1 // SPDX-License-Identifier: GPL-2.0+
2 // Copyright 2018 IBM Corp
3 /*
4 * A FSI master controller, using a simple GPIO bit-banging interface
5 */
6
7 #include <linux/crc4.h>
8 #include <linux/delay.h>
9 #include <linux/device.h>
10 #include <linux/fsi.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/io.h>
13 #include <linux/irqflags.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/platform_device.h>
17 #include <linux/slab.h>
18 #include <linux/regmap.h>
19 #include <linux/firmware.h>
20 #include <linux/gpio/aspeed.h>
21 #include <linux/mfd/syscon.h>
22 #include <linux/of_address.h>
23 #include <linux/genalloc.h>
24
25 #include "fsi-master.h"
26 #include "cf-fsi-fw.h"
27
28 #define FW_FILE_NAME "cf-fsi-fw.bin"
29
30 /* Common SCU based coprocessor control registers */
31 #define SCU_COPRO_CTRL 0x100
32 #define SCU_COPRO_RESET 0x00000002
33 #define SCU_COPRO_CLK_EN 0x00000001
34
35 /* AST2500 specific ones */
36 #define SCU_2500_COPRO_SEG0 0x104
37 #define SCU_2500_COPRO_SEG1 0x108
38 #define SCU_2500_COPRO_SEG2 0x10c
39 #define SCU_2500_COPRO_SEG3 0x110
40 #define SCU_2500_COPRO_SEG4 0x114
41 #define SCU_2500_COPRO_SEG5 0x118
42 #define SCU_2500_COPRO_SEG6 0x11c
43 #define SCU_2500_COPRO_SEG7 0x120
44 #define SCU_2500_COPRO_SEG8 0x124
45 #define SCU_2500_COPRO_SEG_SWAP 0x00000001
46 #define SCU_2500_COPRO_CACHE_CTL 0x128
47 #define SCU_2500_COPRO_CACHE_EN 0x00000001
48 #define SCU_2500_COPRO_SEG0_CACHE_EN 0x00000002
49 #define SCU_2500_COPRO_SEG1_CACHE_EN 0x00000004
50 #define SCU_2500_COPRO_SEG2_CACHE_EN 0x00000008
51 #define SCU_2500_COPRO_SEG3_CACHE_EN 0x00000010
52 #define SCU_2500_COPRO_SEG4_CACHE_EN 0x00000020
53 #define SCU_2500_COPRO_SEG5_CACHE_EN 0x00000040
54 #define SCU_2500_COPRO_SEG6_CACHE_EN 0x00000080
55 #define SCU_2500_COPRO_SEG7_CACHE_EN 0x00000100
56 #define SCU_2500_COPRO_SEG8_CACHE_EN 0x00000200
57
58 #define SCU_2400_COPRO_SEG0 0x104
59 #define SCU_2400_COPRO_SEG2 0x108
60 #define SCU_2400_COPRO_SEG4 0x10c
61 #define SCU_2400_COPRO_SEG6 0x110
62 #define SCU_2400_COPRO_SEG8 0x114
63 #define SCU_2400_COPRO_SEG_SWAP 0x80000000
64 #define SCU_2400_COPRO_CACHE_CTL 0x118
65 #define SCU_2400_COPRO_CACHE_EN 0x00000001
66 #define SCU_2400_COPRO_SEG0_CACHE_EN 0x00000002
67 #define SCU_2400_COPRO_SEG2_CACHE_EN 0x00000004
68 #define SCU_2400_COPRO_SEG4_CACHE_EN 0x00000008
69 #define SCU_2400_COPRO_SEG6_CACHE_EN 0x00000010
70 #define SCU_2400_COPRO_SEG8_CACHE_EN 0x00000020
71
72 /* CVIC registers */
73 #define CVIC_EN_REG 0x10
74 #define CVIC_TRIG_REG 0x18
75
76 /*
77 * System register base address (needed for configuring the
78 * coldfire maps)
79 */
80 #define SYSREG_BASE 0x1e600000
81
82 /* Amount of SRAM required */
83 #define SRAM_SIZE 0x1000
84
85 #define LAST_ADDR_INVALID 0x1
86
87 struct fsi_master_acf {
88 struct fsi_master master;
89 struct device *dev;
90 struct regmap *scu;
91 struct mutex lock; /* mutex for command ordering */
92 struct gpio_desc *gpio_clk;
93 struct gpio_desc *gpio_data;
94 struct gpio_desc *gpio_trans; /* Voltage translator */
95 struct gpio_desc *gpio_enable; /* FSI enable */
96 struct gpio_desc *gpio_mux; /* Mux control */
97 uint16_t gpio_clk_vreg;
98 uint16_t gpio_clk_dreg;
99 uint16_t gpio_dat_vreg;
100 uint16_t gpio_dat_dreg;
101 uint16_t gpio_tra_vreg;
102 uint16_t gpio_tra_dreg;
103 uint8_t gpio_clk_bit;
104 uint8_t gpio_dat_bit;
105 uint8_t gpio_tra_bit;
106 uint32_t cf_mem_addr;
107 size_t cf_mem_size;
108 void __iomem *cf_mem;
109 void __iomem *cvic;
110 struct gen_pool *sram_pool;
111 void __iomem *sram;
112 bool is_ast2500;
113 bool external_mode;
114 bool trace_enabled;
115 uint32_t last_addr;
116 uint8_t t_send_delay;
117 uint8_t t_echo_delay;
118 uint32_t cvic_sw_irq;
119 };
120 #define to_fsi_master_acf(m) container_of(m, struct fsi_master_acf, master)
121
122 struct fsi_msg {
123 uint64_t msg;
124 uint8_t bits;
125 };
126
127 #define CREATE_TRACE_POINTS
128 #include <trace/events/fsi_master_ast_cf.h>
129
msg_push_bits(struct fsi_msg * msg,uint64_t data,int bits)130 static void msg_push_bits(struct fsi_msg *msg, uint64_t data, int bits)
131 {
132 msg->msg <<= bits;
133 msg->msg |= data & ((1ull << bits) - 1);
134 msg->bits += bits;
135 }
136
msg_push_crc(struct fsi_msg * msg)137 static void msg_push_crc(struct fsi_msg *msg)
138 {
139 uint8_t crc;
140 int top;
141
142 top = msg->bits & 0x3;
143
144 /* start bit, and any non-aligned top bits */
145 crc = crc4(0, 1 << top | msg->msg >> (msg->bits - top), top + 1);
146
147 /* aligned bits */
148 crc = crc4(crc, msg->msg, msg->bits - top);
149
150 msg_push_bits(msg, crc, 4);
151 }
152
msg_finish_cmd(struct fsi_msg * cmd)153 static void msg_finish_cmd(struct fsi_msg *cmd)
154 {
155 /* Left align message */
156 cmd->msg <<= (64 - cmd->bits);
157 }
158
check_same_address(struct fsi_master_acf * master,int id,uint32_t addr)159 static bool check_same_address(struct fsi_master_acf *master, int id,
160 uint32_t addr)
161 {
162 /* this will also handle LAST_ADDR_INVALID */
163 return master->last_addr == (((id & 0x3) << 21) | (addr & ~0x3));
164 }
165
check_relative_address(struct fsi_master_acf * master,int id,uint32_t addr,uint32_t * rel_addrp)166 static bool check_relative_address(struct fsi_master_acf *master, int id,
167 uint32_t addr, uint32_t *rel_addrp)
168 {
169 uint32_t last_addr = master->last_addr;
170 int32_t rel_addr;
171
172 if (last_addr == LAST_ADDR_INVALID)
173 return false;
174
175 /* We may be in 23-bit addressing mode, which uses the id as the
176 * top two address bits. So, if we're referencing a different ID,
177 * use absolute addresses.
