp_flush_inoutfifo - Resets both the input and the output FIFOs
80  * @device_data: Pointer to the device data struct for base address.
81  */
cryp_flush_inoutfifo(struct cryp_device_data * device_data)82 void cryp_flush_inoutfifo(struct cryp_device_data *device_data)
83 {
84 	/*
85 	 * We always need to disable the hardware before trying to flush the
86 	 * FIFO. This is something that isn't written in the design
87 	 * specification, but we have been informed by the hardware designers
88 	 * that this must be done.
89 	 */
90 	cryp_activity(device_data, CRYP_CRYPEN_DISABLE);
91 	cryp_wait_until_done(device_data);
92 
93 	CRYP_SET_BITS(&device_data->base->cr, CRYP_CR_FFLUSH_MASK);
94 	/*
95 	 * CRYP_SR_INFIFO_READY_MASK is the expected value on the status
96 	 * register when starting a new calculation, which means Input FIFO is
97 	 * not full and input FIFO is empty.
98 	 */
99 	while (readl_relaxed(&device_data->base->sr) !=
100 	       CRYP_SR_INFIFO_READY_MASK)
101 		cpu_relax();
102 }
103 
104 /**
105  * cryp_set_configuration - This routine set the cr CRYP IP
106  * @device_data: Pointer to the device data struct for base address.
107  * @cryp_config: Pointer to the configuration parameter
108  * @control_register: The control register to be written later on.
109  */
cryp_set_configuration(struct cryp_device_data * device_data,struct cryp_config * cryp_config,u32 * control_register)110 int cryp_set_configuration(struct cryp_device_data *device_data,
111 			   struct cryp_config *cryp_config,
112 			   u32 *control_register)
113 {
114 	u32 cr_for_kse;
115 
116 	if (NULL == device_data || NULL == cryp_config)
117 		return -EINVAL;
118 
119 	*control_register |= (cryp_config->keysize << CRYP_CR_KEYSIZE_POS);
120 
121 	/* Prepare key for decryption in AES_ECB and AES_CBC mode. */
122 	if ((CRYP_ALGORITHM_DECRYPT == cryp_config->algodir) &&
123 	    ((CRYP_ALGO_AES_ECB == cryp_config->algomode) ||
124 	     (CRYP_ALGO_AES_CBC == cryp_config->algomode))) {
125 		cr_for_kse = *control_register;
126 		/*
127 		 * This seems a bit odd, but it is indeed needed to set this to
128 		 * encrypt even though it is a decryption that we are doing. It
129 		 * also mentioned in the design spec that you need to do this.
130 		 * After the keyprepartion for decrypting is done you should set
131 		 * algodir back to decryption, which is done outside this if
132 		 * statement.
133 		 *
134 		 * According to design specification we should set mode ECB
135 		 * during key preparation even though we might be running CBC
136 		 * when enter this function.
137 		 *
138 		 * Writing to KSE_ENABLED will drop CRYPEN when key preparation
139 		 * is done. Therefore we need to set CRYPEN again outside this
140 		 * if statement when running decryption.
141 		 */
142 		cr_for_kse |= ((CRYP_ALGORITHM_ENCRYPT << CRYP_CR_ALGODIR_POS) |
143 			       (CRYP_ALGO_AES_ECB << CRYP_CR_ALGOMODE_POS) |
144 			       (CRYP_CRYPEN_ENABLE << CRYP_CR_CRYPEN_POS) |
145 			       (KSE_ENABLED << CRYP_CR_KSE_POS));
146 
147 		writel_relaxed(cr_for_kse, &device_data->base->cr);
148 		cryp_wait_until_done(device_data);
149 	}
150 
151 	*control_register |=
152 		((cryp_config->algomode << CRYP_CR_ALGOMODE_POS) |
153 		 (cryp_config->algodir << CRYP_CR_ALGODIR_POS));
154 
155 	return 0;
156 }
157 
158 /**
159  * cryp_configure_protection - set the protection bits in the CRYP logic.
160  * @device_data: Pointer to the device data struct for base address.
161  * @p_protect_config:	Pointer to the protection mode and
162  *			secure mode configuration
163  */
cryp_configure_protection(struct cryp_device_data * device_data,struct cryp_protection_config * p_protect_config)164 int cryp_configure_protection(struct cryp_device_data *device_data,
165 			      struct cryp_protection_config *p_protect_config)
166 {
167 	if (NULL == p_protect_config)
168 		return -EINVAL;
169 
170 	CRYP_WRITE_BIT(&device_data->base->cr,
171 		       (u32) p_protect_config->secure_access,
172 		       CRYP_CR_SECURE_MASK);
173 	CRYP_PUT_BITS(&device_data->base->cr,
174 		      p_protect_config->privilege_access,
175 		      CRYP_CR_PRLG_POS,
176 		      CRYP_CR_PRLG_MASK);
177 
178 	return 0;
179 }
180 
181 /**
182  * cryp_is_logic_busy - returns the busy status of the CRYP logic
183  * @device_data: Pointer to the device data struct for base address.
