1 /*
2 * Copyright 2019 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22 #include "amdgpu.h"
23 #include "amdgpu_amdkfd.h"
24 #include "gc/gc_10_1_0_offset.h"
25 #include "gc/gc_10_1_0_sh_mask.h"
26 #include "athub/athub_2_0_0_offset.h"
27 #include "athub/athub_2_0_0_sh_mask.h"
28 #include "oss/osssys_5_0_0_offset.h"
29 #include "oss/osssys_5_0_0_sh_mask.h"
30 #include "soc15_common.h"
31 #include "v10_structs.h"
32 #include "nv.h"
33 #include "nvd.h"
34
35 enum hqd_dequeue_request_type {
36 NO_ACTION = 0,
37 DRAIN_PIPE,
38 RESET_WAVES,
39 SAVE_WAVES
40 };
41
get_amdgpu_device(struct kgd_dev * kgd)42 static inline struct amdgpu_device *get_amdgpu_device(struct kgd_dev *kgd)
43 {
44 return (struct amdgpu_device *)kgd;
45 }
46
lock_srbm(struct kgd_dev * kgd,uint32_t mec,uint32_t pipe,uint32_t queue,uint32_t vmid)47 static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
48 uint32_t queue, uint32_t vmid)
49 {
50 struct amdgpu_device *adev = get_amdgpu_device(kgd);
51
52 mutex_lock(&adev->srbm_mutex);
53 nv_grbm_select(adev, mec, pipe, queue, vmid);
54 }
55
unlock_srbm(struct kgd_dev * kgd)56 static void unlock_srbm(struct kgd_dev *kgd)
57 {
58 struct amdgpu_device *adev = get_amdgpu_device(kgd);
59
60 nv_grbm_select(adev, 0, 0, 0, 0);
61 mutex_unlock(&adev->srbm_mutex);
62 }
63
acquire_queue(struct kgd_dev * kgd,uint32_t pipe_id,uint32_t queue_id)64 static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
65 uint32_t queue_id)
66 {
67 struct amdgpu_device *adev = get_amdgpu_device(kgd);
68
69 uint32_t mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
70 uint32_t pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
71
72 lock_srbm(kgd, mec, pipe, queue_id, 0);
73 }
74
get_queue_mask(struct amdgpu_device * adev,uint32_t pipe_id,uint32_t queue_id)75 static uint64_t get_queue_mask(struct amdgpu_device *adev,
76 uint32_t pipe_id, uint32_t queue_id)
77 {
78 unsigned int bit = pipe_id * adev->gfx.mec.num_queue_per_pipe +
79 queue_id;
80
81 return 1ull << bit;
82 }
83
release_queue(struct kgd_dev * kgd)84 static void release_queue(struct kgd_dev *kgd)
85 {
86 unlock_srbm(kgd);
87 }
88
kgd_program_sh_mem_settings(struct kgd_dev * kgd,uint32_t vmid,uint32_t sh_mem_config,uint32_t sh_mem_ape1_base,uint32_t sh_mem_ape1_limit,uint32_t sh_mem_bases)89 static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
90 uint32_t sh_mem_config,
91 uint32_t sh_mem_ape1_base,
92 uint32_t sh_mem_ape1_limit,
93 uint32_t sh_mem_bases)
94 {
95 struct amdgpu_device *adev = get_amdgpu_device(kgd);
96
97 lock_srbm(kgd, 0, 0, 0, vmid);
98
99 WREG32_SOC15(GC, 0, mmSH_MEM_CONFIG, sh_mem_config);
100 WREG32_SOC15(GC, 0, mmSH_MEM_BASES, sh_mem_bases);
101 /* APE1 no longer exists on GFX9 */
102
103 unlock_srbm(kgd);
104 }
105
kgd_set_pasid_vmid_mapping(struct kgd_dev * kgd,u32 pasid,unsigned int vmid)106 static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, u32 pasid,
107 unsigned int vmid)
108 {
109 struct amdgpu_device *adev = get_amdgpu_device(kgd);
110
111 /*
112 * We have to assume that there is no outstanding mapping.