178 */
179 if (((last_addr >> 21) & 0x3) != id)
180 return false;
181
182 /* remove the top two bits from any 23-bit addressing */
183 last_addr &= (1 << 21) - 1;
184
185 /* We know that the addresses are limited to 21 bits, so this won't
186 * overflow the signed rel_addr */
187 rel_addr = addr - last_addr;
188 if (rel_addr > 255 || rel_addr < -256)
189 return false;
190
191 *rel_addrp = (uint32_t)rel_addr;
192
193 return true;
194 }
195
last_address_update(struct fsi_master_acf * master,int id,bool valid,uint32_t addr)196 static void last_address_update(struct fsi_master_acf *master,
197 int id, bool valid, uint32_t addr)
198 {
199 if (!valid)
200 master->last_addr = LAST_ADDR_INVALID;
201 else
202 master->last_addr = ((id & 0x3) << 21) | (addr & ~0x3);
203 }
204
205 /*
206 * Encode an Absolute/Relative/Same Address command
207 */
build_ar_command(struct fsi_master_acf * master,struct fsi_msg * cmd,uint8_t id,uint32_t addr,size_t size,const void * data)208 static void build_ar_command(struct fsi_master_acf *master,
209 struct fsi_msg *cmd, uint8_t id,
210 uint32_t addr, size_t size,
211 const void *data)
212 {
213 int i, addr_bits, opcode_bits;
214 bool write = !!data;
215 uint8_t ds, opcode;
216 uint32_t rel_addr;
217
218 cmd->bits = 0;
219 cmd->msg = 0;
220
221 /* we have 21 bits of address max */
222 addr &= ((1 << 21) - 1);
223
224 /* cmd opcodes are variable length - SAME_AR is only two bits */
225 opcode_bits = 3;
226
227 if (check_same_address(master, id, addr)) {
228 /* we still address the byte offset within the word */
229 addr_bits = 2;
230 opcode_bits = 2;
231 opcode = FSI_CMD_SAME_AR;
232 trace_fsi_master_acf_cmd_same_addr(master);
233
234 } else if (check_relative_address(master, id, addr, &rel_addr)) {
235 /* 8 bits plus sign */
236 addr_bits = 9;
237 addr = rel_addr;
238 opcode = FSI_CMD_REL_AR;
239 trace_fsi_master_acf_cmd_rel_addr(master, rel_addr);
240
241 } else {
242 addr_bits = 21;
243 opcode = FSI_CMD_ABS_AR;
244 trace_fsi_master_acf_cmd_abs_addr(master, addr);
245 }
246
247 /*
248 * The read/write size is encoded in the lower bits of the address
249 * (as it must be naturally-aligned), and the following ds bit.
250 *
251 * size addr:1 addr:0 ds
252 * 1 x x 0
253 * 2 x 0 1
254 * 4 0 1 1
255 *
256 */
257 ds = size > 1 ? 1 : 0;
258 addr &= ~(size - 1);
259 if (size == 4)
260 addr |= 1;
261
262 msg_push_bits(cmd, id, 2);
263 msg_push_bits(cmd, opcode, opcode_bits);
264 msg_push_bits(cmd, write ? 0 : 1, 1);
265 msg_push_bits(cmd, addr, addr_bits);
266 msg_push_bits(cmd, ds, 1);
267 for (i = 0; write && i < size; i++)
268 msg_push_bits(cmd, ((uint8_t *)data)[i], 8);
269
270 msg_push_crc(cmd);
271 msg_finish_cmd(cmd);
272 }
273
build_dpoll_command(struct fsi_msg * cmd,uint8_t slave_id)274 static void build_dpoll_command(struct fsi_msg *cmd, uint8_t slave_id)
275 {
276 cmd->bits = 0;
277 cmd->msg = 0;
278
279 msg_push_bits(cmd, slave_id, 2);
280 msg_push_bits(cmd, FSI_CMD_DPOLL, 3);
281 msg_push_crc(cmd);
282 msg_finish_cmd(cmd);
283 }
284
build_epoll_command(struct fsi_msg * cmd,uint8_t slave_id)285 static void build_epoll_command(struct fsi_msg *cmd, uint8_t slave_id)
286 {
287 cmd->bits = 0;
288 cmd->msg = 0;
289
290 msg_push_bits(cmd, slave_id, 2);
291 msg_push_bits(cmd, FSI_CMD_EPOLL, 3);
292 msg_push_crc(cmd);
293 msg_finish_cmd(cmd);
294 }
295
build_term_command(struct fsi_msg * cmd,uint8_t slave_id)296 static void build_term_command(struct fsi_msg *cmd, uint8_t slave_id)
297 {
298 cmd->bits = 0;
299 cmd->msg = 0;
300
301 msg_push_bits(cmd, slave_id, 2);
302 msg_push_bits(cmd, FSI_CMD_TERM, 6);
303 msg_push_crc(cmd);
304 msg_finish_cmd(cmd);
305 }
306
do_copro_command(struct fsi_master_acf * master,uint32_t op)307 static int do_copro_command(struct fsi_master_acf *master, uint32_t op)
308 {
309 uint32_t timeout = 10000000;
310 uint8_t stat;
311
312 trace_fsi_master_acf_copro_command(master, op);
313
314 /* Send command */
315 iowrite32be(op, master->sram + CMD_STAT_REG);
316
317 /* Ring doorbell if any */
318 if (master->cvic)
319 iowrite32(0x2, master->cvic + CVIC_TRIG_REG);
320
321 /* Wait for status to indicate completion (or error) */
322 do {
323 if (timeout-- == 0) {
324 dev_warn(master->dev,
325 "Timeout waiting for coprocessor completion\n");
326 return -ETIMEDOUT;
327 }
328 stat = ioread8(master->sram + CMD_STAT_REG);
329 } while(stat < STAT_COMPLETE || stat == 0xff);
330
331 if (stat == STAT_COMPLETE)
332 return 0;
333 switch(stat) {
334 case STAT_ERR_INVAL_CMD:
335 return -EINVAL;
336 case STAT_ERR_INVAL_IRQ:
337 return -EIO;
338 case STAT_ERR_MTOE:
339 return -ESHUTDOWN;
340 }
341 return -ENXIO;
342 }
343
clock_zeros(struct fsi_master_acf * master,int count)344 static int clock_zeros(struct fsi_master_acf *master, int count)
345 {
346 while (count) {
347 int rc, lcnt = min(count, 255);
348
349 rc = do_copro_command(master,
350 CMD_IDLE_CLOCKS | (lcnt << CMD_REG_CLEN_SHIFT));
351 if (rc)