184  */
cryp_is_logic_busy(struct cryp_device_data * device_data)185 int cryp_is_logic_busy(struct cryp_device_data *device_data)
186 {
187 	return CRYP_TEST_BITS(&device_data->base->sr,
188 			      CRYP_SR_BUSY_MASK);
189 }
190 
191 /**
192  * cryp_configure_for_dma - configures the CRYP IP for DMA operation
193  * @device_data: Pointer to the device data struct for base address.
194  * @dma_req: Specifies the DMA request type value.
195  */
cryp_configure_for_dma(struct cryp_device_data * device_data,enum cryp_dma_req_type dma_req)196 void cryp_configure_for_dma(struct cryp_device_data *device_data,
197 			    enum cryp_dma_req_type dma_req)
198 {
199 	CRYP_SET_BITS(&device_data->base->dmacr,
200 		      (u32) dma_req);
201 }
202 
203 /**
204  * cryp_configure_key_values - configures the key values for CRYP operations
205  * @device_data: Pointer to the device data struct for base address.
206  * @key_reg_index: Key value index register
207  * @key_value: The key value struct
208  */
cryp_configure_key_values(struct cryp_device_data * device_data,enum cryp_key_reg_index key_reg_index,struct cryp_key_value key_value)209 int cryp_configure_key_values(struct cryp_device_data *device_data,
210 			      enum cryp_key_reg_index key_reg_index,
211 			      struct cryp_key_value key_value)
212 {
213 	while (cryp_is_logic_busy(device_data))
214 		cpu_relax();
215 
216 	switch (key_reg_index) {
217 	case CRYP_KEY_REG_1:
218 		writel_relaxed(key_value.key_value_left,
219 				&device_data->base->key_1_l);
220 		writel_relaxed(key_value.key_value_right,
221 				&device_data->base->key_1_r);
222 		break;
223 	case CRYP_KEY_REG_2:
224 		writel_relaxed(key_value.key_value_left,
225 				&device_data->base->key_2_l);
226 		writel_relaxed(key_value.key_value_right,
227 				&device_data->base->key_2_r);
228 		break;
229 	case CRYP_KEY_REG_3:
230 		writel_relaxed(key_value.key_value_left,
231 				&device_data->base->key_3_l);
232 		writel_relaxed(key_value.key_value_right,
233 				&device_data->base->key_3_r);
234 		break;
235 	case CRYP_KEY_REG_4:
236 		writel_relaxed(key_value.key_value_left,
237 				&device_data->base->key_4_l);
238 		writel_relaxed(key_value.key_value_right,
239 				&device_data->base->key_4_r);
240 		break;
241 	default:
242 		return -EINVAL;
243 	}
244 
245 	return 0;
246 }
247 
248 /**
249  * cryp_configure_init_vector - configures the initialization vector register
250  * @device_data: Pointer to the device data struct for base address.
251  * @init_vector_index: Specifies the index of the init vector.
252  * @init_vector_value: Specifies the value for the init vector.
253  */
cryp_configure_init_vector(struct cryp_device_data * device_data,enum cryp_init_vector_index init_vector_index,struct cryp_init_vector_value init_vector_value)254 int cryp_configure_init_vector(struct cryp_device_data *device_data,
255 			       enum cryp_init_vector_index
256 			       init_vector_index,
257 			       struct cryp_init_vector_value
258 			       init_vector_value)
259 {
260 	while (cryp_is_logic_busy(device_data))
261 		cpu_relax();
262 
263 	switch (init_vector_index) {
264 	case CRYP_INIT_VECTOR_INDEX_0:
265 		writel_relaxed(init_vector_value.init_value_left,
266 		       &device_data->base->init_vect_0_l);
267 		writel_relaxed(init_vector_value.init_value_right,
268 		       &device_data->base->init_vect_0_r);
269 		break;
270 	case CRYP_INIT_VECTOR_INDEX_1:
271 		writel_relaxed(init_vector_value.init_value_left,
272 		       &device_data->base->init_vect_1_l);
273 		writel_relaxed(init_vector_value.init_value_right,
274 		       &device_data->base->init_vect_1_r);
275 		break;
276 	default:
277 		return -EINVAL;
278 	}
279 
280 	return 0;
281 }
282 
283 /**
284  * cryp_save_device_context -	Store hardware registers and
285  *				other device context parameter
286  * @device_data: Pointer to the device data struct for base address.
287  * @ctx: Crypto device context
288  * @cryp_mode: Mode: Polling, Interrupt or DMA
289  */
cryp_save_device_context(struct cryp_device_data * device_data,struct cryp_device_context * ctx,int cryp_mode)290 void cryp_save_device_context(struct cryp_device_data *device_data,
291 			      struct cryp_device_context *ctx,
292 			      int cryp_mode)
293 {
294 	enum cryp_algo_mode algomode;
295 	struct cryp_register __iomem *src_reg = device_data->base;
296 	struct cryp_config *config =
297 		(struct cryp_config *)device_data->current_ctx;
298 
299 	/*
300 	 * Always start by disable the hardware and wait for it to finish the
301 	 * ongoing calculations before trying to reprogram it.