113 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0 because
114 * a mapping is in progress or because a mapping finished
115 * and the SW cleared it.
116 * So the protocol is to always wait & clear.
117 */
118 uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
119 ATC_VMID0_PASID_MAPPING__VALID_MASK;
120
121 pr_debug("pasid 0x%x vmid %d, reg value %x\n", pasid, vmid, pasid_mapping);
122
123 pr_debug("ATHUB, reg %x\n", SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid);
124 WREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING) + vmid,
125 pasid_mapping);
126
127 #if 0
128 /* TODO: uncomment this code when the hardware support is ready. */
129 while (!(RREG32(SOC15_REG_OFFSET(
130 ATHUB, 0,
131 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS)) &
132 (1U << vmid)))
133 cpu_relax();
134
135 pr_debug("ATHUB mapping update finished\n");
136 WREG32(SOC15_REG_OFFSET(ATHUB, 0,
137 mmATC_VMID_PASID_MAPPING_UPDATE_STATUS),
138 1U << vmid);
139 #endif
140
141 /* Mapping vmid to pasid also for IH block */
142 pr_debug("update mapping for IH block and mmhub");
143 WREG32(SOC15_REG_OFFSET(OSSSYS, 0, mmIH_VMID_0_LUT) + vmid,
144 pasid_mapping);
145
146 return 0;
147 }
148
149 /* TODO - RING0 form of field is obsolete, seems to date back to SI
150 * but still works
151 */
152
kgd_init_interrupts(struct kgd_dev * kgd,uint32_t pipe_id)153 static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
154 {
155 struct amdgpu_device *adev = get_amdgpu_device(kgd);
156 uint32_t mec;
157 uint32_t pipe;
158
159 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
160 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
161
162 lock_srbm(kgd, mec, pipe, 0, 0);
163
164 WREG32_SOC15(GC, 0, mmCPC_INT_CNTL,
165 CP_INT_CNTL_RING0__TIME_STAMP_INT_ENABLE_MASK |
166 CP_INT_CNTL_RING0__OPCODE_ERROR_INT_ENABLE_MASK);
167
168 unlock_srbm(kgd);
169
170 return 0;
171 }
172
get_sdma_rlc_reg_offset(struct amdgpu_device * adev,unsigned int engine_id,unsigned int queue_id)173 static uint32_t get_sdma_rlc_reg_offset(struct amdgpu_device *adev,
174 unsigned int engine_id,
175 unsigned int queue_id)
176 {
177 uint32_t sdma_engine_reg_base[2] = {
178 SOC15_REG_OFFSET(SDMA0, 0,
179 mmSDMA0_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL,
180 /* On gfx10, mmSDMA1_xxx registers are defined NOT based
181 * on SDMA1 base address (dw 0x1860) but based on SDMA0
182 * base address (dw 0x1260). Therefore use mmSDMA0_RLC0_RB_CNTL
183 * instead of mmSDMA1_RLC0_RB_CNTL for the base address calc
184 * below
185 */
186 SOC15_REG_OFFSET(SDMA1, 0,
187 mmSDMA1_RLC0_RB_CNTL) - mmSDMA0_RLC0_RB_CNTL
188 };
189
190 uint32_t retval = sdma_engine_reg_base[engine_id]