352 return rc;
353 count -= lcnt;
354 }
355 return 0;
356 }
357
send_request(struct fsi_master_acf * master,struct fsi_msg * cmd,unsigned int resp_bits)358 static int send_request(struct fsi_master_acf *master, struct fsi_msg *cmd,
359 unsigned int resp_bits)
360 {
361 uint32_t op;
362
363 trace_fsi_master_acf_send_request(master, cmd, resp_bits);
364
365 /* Store message into SRAM */
366 iowrite32be((cmd->msg >> 32), master->sram + CMD_DATA);
367 iowrite32be((cmd->msg & 0xffffffff), master->sram + CMD_DATA + 4);
368
369 op = CMD_COMMAND;
370 op |= cmd->bits << CMD_REG_CLEN_SHIFT;
371 if (resp_bits)
372 op |= resp_bits << CMD_REG_RLEN_SHIFT;
373
374 return do_copro_command(master, op);
375 }
376
read_copro_response(struct fsi_master_acf * master,uint8_t size,uint32_t * response,u8 * tag)377 static int read_copro_response(struct fsi_master_acf *master, uint8_t size,
378 uint32_t *response, u8 *tag)
379 {
380 uint8_t rtag = ioread8(master->sram + STAT_RTAG) & 0xf;
381 uint8_t rcrc = ioread8(master->sram + STAT_RCRC) & 0xf;
382 uint32_t rdata = 0;
383 uint32_t crc;
384 uint8_t ack;
385
386 *tag = ack = rtag & 3;
387
388 /* we have a whole message now; check CRC */
389 crc = crc4(0, 1, 1);
390 crc = crc4(crc, rtag, 4);
391 if (ack == FSI_RESP_ACK && size) {
392 rdata = ioread32be(master->sram + RSP_DATA);
393 crc = crc4(crc, rdata, size);
394 if (response)
395 *response = rdata;
396 }
397 crc = crc4(crc, rcrc, 4);
398
399 trace_fsi_master_acf_copro_response(master, rtag, rcrc, rdata, crc == 0);
400
401 if (crc) {
402 /*
403 * Check if it's all 1's or all 0's, that probably means
404 * the host is off
405 */
406 if ((rtag == 0xf && rcrc == 0xf) || (rtag == 0 && rcrc == 0))
407 return -ENODEV;
408 dev_dbg(master->dev, "Bad response CRC !\n");
409 return -EAGAIN;
410 }
411 return 0;
412 }
413
send_term(struct fsi_master_acf * master,uint8_t slave)414 static int send_term(struct fsi_master_acf *master, uint8_t slave)
415 {
416 struct fsi_msg cmd;
417 uint8_t tag;
418 int rc;
419
420 build_term_command(&cmd, slave);
421
422 rc = send_request(master, &cmd, 0);
423 if (rc) {
424 dev_warn(master->dev, "Error %d sending term\n", rc);
425 return rc;
426 }
427
428 rc = read_copro_response(master, 0, NULL, &tag);
429 if (rc < 0) {
430 dev_err(master->dev,
431 "TERM failed; lost communication with slave\n");
432 return -EIO;
433 } else if (tag != FSI_RESP_ACK) {
434 dev_err(master->dev, "TERM failed; response %d\n", tag);
435 return -EIO;
436 }
437 return 0;
438 }
439
dump_ucode_trace(struct fsi_master_acf * master)440 static void dump_ucode_trace(struct fsi_master_acf *master)
441 {
442 char trbuf[52];
443 char *p;
444 int i;
445
446 dev_dbg(master->dev,
447 "CMDSTAT:%08x RTAG=%02x RCRC=%02x RDATA=%02x #INT=%08x\n",
448 ioread32be(master->sram + CMD_STAT_REG),
449 ioread8(master->sram + STAT_RTAG),
450 ioread8(master->sram + STAT_RCRC),
451 ioread32be(master->sram + RSP_DATA),
452 ioread32be(master->sram + INT_CNT));
453
454 for (i = 0; i < 512; i++) {
455 uint8_t v;
456 if ((i % 16) == 0)
457 p = trbuf;
458 v = ioread8(master->sram + TRACEBUF + i);
459 p += sprintf(p, "%02x ", v);
460 if (((i % 16) == 15) || v == TR_END)
461 dev_dbg(master->dev, "%s\n", trbuf);
462 if (v == TR_END)
463 break;
464 }
465 }
466
handle_response(struct fsi_master_acf * master,uint8_t slave,uint8_t size,void * data)467 static int handle_response(struct fsi_master_acf *master,
468 uint8_t slave, uint8_t size, void *data)
469 {
470 int busy_count = 0, rc;
471 int crc_err_retries = 0;
472 struct fsi_msg cmd;
473 uint32_t response;
474 uint8_t tag;
475 retry:
476 rc = read_copro_response(master, size, &response, &tag);
477
478 /* Handle retries on CRC errors */
479 if (rc == -EAGAIN) {
480 /* Too many retries ? */
481 if (crc_err_retries++ > FSI_CRC_ERR_RETRIES) {
482 /*
483 * Pass it up as a -EIO otherwise upper level will retry
484 * the whole command which isn't what we want here.
485 */
486 rc = -EIO;
487 goto bail;
488 }
489 trace_fsi_master_acf_crc_rsp_error(master, crc_err_retries);
490 if (master->trace_enabled)
491 dump_ucode_trace(master);
492 rc = clock_zeros(master, FSI_MASTER_EPOLL_CLOCKS);
493 if (rc) {
494 dev_warn(master->dev,
495 "Error %d clocking zeros for E_POLL\n", rc);
496 return rc;
497 }
498 build_epoll_command(&cmd, slave);
499 rc = send_request(master, &cmd, size);
500 if (rc) {
501 dev_warn(master->dev, "Error %d sending E_POLL\n", rc);
502 return -EIO;
503 }
504 goto retry;
505 }
506 if (rc)
507 return rc;
508
509 switch (tag) {
510 case FSI_RESP_ACK:
511 if (size && data) {
512 if (size == 32)
513 *(__be32 *)data = cpu_to_be32(response);
514 else if (size == 16)
515 *(__be16 *)data = cpu_to_be16(response);
516 else
517 *(u8 *)data = response;
518 }
519 break;
520 case FSI_RESP_BUSY:
521 /*
522 * Its necessary to clock slave before issuing
523 * d-poll, not indicated in the hardware protocol
524 * spec. < 20 clocks causes slave to hang, 21 ok.