302 	 */
303 	cryp_activity(device_data, CRYP_CRYPEN_DISABLE);
304 	cryp_wait_until_done(device_data);
305 
306 	if (cryp_mode == CRYP_MODE_DMA)
307 		cryp_configure_for_dma(device_data, CRYP_DMA_DISABLE_BOTH);
308 
309 	if (CRYP_TEST_BITS(&src_reg->sr, CRYP_SR_IFEM_MASK) == 0)
310 		ctx->din = readl_relaxed(&src_reg->din);
311 
312 	ctx->cr = readl_relaxed(&src_reg->cr) & CRYP_CR_CONTEXT_SAVE_MASK;
313 
314 	switch (config->keysize) {
315 	case CRYP_KEY_SIZE_256:
316 		ctx->key_4_l = readl_relaxed(&src_reg->key_4_l);
317 		ctx->key_4_r = readl_relaxed(&src_reg->key_4_r);
318 		fallthrough;
319 
320 	case CRYP_KEY_SIZE_192:
321 		ctx->key_3_l = readl_relaxed(&src_reg->key_3_l);
322 		ctx->key_3_r = readl_relaxed(&src_reg->key_3_r);
323 		fallthrough;
324 
325 	case CRYP_KEY_SIZE_128:
326 		ctx->key_2_l = readl_relaxed(&src_reg->key_2_l);
327 		ctx->key_2_r = readl_relaxed(&src_reg->key_2_r);
328 		fallthrough;
329 
330 	default:
331 		ctx->key_1_l = readl_relaxed(&src_reg->key_1_l);
332 		ctx->key_1_r = readl_relaxed(&src_reg->key_1_r);
333 	}
334 
335 	/* Save IV for CBC mode for both AES and DES. */
336 	algomode = ((ctx->cr & CRYP_CR_ALGOMODE_MASK) >> CRYP_CR_ALGOMODE_POS);
337 	if (algomode == CRYP_ALGO_TDES_CBC ||
338 	    algomode == CRYP_ALGO_DES_CBC ||
339 	    algomode == CRYP_ALGO_AES_CBC) {
340 		ctx->init_vect_0_l = readl_relaxed(&src_reg->init_vect_0_l);
341 		ctx->init_vect_0_r = readl_relaxed(&src_reg->init_vect_0_r);
342 		ctx->init_vect_1_l = readl_relaxed(&src_reg->init_vect_1_l);
343 		ctx->init_vect_1_r = readl_relaxed(&src_reg->init_vect_1_r);
344 	}
345 }
346 
347 /**
348  * cryp_restore_device_context -	Restore hardware registers and
349  *					other device context parameter
350  * @device_data: Pointer to the device data struct for base address.
351  * @ctx: Crypto device context
352  */
cryp_restore_device_context(struct cryp_device_data * device_data,struct cryp_device_context * ctx)353 void cryp_restore_device_context(struct cryp_device_data *device_data,
354 				 struct cryp_device_context *ctx)
355 {
356 	struct cryp_register __iomem *reg = device_data->base;
357 	struct cryp_config *config =
358 		(struct cryp_config *)device_data->current_ctx;
359 
360 	/*
361 	 * Fall through for all items in switch statement. DES is captured in
362 	 * the default.
363 	 */
364 	switch (config->keysize) {
365 	case CRYP_KEY_SIZE_256:
366 		writel_relaxed(ctx->key_4_l, &reg->key_4_l);
367 		writel_relaxed(ctx->key_4_r, &reg->key_4_r);
368 		fallthrough;
369 
370 	case CRYP_KEY_SIZE_192:
371 		writel_relaxed(ctx->key_3_l, &reg->key_3_l);
372 		writel_relaxed(ctx->key_3_r, &reg->key_3_r);
373 		fallthrough;
374 
375 	case CRYP_KEY_SIZE_128:
376 		writel_relaxed(ctx->key_2_l, &reg->key_2_l);
377 		writel_relaxed(ctx->key_2_r, &reg->key_2_r);
378 		fallthrough;
379 
380 	default:
381 		writel_relaxed(ctx->key_1_l, &reg->key_1_l);
382 		writel_relaxed(ctx->key_1_r, &reg->key_1_r);
383 	}
384 
385 	/* Restore IV for CBC mode for AES and DES. */
386 	if (config->algomode == CRYP_ALGO_TDES_CBC ||
387 	    config->algomode == CRYP_ALGO_DES_CBC ||
388 	    config->algomode == CRYP_ALGO_AES_CBC) {
389 		writel_relaxed(ctx->init_vect_0_l, &reg->init_vect_0_l);
390 		writel_relaxed(ctx->init_vect_0_r, &reg->init_vect_0_r);
391 		writel_relaxed(ctx->init_vect_1_l, &reg->init_vect_1_l);
392 		writel_relaxed(ctx->init_vect_1_r, &reg->init_vect_1_r);
393 	}
394 }
395