191 + queue_id * (mmSDMA0_RLC1_RB_CNTL - mmSDMA0_RLC0_RB_CNTL);
192
193 pr_debug("RLC register offset for SDMA%d RLC%d: 0x%x\n", engine_id,
194 queue_id, retval);
195
196 return retval;
197 }
198
199 #if 0
200 static uint32_t get_watch_base_addr(struct amdgpu_device *adev)
201 {
202 uint32_t retval = SOC15_REG_OFFSET(GC, 0, mmTCP_WATCH0_ADDR_H) -
203 mmTCP_WATCH0_ADDR_H;
204
205 pr_debug("kfd: reg watch base address: 0x%x\n", retval);
206
207 return retval;
208 }
209 #endif
210
get_mqd(void * mqd)211 static inline struct v10_compute_mqd *get_mqd(void *mqd)
212 {
213 return (struct v10_compute_mqd *)mqd;
214 }
215
get_sdma_mqd(void * mqd)216 static inline struct v10_sdma_mqd *get_sdma_mqd(void *mqd)
217 {
218 return (struct v10_sdma_mqd *)mqd;
219 }
220
kgd_hqd_load(struct kgd_dev * kgd,void * mqd,uint32_t pipe_id,uint32_t queue_id,uint32_t __user * wptr,uint32_t wptr_shift,uint32_t wptr_mask,struct mm_struct * mm)221 static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
222 uint32_t queue_id, uint32_t __user *wptr,
223 uint32_t wptr_shift, uint32_t wptr_mask,
224 struct mm_struct *mm)
225 {
226 struct amdgpu_device *adev = get_amdgpu_device(kgd);
227 struct v10_compute_mqd *m;
228 uint32_t *mqd_hqd;
229 uint32_t reg, hqd_base, data;
230
231 m = get_mqd(mqd);
232
233 pr_debug("Load hqd of pipe %d queue %d\n", pipe_id, queue_id);
234 acquire_queue(kgd, pipe_id, queue_id);
235
236 /* HQD registers extend from CP_MQD_BASE_ADDR to CP_HQD_EOP_WPTR_MEM. */
237 mqd_hqd = &m->cp_mqd_base_addr_lo;
238 hqd_base = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
239
240 for (reg = hqd_base;
241 reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
242 WREG32_SOC15_IP(GC, reg, mqd_hqd[reg - hqd_base]);
243
244
245 /* Activate doorbell logic before triggering WPTR poll. */
246 data = REG_SET_FIELD(m->cp_hqd_pq_doorbell_control,
247 CP_HQD_PQ_DOORBELL_CONTROL, DOORBELL_EN, 1);
248 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_DOORBELL_CONTROL, data);
249
250 if (wptr) {
251 /* Don't read wptr with get_user because the user
252 * context may not be accessible (if this function
253 * runs in a work queue). Instead trigger a one-shot
254 * polling read from memory in the CP. This assumes
255 * that wptr is GPU-accessible in the queue's VMID via
256 * ATC or SVM. WPTR==RPTR before starting the poll so
257 * the CP starts fetching new commands from the right
258 * place.
259 *
260 * Guessing a 64-bit WPTR from a 32-bit RPTR is a bit
261 * tricky. Assume that the queue didn't overflow. The
262 * number of valid bits in the 32-bit RPTR depends on
263 * the queue size. The remaining bits are taken from
264 * the saved 64-bit WPTR. If the WPTR wrapped, add the
265 * queue size.