525 */
526 dev_dbg(master->dev, "Busy, retrying...\n");
527 if (master->trace_enabled)
528 dump_ucode_trace(master);
529 rc = clock_zeros(master, FSI_MASTER_DPOLL_CLOCKS);
530 if (rc) {
531 dev_warn(master->dev,
532 "Error %d clocking zeros for D_POLL\n", rc);
533 break;
534 }
535 if (busy_count++ < FSI_MASTER_MAX_BUSY) {
536 build_dpoll_command(&cmd, slave);
537 rc = send_request(master, &cmd, size);
538 if (rc) {
539 dev_warn(master->dev, "Error %d sending D_POLL\n", rc);
540 break;
541 }
542 goto retry;
543 }
544 dev_dbg(master->dev,
545 "ERR slave is stuck in busy state, issuing TERM\n");
546 send_term(master, slave);
547 rc = -EIO;
548 break;
549
550 case FSI_RESP_ERRA:
551 dev_dbg(master->dev, "ERRA received\n");
552 if (master->trace_enabled)
553 dump_ucode_trace(master);
554 rc = -EIO;
555 break;
556 case FSI_RESP_ERRC:
557 dev_dbg(master->dev, "ERRC received\n");
558 if (master->trace_enabled)
559 dump_ucode_trace(master);
560 rc = -EAGAIN;
561 break;
562 }
563 bail:
564 if (busy_count > 0) {
565 trace_fsi_master_acf_poll_response_busy(master, busy_count);
566 }
567
568 return rc;
569 }
570
fsi_master_acf_xfer(struct fsi_master_acf * master,uint8_t slave,struct fsi_msg * cmd,size_t resp_len,void * resp)571 static int fsi_master_acf_xfer(struct fsi_master_acf *master, uint8_t slave,
572 struct fsi_msg *cmd, size_t resp_len, void *resp)
573 {
574 int rc = -EAGAIN, retries = 0;
575
576 resp_len <<= 3;
577 while ((retries++) < FSI_CRC_ERR_RETRIES) {
578 rc = send_request(master, cmd, resp_len);
579 if (rc) {
580 if (rc != -ESHUTDOWN)
581 dev_warn(master->dev, "Error %d sending command\n", rc);
582 break;
583 }
584 rc = handle_response(master, slave, resp_len, resp);
585 if (rc != -EAGAIN)
586 break;
587 rc = -EIO;
588 dev_dbg(master->dev, "ECRC retry %d\n", retries);
589
590 /* Pace it a bit before retry */
591 msleep(1);
592 }
593
594 return rc;
595 }
596
fsi_master_acf_read(struct fsi_master * _master,int link,uint8_t id,uint32_t addr,void * val,size_t size)597 static int fsi_master_acf_read(struct fsi_master *_master, int link,
598 uint8_t id, uint32_t addr, void *val,
599 size_t size)
600 {
601 struct fsi_master_acf *master = to_fsi_master_acf(_master);
602 struct fsi_msg cmd;
603 int rc;
604
605 if (link != 0)
606 return -ENODEV;
607
608 mutex_lock(&master->lock);
609 dev_dbg(master->dev, "read id %d addr %x size %zd\n", id, addr, size);
610 build_ar_command(master, &cmd, id, addr, size, NULL);
611 rc = fsi_master_acf_xfer(master, id, &cmd, size, val);
612 last_address_update(master, id, rc == 0, addr);
613 if (rc)
614 dev_dbg(master->dev, "read id %d addr 0x%08x err: %d\n",
615 id, addr, rc);
616 mutex_unlock(&master->lock);
617
618 return rc;
619 }
620
fsi_master_acf_write(struct fsi_master * _master,int link,uint8_t id,uint32_t addr,const void * val,size_t size)621 static int fsi_master_acf_write(struct fsi_master *_master, int link,
622 uint8_t id, uint32_t addr, const void *val,
623 size_t size)
624 {
625 struct fsi_master_acf *master = to_fsi_master_acf(_master);
626 struct fsi_msg cmd;
627 int rc;
628
629 if (link != 0)
630 return -ENODEV;
631
632 mutex_lock(&master->lock);
633 build_ar_command(master, &cmd, id, addr, size, val);
634 dev_dbg(master->dev, "write id %d addr %x size %zd raw_data: %08x\n",
635 id, addr, size, *(uint32_t *)val);
636 rc = fsi_master_acf_xfer(master, id, &cmd, 0, NULL);
637 last_address_update(master, id, rc == 0, addr);
638 if (rc)
639 dev_dbg(master->dev, "write id %d addr 0x%08x err: %d\n",
640 id, addr, rc);
641 mutex_unlock(&master->lock);
642
643 return rc;
644 }
645
fsi_master_acf_term(struct fsi_master * _master,int link,uint8_t id)646 static int fsi_master_acf_term(struct fsi_master *_master,
647 int link, uint8_t id)
648 {
649 struct fsi_master_acf *master = to_fsi_master_acf(_master);
650 struct fsi_msg cmd;
651 int rc;
652
653 if (link != 0)
654 return -ENODEV;
655
656 mutex_lock(&master->lock);
657 build_term_command(&cmd, id);
658 dev_dbg(master->dev, "term id %d\n", id);
659 rc = fsi_master_acf_xfer(master, id, &cmd, 0, NULL);
660 last_address_update(master, id, false, 0);
661 mutex_unlock(&master->lock);
662
663 return rc;
664 }
665
fsi_master_acf_break(struct fsi_master * _master,int link)666 static int fsi_master_acf_break(struct fsi_master *_master, int link)
667 {
668 struct fsi_master_acf *master = to_fsi_master_acf(_master);
669 int rc;
670
671 if (link != 0)
672 return -ENODEV;
673
674 mutex_lock(&master->lock);
675 if (master->external_mode) {
676 mutex_unlock(&master->lock);
677 return -EBUSY;
678 }
679 dev_dbg(master->dev, "sending BREAK\n");
680 rc = do_copro_command(master, CMD_BREAK);
681 last_address_update(master, 0, false, 0);
682 mutex_unlock(&master->lock);
683
684 /* Wait for logic reset to take effect */
685 udelay(200);
686
687 return rc;
688 }
689
reset_cf(struct fsi_master_acf * master)690 static void reset_cf(struct fsi_master_acf *master)
691 {
692 regmap_write(master->scu, SCU_COPRO_CTRL, SCU_COPRO_RESET);
693 usleep_range(20,20);
694 regmap_write(master->scu, SCU_COPRO_CTRL, 0);
695 usleep_range(20,20);
696 }
697
start_cf(struct fsi_master_acf * master)698 static void start_cf(struct fsi_master_acf *master)
699 {
700 regmap_write(master->scu, SCU_COPRO_CTRL, SCU_COPRO_CLK_EN);
701 }
702
setup_ast2500_cf_maps(struct fsi_master_acf * master)703 static void setup_ast2500_cf_maps(struct fsi_master_acf *master)
704 {
705 /*
706 * Note about byteswap setting: the bus is wired backwards,
707 * so setting the byteswap bit actually makes the ColdFire
708 * work "normally" for a BE processor, ie, put the MSB in
709 * the lowest address byte.
710 *
711 * We thus need to set the bit for our main memory which
712 * contains our program code. We create two mappings for
713 * the register, one with each setting.
714 *
715 * Segments 2 and 3 has a "swapped" mapping (BE)
716 * and 6 and 7 have a non-swapped mapping (LE) which allows
717 * us to avoid byteswapping register accesses since the
718 * registers are all LE.