266 */
267 uint32_t queue_size =
268 2 << REG_GET_FIELD(m->cp_hqd_pq_control,
269 CP_HQD_PQ_CONTROL, QUEUE_SIZE);
270 uint64_t guessed_wptr = m->cp_hqd_pq_rptr & (queue_size - 1);
271
272 if ((m->cp_hqd_pq_wptr_lo & (queue_size - 1)) < guessed_wptr)
273 guessed_wptr += queue_size;
274 guessed_wptr += m->cp_hqd_pq_wptr_lo & ~(queue_size - 1);
275 guessed_wptr += (uint64_t)m->cp_hqd_pq_wptr_hi << 32;
276
277 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_LO,
278 lower_32_bits(guessed_wptr));
279 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_HI,
280 upper_32_bits(guessed_wptr));
281 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR,
282 lower_32_bits((uint64_t)wptr));
283 WREG32_SOC15(GC, 0, mmCP_HQD_PQ_WPTR_POLL_ADDR_HI,
284 upper_32_bits((uint64_t)wptr));
285 pr_debug("%s setting CP_PQ_WPTR_POLL_CNTL1 to %x\n", __func__,
286 (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
287 WREG32_SOC15(GC, 0, mmCP_PQ_WPTR_POLL_CNTL1,
288 (uint32_t)get_queue_mask(adev, pipe_id, queue_id));
289 }
290
291 /* Start the EOP fetcher */
292 WREG32_SOC15(GC, 0, mmCP_HQD_EOP_RPTR,
293 REG_SET_FIELD(m->cp_hqd_eop_rptr,
294 CP_HQD_EOP_RPTR, INIT_FETCHER, 1));
295
296 data = REG_SET_FIELD(m->cp_hqd_active, CP_HQD_ACTIVE, ACTIVE, 1);
297 WREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE, data);
298
299 release_queue(kgd);
300
301 return 0;
302 }
303
kgd_hiq_mqd_load(struct kgd_dev * kgd,void * mqd,uint32_t pipe_id,uint32_t queue_id,uint32_t doorbell_off)304 static int kgd_hiq_mqd_load(struct kgd_dev *kgd, void *mqd,
305 uint32_t pipe_id, uint32_t queue_id,
306 uint32_t doorbell_off)
307 {
308 struct amdgpu_device *adev = get_amdgpu_device(kgd);
309 struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring;
310 struct v10_compute_mqd *m;
311 uint32_t mec, pipe;
312 int r;
313
314 m = get_mqd(mqd);
315
316 acquire_queue(kgd, pipe_id, queue_id);
317
318 mec = (pipe_id / adev->gfx.mec.num_pipe_per_mec) + 1;
319 pipe = (pipe_id % adev->gfx.mec.num_pipe_per_mec);
320
321 pr_debug("kfd: set HIQ, mec:%d, pipe:%d, queue:%d.\n",
322 mec, pipe, queue_id);
323
324 spin_lock(&adev->gfx.kiq.ring_lock);
325 r = amdgpu_ring_alloc(kiq_ring, 7);
326 if (r) {
327 pr_err("Failed to alloc KIQ (%d).\n", r);
328 goto out_unlock;
329 }
330
331 amdgpu_ring_write(kiq_ring, PACKET3(PACKET3_MAP_QUEUES, 5));
332 amdgpu_ring_write(kiq_ring,
333 PACKET3_MAP_QUEUES_QUEUE_SEL(0) | /* Queue_Sel */
334 PACKET3_MAP_QUEUES_VMID(m->cp_hqd_vmid) | /* VMID */
335 PACKET3_MAP_QUEUES_QUEUE(queue_id) |
336 PACKET3_MAP_QUEUES_PIPE(pipe) |
337 PACKET3_MAP_QUEUES_ME((mec - 1)) |
338 PACKET3_MAP_QUEUES_QUEUE_TYPE(0) | /*queue_type: normal compute queue */
339 PACKET3_MAP_QUEUES_ALLOC_FORMAT(0) | /* alloc format: all_on_one_pipe */
340 PACKET3_MAP_QUEUES_ENGINE_SEL(1) | /* engine_sel: hiq */
341 PACKET3_MAP_QUEUES_NUM_QUEUES(1)); /* num_queues: must be 1 */
342 amdgpu_ring_write(kiq_ring,
343 PACKET3_MAP_QUEUES_DOORBELL_OFFSET(doorbell_off));
344 amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_lo);
345 amdgpu_ring_write(kiq_ring, m->cp_mqd_base_addr_hi);
346 amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_lo);
347 amdgpu_ring_write(kiq_ring, m->cp_hqd_pq_wptr_poll_addr_hi);
348 amdgpu_ring_commit(kiq_ring);
349
350 out_unlock:
351 spin_unlock(&adev->gfx.kiq.ring_lock);
352 release_queue(kgd);
353
354 return r;
355 }
356
kgd_hqd_dump(struct kgd_dev * kgd,uint32_t pipe_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs)357 static int kgd_hqd_dump(struct kgd_dev *kgd,
358 uint32_t pipe_id, uint32_t queue_id,
359 uint32_t (**dump)[2], uint32_t *n_regs)
360 {
361 struct amdgpu_device *adev = get_amdgpu_device(kgd);
362 uint32_t i = 0, reg;
363 #define HQD_N_REGS 56
364 #define DUMP_REG(addr) do { \
365 if (WARN_ON_ONCE(i >= HQD_N_REGS)) \
366 break; \
367 (*dump)[i][0] = (addr) << 2; \
368 (*dump)[i++][1] = RREG32_SOC15_IP(GC, addr); \
369 } while (0)
370
371 *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
372 if (*dump == NULL)
373 return -ENOMEM;
374
375 acquire_queue(kgd, pipe_id, queue_id);
376
377 for (reg = SOC15_REG_OFFSET(GC, 0, mmCP_MQD_BASE_ADDR);
378 reg <= SOC15_REG_OFFSET(GC, 0, mmCP_HQD_PQ_WPTR_HI); reg++)
379 DUMP_REG(reg);
380
381 release_queue(kgd);
382
383 WARN_ON_ONCE(i != HQD_N_REGS);
384 *n_regs = i;
385
386 return 0;
387 }
388
kgd_hqd_sdma_load(struct kgd_dev * kgd,void * mqd,uint32_t __user * wptr,struct mm_struct * mm)389 static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd,
390 uint32_t __user *wptr, struct mm_struct *mm)
391 {
392 struct amdgpu_device *adev = get_amdgpu_device(kgd);
393 struct v10_sdma_mqd *m;
394 uint32_t sdma_rlc_reg_offset;
395 unsigned long end_jiffies;
396 uint32_t data;
397 uint64_t data64;
398 uint64_t __user *wptr64 = (uint64_t __user *)wptr;
399
400 m = get_sdma_mqd(mqd);
401 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
402 m->sdma_queue_id);
403
404 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
405 m->sdmax_rlcx_rb_cntl & (~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK));
406
407 end_jiffies = msecs_to_jiffies(2000) + jiffies;
408 while (true) {
409 data = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
410 if (data & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
411 break;
412 if (time_after(jiffies, end_jiffies)) {
413 pr_err("SDMA RLC not idle in %s\n", __func__);
414 return -ETIME;
415 }
416 usleep_range(500, 1000);
417 }
418
419 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL_OFFSET,
420 m->sdmax_rlcx_doorbell_offset);
421
422 data = REG_SET_FIELD(m->sdmax_rlcx_doorbell, SDMA0_RLC0_DOORBELL,
423 ENABLE, 1);
424 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, data);
425 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR,
426 m->sdmax_rlcx_rb_rptr);
427 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI,
428 m->sdmax_rlcx_rb_rptr_hi);
429
430 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 1);
431 if (read_user_wptr(mm, wptr64, data64)) {
432 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
433 lower_32_bits(data64));
434 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
435 upper_32_bits(data64));
436 } else {
437 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR,
438 m->sdmax_rlcx_rb_rptr);
439 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_WPTR_HI,
440 m->sdmax_rlcx_rb_rptr_hi);
441 }