719 */
720
721 /* Setup segment 0 to our memory region */
722 regmap_write(master->scu, SCU_2500_COPRO_SEG0, master->cf_mem_addr |
723 SCU_2500_COPRO_SEG_SWAP);
724
725 /* Segments 2 and 3 to sysregs with byteswap (for SRAM) */
726 regmap_write(master->scu, SCU_2500_COPRO_SEG2, SYSREG_BASE |
727 SCU_2500_COPRO_SEG_SWAP);
728 regmap_write(master->scu, SCU_2500_COPRO_SEG3, SYSREG_BASE | 0x100000 |
729 SCU_2500_COPRO_SEG_SWAP);
730
731 /* And segment 6 and 7 to sysregs no byteswap */
732 regmap_write(master->scu, SCU_2500_COPRO_SEG6, SYSREG_BASE);
733 regmap_write(master->scu, SCU_2500_COPRO_SEG7, SYSREG_BASE | 0x100000);
734
735 /* Memory cachable, regs and SRAM not cachable */
736 regmap_write(master->scu, SCU_2500_COPRO_CACHE_CTL,
737 SCU_2500_COPRO_SEG0_CACHE_EN | SCU_2500_COPRO_CACHE_EN);
738 }
739
setup_ast2400_cf_maps(struct fsi_master_acf * master)740 static void setup_ast2400_cf_maps(struct fsi_master_acf *master)
741 {
742 /* Setup segment 0 to our memory region */
743 regmap_write(master->scu, SCU_2400_COPRO_SEG0, master->cf_mem_addr |
744 SCU_2400_COPRO_SEG_SWAP);
745
746 /* Segments 2 to sysregs with byteswap (for SRAM) */
747 regmap_write(master->scu, SCU_2400_COPRO_SEG2, SYSREG_BASE |
748 SCU_2400_COPRO_SEG_SWAP);
749
750 /* And segment 6 to sysregs no byteswap */
751 regmap_write(master->scu, SCU_2400_COPRO_SEG6, SYSREG_BASE);
752
753 /* Memory cachable, regs and SRAM not cachable */
754 regmap_write(master->scu, SCU_2400_COPRO_CACHE_CTL,
755 SCU_2400_COPRO_SEG0_CACHE_EN | SCU_2400_COPRO_CACHE_EN);
756 }
757
setup_common_fw_config(struct fsi_master_acf * master,void __iomem * base)758 static void setup_common_fw_config(struct fsi_master_acf *master,
759 void __iomem *base)
760 {
761 iowrite16be(master->gpio_clk_vreg, base + HDR_CLOCK_GPIO_VADDR);
762 iowrite16be(master->gpio_clk_dreg, base + HDR_CLOCK_GPIO_DADDR);
763 iowrite16be(master->gpio_dat_vreg, base + HDR_DATA_GPIO_VADDR);
764 iowrite16be(master->gpio_dat_dreg, base + HDR_DATA_GPIO_DADDR);
765 iowrite16be(master->gpio_tra_vreg, base + HDR_TRANS_GPIO_VADDR);
766 iowrite16be(master->gpio_tra_dreg, base + HDR_TRANS_GPIO_DADDR);
767 iowrite8(master->gpio_clk_bit, base + HDR_CLOCK_GPIO_BIT);
768 iowrite8(master->gpio_dat_bit, base + HDR_DATA_GPIO_BIT);
769 iowrite8(master->gpio_tra_bit, base + HDR_TRANS_GPIO_BIT);
770 }
771
setup_ast2500_fw_config(struct fsi_master_acf * master)772 static void setup_ast2500_fw_config(struct fsi_master_acf *master)
773 {
774 void __iomem *base = master->cf_mem + HDR_OFFSET;
775
776 setup_common_fw_config(master, base);
777 iowrite32be(FW_CONTROL_USE_STOP, base + HDR_FW_CONTROL);
778 }
779
setup_ast2400_fw_config(struct fsi_master_acf * master)780 static void setup_ast2400_fw_config(struct fsi_master_acf *master)
781 {
782 void __iomem *base = master->cf_mem + HDR_OFFSET;
783
784 setup_common_fw_config(master, base);
785 iowrite32be(FW_CONTROL_CONT_CLOCK|FW_CONTROL_DUMMY_RD, base + HDR_FW_CONTROL);
786 }
787
setup_gpios_for_copro(struct fsi_master_acf * master)788 static int setup_gpios_for_copro(struct fsi_master_acf *master)
789 {
790
791 int rc;
792
793 /* This aren't under ColdFire control, just set them up appropriately */
794 gpiod_direction_output(master->gpio_mux, 1);
795 gpiod_direction_output(master->gpio_enable, 1);
796
797 /* Those are under ColdFire control, let it configure them */
798 rc = aspeed_gpio_copro_grab_gpio(master->gpio_clk, &master->gpio_clk_vreg,
799 &master->gpio_clk_dreg, &master->gpio_clk_bit);
800 if (rc) {
801 dev_err(master->dev, "failed to assign clock gpio to coprocessor\n");
802 return rc;
803 }
804 rc = aspeed_gpio_copro_grab_gpio(master->gpio_data, &master->gpio_dat_vreg,
805 &master->gpio_dat_dreg, &master->gpio_dat_bit);
806 if (rc) {
807 dev_err(master->dev, "failed to assign data gpio to coprocessor\n");
808 aspeed_gpio_copro_release_gpio(master->gpio_clk);
809 return rc;
810 }
811 rc = aspeed_gpio_copro_grab_gpio(master->gpio_trans, &master->gpio_tra_vreg,
812 &master->gpio_tra_dreg, &master->gpio_tra_bit);
813 if (rc) {
814 dev_err(master->dev, "failed to assign trans gpio to coprocessor\n");
815 aspeed_gpio_copro_release_gpio(master->gpio_clk);
816 aspeed_gpio_copro_release_gpio(master->gpio_data);
817 return rc;
818 }
819 return 0;
820 }
821
release_copro_gpios(struct fsi_master_acf * master)822 static void release_copro_gpios(struct fsi_master_acf *master)
823 {
824 aspeed_gpio_copro_release_gpio(master->gpio_clk);
825 aspeed_gpio_copro_release_gpio(master->gpio_data);
826 aspeed_gpio_copro_release_gpio(master->gpio_trans);
827 }
828
load_copro_firmware(struct fsi_master_acf * master)829 static int load_copro_firmware(struct fsi_master_acf *master)
830 {
831 const struct firmware *fw;
832 uint16_t sig = 0, wanted_sig;
833 const u8 *data;
834 size_t size = 0;
835 int rc;
836
837 /* Get the binary */
838 rc = request_firmware(&fw, FW_FILE_NAME, master->dev);
839 if (rc) {
840 dev_err(
841 master->dev, "Error %d to load firmware '%s' !\n",
842 rc, FW_FILE_NAME);
843 return rc;
844 }
845
846 /* Which image do we want ? (shared vs. split clock/data GPIOs) */
847 if (master->gpio_clk_vreg == master->gpio_dat_vreg)
848 wanted_sig = SYS_SIG_SHARED;
849 else
850 wanted_sig = SYS_SIG_SPLIT;
851 dev_dbg(master->dev, "Looking for image sig %04x\n", wanted_sig);
852
853 /* Try to find it */
854 for (data = fw->data; data < (fw->data + fw->size);) {
855 sig = be16_to_cpup((__be16 *)(data + HDR_OFFSET + HDR_SYS_SIG));
856 size = be32_to_cpup((__be32 *)(data + HDR_OFFSET + HDR_FW_SIZE));
857 if (sig == wanted_sig)
858 break;
859 data += size;
860 }
861 if (sig != wanted_sig) {
862 dev_err(master->dev, "Failed to locate image sig %04x in FW blob\n",
863 wanted_sig);
864 rc = -ENODEV;
865 goto release_fw;
866 }
867 if (size > master->cf_mem_size) {
868 dev_err(master->dev, "FW size (%zd) bigger than memory reserve (%zd)\n",
869 fw->size, master->cf_mem_size);
870 rc = -ENOMEM;
871 } else {
872 memcpy_toio(master->cf_mem, data, size);
873 }
874
875 release_fw:
876 release_firmware(fw);
877 return rc;
878 }
879
check_firmware_image(struct fsi_master_acf * master)880 static int check_firmware_image(struct fsi_master_acf *master)
881 {
882 uint32_t fw_vers, fw_api, fw_options;
883
884 fw_vers = ioread16be(master->cf_mem + HDR_OFFSET + HDR_FW_VERS);
885 fw_api = ioread16be(master->cf_mem + HDR_OFFSET + HDR_API_VERS);
886 fw_options = ioread32be(master->cf_mem + HDR_OFFSET + HDR_FW_OPTIONS);
887 master->trace_enabled = !!(fw_options & FW_OPTION_TRACE_EN);
888
889 /* Check version and signature */
890 dev_info(master->dev, "ColdFire initialized, firmware v%d API v%d.%d (trace %s)\n",
891 fw_vers, fw_api >> 8, fw_api & 0xff,
892 master->trace_enabled ? "enabled" : "disabled");
893
894 if ((fw_api >> 8) != API_VERSION_MAJ) {
895 dev_err(master->dev, "Unsupported coprocessor API version !\n");
896 return -ENODEV;
897 }
898
899 return 0;
900 }
901
copro_enable_sw_irq(struct fsi_master_acf * master)902 static int copro_enable_sw_irq(struct fsi_master_acf *master)
903 {
904 int timeout;
905 uint32_t val;
906
907 /*
908 * Enable coprocessor interrupt input. I've had problems getting the
909 * value to stick, so try in a loop
910 */
911 for (timeout = 0; timeout < 10; timeout++) {
912 iowrite32(0x2, master->cvic + CVIC_EN_REG);
913 val = ioread32(master->cvic + CVIC_EN_REG);
914 if (val & 2)
915 break;
916 msleep(1);
917 }
918 if (!(val & 2)) {
919 dev_err(master->dev, "Failed to enable coprocessor interrupt !\n");
920 return -ENODEV;
921 }
922 return 0;
923 }
924
fsi_master_acf_setup(struct fsi_master_acf * master)925 static int fsi_master_acf_setup(struct fsi_master_acf *master)
926 {
927 int timeout, rc;
928 uint32_t val;
929
930 /* Make sure the ColdFire is stopped */
931 reset_cf(master);
932
933 /*
934 * Clear SRAM. This needs to happen before we setup the GPIOs
935 * as we might start trying to arbitrate as soon as that happens.
936 */
937 memset_io(master->sram, 0, SRAM_SIZE);
938
939 /* Configure GPIOs */
940 rc = setup_gpios_for_copro(master);
941 if (rc)
942 return rc;
943
944 /* Load the firmware into the reserved memory */
945 rc = load_copro_firmware(master);
946 if (rc)
947 return rc;
948
949 /* Read signature and check versions */
950 rc = check_firmware_image(master);
951 if (rc)
952 return rc;
953
954 /* Setup coldfire memory map */
955 if (master->is_ast2500) {
956 setup_ast2500_cf_maps(master);
957 setup_ast2500_fw_config(master);
958 } else {
959 setup_ast2400_cf_maps(master);
960 setup_ast2400_fw_config(master);
961 }
962
963 /* Start the ColdFire */
964 start_cf(master);
965
966 /* Wait for status register to indicate command completion
967 * which signals the initialization is complete
968 */
969 for (timeout = 0; timeout < 10; timeout++) {
970 val = ioread8(master->sram + CF_STARTED);
971 if (val)
972 break;
973 msleep(1);
974 }
975 if (!val) {
976 dev_err(master->dev, "Coprocessor startup timeout !\n");
977 rc = -ENODEV;
978 goto err;
979 }
980
981 /* Configure echo & send delay */
982 iowrite8(master->t_send_delay, master->sram + SEND_DLY_REG);
983 iowrite8(master->t_echo_delay, master->sram + ECHO_DLY_REG);
984
985 /* Enable SW interrupt to copro if any */
986 if (master->cvic) {
987 rc = copro_enable_sw_irq(master);
988 if (rc)
989 goto err;
990 }
991 return 0;
992 err:
993 /* An error occurred, don't leave the coprocessor running */
994 reset_cf(master);
995
996 /* Release the GPIOs */
997 release_copro_gpios(master);
998
999 return rc;
1000 }
1001
1002
fsi_master_acf_terminate(struct fsi_master_acf * master)1003 static void fsi_master_acf_terminate(struct fsi_master_acf *master)
1004 {
1005 unsigned long flags;
1006
1007 /*
1008 * A GPIO arbitration requestion could come in while this is
1009 * happening. To avoid problems, we disable interrupts so it
1010 * cannot preempt us on this CPU
1011 */
1012
1013 local_irq_save(flags);
1014
1015 /* Stop the coprocessor */
1016 reset_cf(master);
1017
1018 /* We mark the copro not-started */
1019 iowrite32(0, master->sram + CF_STARTED);
1020
1021 /* We mark the ARB register as having given up arbitration to
1022 * deal with a potential race with the arbitration request
1023 */
1024 iowrite8(ARB_ARM_ACK, master->sram + ARB_REG);
1025
1026 local_irq_restore(flags);
1027
1028 /* Return the GPIOs to the ARM */
1029 release_copro_gpios(master);
1030 }
1031
fsi_master_acf_setup_external(struct fsi_master_acf * master)1032 static void fsi_master_acf_setup_external(struct fsi_master_acf *master)
1033 {
1034 /* Setup GPIOs for external FSI master (FSP box) */
1035 gpiod_direction_output(master->gpio_mux, 0);
1036 gpiod_direction_output(master->gpio_trans, 0);
1037 gpiod_direction_output(master->gpio_enable, 1);
1038 gpiod_direction_input(master->gpio_clk);
1039 gpiod_direction_input(master->gpio_data);
1040 }
1041
fsi_master_acf_link_enable(struct fsi_master * _master,int link,bool enable)1042 static int fsi_master_acf_link_enable(struct fsi_master *_master, int link,
1043 bool enable)
1044 {
1045 struct fsi_master_acf *master = to_fsi_master_acf(_master);
1046 int rc = -EBUSY;
1047
1048 if (link != 0)
1049 return -ENODEV;
1050
1051 mutex_lock(&master->lock);
1052 if (!master->external_mode) {
1053 gpiod_set_value(master->gpio_enable, enable ? 1 : 0);
1054 rc = 0;
1055 }
1056 mutex_unlock(&master->lock);
1057
1058 return rc;
1059 }
1060
fsi_master_acf_link_config(struct fsi_master * _master,int link,u8 t_send_delay,u8 t_echo_delay)1061 static int fsi_master_acf_link_config(struct fsi_master *_master, int link,
1062 u8 t_send_delay, u8 t_echo_delay)
1063 {
1064 struct fsi_master_acf *master = to_fsi_master_acf(_master);
1065
1066 if (link != 0)
1067 return -ENODEV;
1068
1069 mutex_lock(&master->lock);
1070 master->t_send_delay = t_send_delay;
1071 master->t_echo_delay = t_echo_delay;
1072 dev_dbg(master->dev, "Changing delays: send=%d echo=%d\n",
1073 t_send_delay, t_echo_delay);
1074 iowrite8(master->t_send_delay, master->sram + SEND_DLY_REG);
1075 iowrite8(master->t_echo_delay, master->sram + ECHO_DLY_REG);
1076 mutex_unlock(&master->lock);
1077
1078 return 0;
1079 }
1080
external_mode_show(struct device * dev,struct device_attribute * attr,char * buf)1081 static ssize_t external_mode_show(struct device *dev,
1082 struct device_attribute *attr, char *buf)
1083 {
1084 struct fsi_master_acf *master = dev_get_drvdata(dev);
1085
1086 return snprintf(buf, PAGE_SIZE - 1, "%u\n",
1087 master->external_mode ? 1 : 0);
1088 }
1089
external_mode_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1090 static ssize_t external_mode_store(struct device *dev,
1091 struct device_attribute *attr, const char *buf, size_t count)
1092 {
1093 struct fsi_master_acf *master = dev_get_drvdata(dev);
1094 unsigned long val;
1095 bool external_mode;
1096 int err;
1097
1098 err = kstrtoul(buf, 0, &val);
1099 if (err)
1100 return err;
1101
1102 external_mode = !!val;
1103
1104 mutex_lock(&master->lock);
1105
1106 if (external_mode == master->external_mode) {
1107 mutex_unlock(&master->lock);
1108 return count;
1109 }
1110
1111 master->external_mode = external_mode;
1112 if (master->external_mode) {
1113 fsi_master_acf_terminate(master);
1114 fsi_master_acf_setup_external(master);
1115 } else
1116 fsi_master_acf_setup(master);
1117
1118 mutex_unlock(&master->lock);
1119
1120 fsi_master_rescan(&master->master);
1121
1122 return count;
1123 }
1124
1125 static DEVICE_ATTR(external_mode, 0664,
1126 external_mode_show, external_mode_store);
1127
fsi_master_acf_gpio_request(void * data)1128 static int fsi_master_acf_gpio_request(void *data)
1129 {
1130 struct fsi_master_acf *master = data;
1131 int timeout;
1132 u8 val;
1133
1134 /* Note: This doesn't require holding out mutex */
1135
1136 /* Write reqest */
1137 iowrite8(ARB_ARM_REQ, master->sram + ARB_REG);
1138
1139 /*
1140 * There is a race (which does happen at boot time) when we get an
1141 * arbitration request as we are either about to or just starting
1142 * the coprocessor.