442 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_MINOR_PTR_UPDATE, 0);
443
444 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE, m->sdmax_rlcx_rb_base);
445 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_BASE_HI,
446 m->sdmax_rlcx_rb_base_hi);
447 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_LO,
448 m->sdmax_rlcx_rb_rptr_addr_lo);
449 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_ADDR_HI,
450 m->sdmax_rlcx_rb_rptr_addr_hi);
451
452 data = REG_SET_FIELD(m->sdmax_rlcx_rb_cntl, SDMA0_RLC0_RB_CNTL,
453 RB_ENABLE, 1);
454 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, data);
455
456 return 0;
457 }
458
kgd_hqd_sdma_dump(struct kgd_dev * kgd,uint32_t engine_id,uint32_t queue_id,uint32_t (** dump)[2],uint32_t * n_regs)459 static int kgd_hqd_sdma_dump(struct kgd_dev *kgd,
460 uint32_t engine_id, uint32_t queue_id,
461 uint32_t (**dump)[2], uint32_t *n_regs)
462 {
463 struct amdgpu_device *adev = get_amdgpu_device(kgd);
464 uint32_t sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev,
465 engine_id, queue_id);
466 uint32_t i = 0, reg;
467 #undef HQD_N_REGS
468 #define HQD_N_REGS (19+6+7+10)
469
470 *dump = kmalloc(HQD_N_REGS*2*sizeof(uint32_t), GFP_KERNEL);
471 if (*dump == NULL)
472 return -ENOMEM;
473
474 for (reg = mmSDMA0_RLC0_RB_CNTL; reg <= mmSDMA0_RLC0_DOORBELL; reg++)
475 DUMP_REG(sdma_rlc_reg_offset + reg);
476 for (reg = mmSDMA0_RLC0_STATUS; reg <= mmSDMA0_RLC0_CSA_ADDR_HI; reg++)
477 DUMP_REG(sdma_rlc_reg_offset + reg);
478 for (reg = mmSDMA0_RLC0_IB_SUB_REMAIN;
479 reg <= mmSDMA0_RLC0_MINOR_PTR_UPDATE; reg++)
480 DUMP_REG(sdma_rlc_reg_offset + reg);
481 for (reg = mmSDMA0_RLC0_MIDCMD_DATA0;
482 reg <= mmSDMA0_RLC0_MIDCMD_CNTL; reg++)
483 DUMP_REG(sdma_rlc_reg_offset + reg);
484
485 WARN_ON_ONCE(i != HQD_N_REGS);
486 *n_regs = i;
487
488 return 0;
489 }
490
kgd_hqd_is_occupied(struct kgd_dev * kgd,uint64_t queue_address,uint32_t pipe_id,uint32_t queue_id)491 static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
492 uint32_t pipe_id, uint32_t queue_id)
493 {
494 struct amdgpu_device *adev = get_amdgpu_device(kgd);
495 uint32_t act;
496 bool retval = false;
497 uint32_t low, high;
498
499 acquire_queue(kgd, pipe_id, queue_id);
500 act = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE);
501 if (act) {
502 low = lower_32_bits(queue_address >> 8);
503 high = upper_32_bits(queue_address >> 8);
504
505 if (low == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE) &&
506 high == RREG32_SOC15(GC, 0, mmCP_HQD_PQ_BASE_HI))
507 retval = true;
508 }
509 release_queue(kgd);
510 return retval;
511 }
512
kgd_hqd_sdma_is_occupied(struct kgd_dev * kgd,void * mqd)513 static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
514 {
515 struct amdgpu_device *adev = get_amdgpu_device(kgd);
516 struct v10_sdma_mqd *m;
517 uint32_t sdma_rlc_reg_offset;
518 uint32_t sdma_rlc_rb_cntl;
519
520 m = get_sdma_mqd(mqd);
521 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
522 m->sdma_queue_id);
523
524 sdma_rlc_rb_cntl = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
525
526 if (sdma_rlc_rb_cntl & SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK)
527 return true;
528
529 return false;