1143 *
1144 * To handle it, we first check if we are running. If not yet we
1145 * check whether the copro is started in the SCU.
1146 *
1147 * If it's not started, we can basically just assume we have arbitration
1148 * and return. Otherwise, we wait normally expecting for the arbitration
1149 * to eventually complete.
1150 */
1151 if (ioread32(master->sram + CF_STARTED) == 0) {
1152 unsigned int reg = 0;
1153
1154 regmap_read(master->scu, SCU_COPRO_CTRL, ®);
1155 if (!(reg & SCU_COPRO_CLK_EN))
1156 return 0;
1157 }
1158
1159 /* Ring doorbell if any */
1160 if (master->cvic)
1161 iowrite32(0x2, master->cvic + CVIC_TRIG_REG);
1162
1163 for (timeout = 0; timeout < 10000; timeout++) {
1164 val = ioread8(master->sram + ARB_REG);
1165 if (val != ARB_ARM_REQ)
1166 break;
1167 udelay(1);
1168 }
1169
1170 /* If it failed, override anyway */
1171 if (val != ARB_ARM_ACK)
1172 dev_warn(master->dev, "GPIO request arbitration timeout\n");
1173
1174 return 0;
1175 }
1176
fsi_master_acf_gpio_release(void * data)1177 static int fsi_master_acf_gpio_release(void *data)
1178 {
1179 struct fsi_master_acf *master = data;
1180
1181 /* Write release */
1182 iowrite8(0, master->sram + ARB_REG);
1183
1184 /* Ring doorbell if any */
1185 if (master->cvic)
1186 iowrite32(0x2, master->cvic + CVIC_TRIG_REG);
1187
1188 return 0;
1189 }
1190
fsi_master_acf_release(struct device * dev)1191 static void fsi_master_acf_release(struct device *dev)
1192 {
1193 struct fsi_master_acf *master = to_fsi_master_acf(dev_to_fsi_master(dev));
1194
1195 /* Cleanup, stop coprocessor */
1196 mutex_lock(&master->lock);
1197 fsi_master_acf_terminate(master);
1198 aspeed_gpio_copro_set_ops(NULL, NULL);
1199 mutex_unlock(&master->lock);
1200
1201 /* Free resources */
1202 gen_pool_free(master->sram_pool, (unsigned long)master->sram, SRAM_SIZE);
1203 of_node_put(dev_of_node(master->dev));
1204
1205 kfree(master);
1206 }
1207
1208 static const struct aspeed_gpio_copro_ops fsi_master_acf_gpio_ops = {
1209 .request_access = fsi_master_acf_gpio_request,
1210 .release_access = fsi_master_acf_gpio_release,
1211 };
1212
fsi_master_acf_probe(struct platform_device * pdev)1213 static int fsi_master_acf_probe(struct platform_device *pdev)
1214 {
1215 struct device_node *np, *mnode = dev_of_node(&pdev->dev);
1216 struct genpool_data_fixed gpdf;
1217 struct fsi_master_acf *master;
1218 struct gpio_desc *gpio;
1219 struct resource res;
1220 uint32_t cf_mem_align;
1221 int rc;
1222
1223 master = kzalloc(sizeof(*master), GFP_KERNEL);
1224 if (!master)
1225 return -ENOMEM;
1226
1227 master->dev = &pdev->dev;
1228 master->master.dev.parent = master->dev;
1229 master->last_addr = LAST_ADDR_INVALID;
1230
1231 /* AST2400 vs. AST2500 */
1232 master->is_ast2500 = of_device_is_compatible(mnode, "aspeed,ast2500-cf-fsi-master");
1233
1234 /* Grab the SCU, we'll need to access it to configure the coprocessor */
1235 if (master->is_ast2500)
1236 master->scu = syscon_regmap_lookup_by_compatible("aspeed,ast2500-scu");
1237 else
1238 master->scu = syscon_regmap_lookup_by_compatible("aspeed,ast2400-scu");
1239 if (IS_ERR(master->scu)) {
1240 dev_err(&pdev->dev, "failed to find SCU regmap\n");
1241 rc = PTR_ERR(master->scu);
1242 goto err_free;
1243 }
1244
1245 /* Grab all the GPIOs we need */
1246 gpio = devm_gpiod_get(&pdev->dev, "clock", 0);
1247 if (IS_ERR(gpio)) {
1248 dev_err(&pdev->dev, "failed to get clock gpio\n");
1249 rc = PTR_ERR(gpio);
1250 goto err_free;
1251 }
1252 master->gpio_clk = gpio;
1253
1254 gpio = devm_gpiod_get(&pdev->dev, "data", 0);
1255 if (IS_ERR(gpio)) {
1256 dev_err(&pdev->dev, "failed to get data gpio\n");
1257 rc = PTR_ERR(gpio);
1258 goto err_free;
1259 }
1260 master->gpio_data = gpio;
1261
1262 /* Optional GPIOs */
1263 gpio = devm_gpiod_get_optional(&pdev->dev, "trans", 0);
1264 if (IS_ERR(gpio)) {
1265 dev_err(&pdev->dev, "failed to get trans gpio\n");
1266 rc = PTR_ERR(gpio);
1267 goto err_free;
1268 }
1269 master->gpio_trans = gpio;
1270
1271 gpio = devm_gpiod_get_optional(&pdev->dev, "enable", 0);
1272 if (IS_ERR(gpio)) {
1273 dev_err(&pdev->dev, "failed to get enable gpio\n");
1274 rc = PTR_ERR(gpio);
1275 goto err_free;
1276 }
1277 master->gpio_enable = gpio;
1278
1279 gpio = devm_gpiod_get_optional(&pdev->dev, "mux", 0);
1280 if (IS_ERR(gpio)) {
1281 dev_err(&pdev->dev, "failed to get mux gpio\n");
1282 rc = PTR_ERR(gpio);
1283 goto err_free;
1284 }
1285 master->gpio_mux = gpio;
1286
1287 /* Grab the reserved memory region (use DMA API instead ?) */
1288 np = of_parse_phandle(mnode, "memory-region", 0);
1289 if (!np) {
1290 dev_err(&pdev->dev, "Didn't find reserved memory\n");
1291 rc = -EINVAL;
1292 goto err_free;
1293 }
1294 rc = of_address_to_resource(np, 0, &res);
1295 of_node_put(np);
1296 if (rc) {
1297 dev_err(&pdev->dev, "Couldn't address to resource for reserved memory\n");
1298 rc = -ENOMEM;
1299 goto err_free;
1300 }
1301 master->cf_mem_size = resource_size(&res);
1302 master->cf_mem_addr = (uint32_t)res.start;
1303 cf_mem_align = master->is_ast2500 ? 0x00100000 : 0x00200000;
1304 if (master->cf_mem_addr & (cf_mem_align - 1)) {
1305 dev_err(&pdev->dev, "Reserved memory has insufficient alignment\n");
1306 rc = -ENOMEM;
1307 goto err_free;
1308 }
1309 master->cf_mem = devm_ioremap_resource(&pdev->dev, &res);
1310 if (IS_ERR(master->cf_mem)) {
1311 rc = PTR_ERR(master->cf_mem);
1312 goto err_free;
1313 }
1314 dev_dbg(&pdev->dev, "DRAM allocation @%x\n", master->cf_mem_addr);
1315
1316 /* AST2500 has a SW interrupt to the coprocessor */
1317 if (master->is_ast2500) {
1318 /* Grab the CVIC (ColdFire interrupts controller) */
1319 np = of_parse_phandle(mnode, "aspeed,cvic", 0);
1320 if (!np) {
1321 dev_err(&pdev->dev, "Didn't find CVIC\n");
1322 rc = -EINVAL;
1323 goto err_free;
1324 }
1325 master->cvic = devm_of_iomap(&pdev->dev, np, 0, NULL);
1326 if (IS_ERR(master->cvic)) {
1327 rc = PTR_ERR(master->cvic);
1328 dev_err(&pdev->dev, "Error %d mapping CVIC\n", rc);
1329 goto err_free;
1330 }
1331 rc = of_property_read_u32(np, "copro-sw-interrupts",
1332 &master->cvic_sw_irq);
1333 if (rc) {
1334 dev_err(&pdev->dev, "Can't find coprocessor SW interrupt\n");
1335 goto err_free;
1336 }
1337 }
1338
1339 /* Grab the SRAM */
1340 master->sram_pool = of_gen_pool_get(dev_of_node(&pdev->dev), "aspeed,sram", 0);
1341 if (!master->sram_pool) {
1342 rc = -ENODEV;
1343 dev_err(&pdev->dev, "Can't find sram pool\n");
1344 goto err_free;
1345 }
1346
1347 /* Current microcode only deals with fixed location in SRAM */
1348 gpdf.offset = 0;
1349 master->sram = (void __iomem *)gen_pool_alloc_algo(master->sram_pool, SRAM_SIZE,
1350 gen_pool_fixed_alloc, &gpdf);
1351 if (!master->sram) {
1352 rc = -ENOMEM;
1353 dev_err(&pdev->dev, "Failed to allocate sram from pool\n");
1354 goto err_free;
1355 }
1356 dev_dbg(&pdev->dev, "SRAM allocation @%lx\n",
1357 (unsigned long)gen_pool_virt_to_phys(master->sram_pool,
1358 (unsigned long)master->sram));
1359
1360 /*
1361 * Hookup with the GPIO driver for arbitration of GPIO banks
1362 * ownership.
1363 */
1364 aspeed_gpio_copro_set_ops(&fsi_master_acf_gpio_ops, master);
1365
1366 /* Default FSI command delays */
1367 master->t_send_delay = FSI_SEND_DELAY_CLOCKS;
1368 master->t_echo_delay = FSI_ECHO_DELAY_CLOCKS;
1369 master->master.n_links = 1;
1370 if (master->is_ast2500)
1371 master->master.flags = FSI_MASTER_FLAG_SWCLOCK;
1372 master->master.read = fsi_master_acf_read;
1373 master->master.write = fsi_master_acf_write;
1374 master->master.term = fsi_master_acf_term;
1375 master->master.send_break = fsi_master_acf_break;
1376 master->master.link_enable = fsi_master_acf_link_enable;
1377 master->master.link_config = fsi_master_acf_link_config;
1378 master->master.dev.of_node = of_node_get(dev_of_node(master->dev));
1379 master->master.dev.release = fsi_master_acf_release;
1380 platform_set_drvdata(pdev, master);
1381 mutex_init(&master->lock);
1382
1383 mutex_lock(&master->lock);
1384 rc = fsi_master_acf_setup(master);
1385 mutex_unlock(&master->lock);
1386 if (rc)
1387 goto release_of_dev;
1388
1389 rc = device_create_file(&pdev->dev, &dev_attr_external_mode);
1390 if (rc)
1391 goto stop_copro;
1392
1393 rc = fsi_master_register(&master->master);
1394 if (!rc)
1395 return 0;
1396
1397 device_remove_file(master->dev, &dev_attr_external_mode);
1398 put_device(&master->master.dev);
1399 return rc;
1400
1401 stop_copro:
1402 fsi_master_acf_terminate(master);
1403 release_of_dev:
1404 aspeed_gpio_copro_set_ops(NULL, NULL);
1405 gen_pool_free(master->sram_pool, (unsigned long)master->sram, SRAM_SIZE);
1406 of_node_put(dev_of_node(master->dev));
1407 err_free:
1408 kfree(master);
1409 return rc;
1410 }
1411
1412
fsi_master_acf_remove(struct platform_device * pdev)1413 static int fsi_master_acf_remove(struct platform_device *pdev)
1414 {
1415 struct fsi_master_acf *master = platform_get_drvdata(pdev);
1416
1417 device_remove_file(master->dev, &dev_attr_external_mode);
1418
1419 fsi_master_unregister(&master->master);
1420
1421 return 0;
1422 }
1423
1424 static const struct of_device_id fsi_master_acf_match[] = {
1425 { .compatible = "aspeed,ast2400-cf-fsi-master" },
1426 { .compatible = "aspeed,ast2500-cf-fsi-master" },
1427 { },
1428 };
1429 MODULE_DEVICE_TABLE(of, fsi_master_acf_match);
1430
1431 static struct platform_driver fsi_master_acf = {
1432 .driver = {
1433 .name = "fsi-master-acf",
1434 .of_match_table = fsi_master_acf_match,
1435 },
1436 .probe = fsi_master_acf_probe,
1437 .remove = fsi_master_acf_remove,
1438 };
1439
1440 module_platform_driver(fsi_master_acf);
1441 MODULE_LICENSE("GPL");
1442