530 }
531
kgd_hqd_destroy(struct kgd_dev * kgd,void * mqd,enum kfd_preempt_type reset_type,unsigned int utimeout,uint32_t pipe_id,uint32_t queue_id)532 static int kgd_hqd_destroy(struct kgd_dev *kgd, void *mqd,
533 enum kfd_preempt_type reset_type,
534 unsigned int utimeout, uint32_t pipe_id,
535 uint32_t queue_id)
536 {
537 struct amdgpu_device *adev = get_amdgpu_device(kgd);
538 enum hqd_dequeue_request_type type;
539 unsigned long end_jiffies;
540 uint32_t temp;
541 struct v10_compute_mqd *m = get_mqd(mqd);
542
543 if (amdgpu_in_reset(adev))
544 return -EIO;
545
546 #if 0
547 unsigned long flags;
548 int retry;
549 #endif
550
551 acquire_queue(kgd, pipe_id, queue_id);
552
553 if (m->cp_hqd_vmid == 0)
554 WREG32_FIELD15(GC, 0, RLC_CP_SCHEDULERS, scheduler1, 0);
555
556 switch (reset_type) {
557 case KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN:
558 type = DRAIN_PIPE;
559 break;
560 case KFD_PREEMPT_TYPE_WAVEFRONT_RESET:
561 type = RESET_WAVES;
562 break;
563 case KFD_PREEMPT_TYPE_WAVEFRONT_SAVE:
564 type = SAVE_WAVES;
565 break;
566 default:
567 type = DRAIN_PIPE;
568 break;
569 }
570
571 #if 0 /* Is this still needed? */
572 /* Workaround: If IQ timer is active and the wait time is close to or
573 * equal to 0, dequeueing is not safe. Wait until either the wait time
574 * is larger or timer is cleared. Also, ensure that IQ_REQ_PEND is
575 * cleared before continuing. Also, ensure wait times are set to at
576 * least 0x3.
577 */
578 local_irq_save(flags);
579 preempt_disable();
580 retry = 5000; /* wait for 500 usecs at maximum */
581 while (true) {
582 temp = RREG32(mmCP_HQD_IQ_TIMER);
583 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, PROCESSING_IQ)) {
584 pr_debug("HW is processing IQ\n");
585 goto loop;
586 }
587 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, ACTIVE)) {
588 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, RETRY_TYPE)
589 == 3) /* SEM-rearm is safe */
590 break;
591 /* Wait time 3 is safe for CP, but our MMIO read/write
592 * time is close to 1 microsecond, so check for 10 to
593 * leave more buffer room
594 */
595 if (REG_GET_FIELD(temp, CP_HQD_IQ_TIMER, WAIT_TIME)
596 >= 10)
597 break;
598 pr_debug("IQ timer is active\n");
599 } else
600 break;
601 loop:
602 if (!retry) {
603 pr_err("CP HQD IQ timer status time out\n");
604 break;
605 }
606 ndelay(100);
607 --retry;
608 }
609 retry = 1000;
610 while (true) {
611 temp = RREG32(mmCP_HQD_DEQUEUE_REQUEST);
612 if (!(temp & CP_HQD_DEQUEUE_REQUEST__IQ_REQ_PEND_MASK))
613 break;
614 pr_debug("Dequeue request is pending\n");
615
616 if (!retry) {
617 pr_err("CP HQD dequeue request time out\n");
618 break;
619 }
620 ndelay(100);
621 --retry;
622 }
623 local_irq_restore(flags);
624 preempt_enable();
625 #endif
626
627 WREG32_SOC15(GC, 0, mmCP_HQD_DEQUEUE_REQUEST, type);
628
629 end_jiffies = (utimeout * HZ / 1000) + jiffies;
630 while (true) {
631 temp = RREG32_SOC15(GC, 0, mmCP_HQD_ACTIVE);
632 if (!(temp & CP_HQD_ACTIVE__ACTIVE_MASK))
633 break;
634 if (time_after(jiffies, end_jiffies)) {
635 pr_err("cp queue preemption time out.\n");
636 release_queue(kgd);
637 return -ETIME;
638 }
639 usleep_range(500, 1000);
640 }
641
642 release_queue(kgd);
643 return 0;
644 }
645
kgd_hqd_sdma_destroy(struct kgd_dev * kgd,void * mqd,unsigned int utimeout)646 static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
647 unsigned int utimeout)
648 {
649 struct amdgpu_device *adev = get_amdgpu_device(kgd);
650 struct v10_sdma_mqd *m;
651 uint32_t sdma_rlc_reg_offset;
652 uint32_t temp;
653 unsigned long end_jiffies = (utimeout * HZ / 1000) + jiffies;
654
655 m = get_sdma_mqd(mqd);
656 sdma_rlc_reg_offset = get_sdma_rlc_reg_offset(adev, m->sdma_engine_id,
657 m->sdma_queue_id);
658
659 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL);
660 temp = temp & ~SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK;
661 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL, temp);
662
663 while (true) {
664 temp = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_CONTEXT_STATUS);
665 if (temp & SDMA0_RLC0_CONTEXT_STATUS__IDLE_MASK)
666 break;
667 if (time_after(jiffies, end_jiffies)) {
668 pr_err("SDMA RLC not idle in %s\n", __func__);
669 return -ETIME;
670 }
671 usleep_range(500, 1000);
672 }
673
674 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_DOORBELL, 0);
675 WREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL,
676 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_CNTL) |
677 SDMA0_RLC0_RB_CNTL__RB_ENABLE_MASK);
678
679 m->sdmax_rlcx_rb_rptr = RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR);
680 m->sdmax_rlcx_rb_rptr_hi =
681 RREG32(sdma_rlc_reg_offset + mmSDMA0_RLC0_RB_RPTR_HI);
682
683 return 0;
684 }
685
get_atc_vmid_pasid_mapping_info(struct kgd_dev * kgd,uint8_t vmid,uint16_t * p_pasid)686 static bool get_atc_vmid_pasid_mapping_info(struct kgd_dev *kgd,
687 uint8_t vmid, uint16_t *p_pasid)
688 {
689 uint32_t value;
690 struct amdgpu_device *adev = (struct amdgpu_device *) kgd;
691
692 value = RREG32(SOC15_REG_OFFSET(ATHUB, 0, mmATC_VMID0_PASID_MAPPING)
693 + vmid);
694 *p_pasid = value & ATC_VMID0_PASID_MAPPING__PASID_MASK;
695
696 return !!(value & ATC_VMID0_PASID_MAPPING__VALID_MASK);
697 }
698
kgd_address_watch_disable(struct kgd_dev * kgd)699 static int kgd_address_watch_disable(struct kgd_dev *kgd)
700 {
701 return 0;
702 }
703
kgd_address_watch_execute(struct kgd_dev * kgd,unsigned int watch_point_id,uint32_t cntl_val,uint32_t addr_hi,uint32_t addr_lo)704 static int kgd_address_watch_execute(struct kgd_dev *kgd,
705 unsigned int watch_point_id,
706 uint32_t cntl_val,
707 uint32_t addr_hi,
708 uint32_t addr_lo)
709 {
710 return 0;
711 }
712
kgd_wave_control_execute(struct kgd_dev * kgd,uint32_t gfx_index_val,uint32_t sq_cmd)713 static int kgd_wave_control_execute(struct kgd_dev *kgd,
714 uint32_t gfx_index_val,
715 uint32_t sq_cmd)
716 {
717 struct amdgpu_device *adev = get_amdgpu_device(kgd);
718 uint32_t data = 0;
719
720 mutex_lock(&adev->grbm_idx_mutex);
721
722 WREG32_SOC15(GC, 0, mmGRBM_GFX_INDEX, gfx_index_val);
723 WREG32_SOC15(GC, 0, mmSQ_CMD, sq_cmd);
724
725 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
726 INSTANCE_BROADCAST_WRITES, 1);
727 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
728 SA_BROADCAST_WRITES, 1);
729 data = REG_SET_FIELD(data, GRBM_GFX_INDEX,
730 SE_BROADCAST_WRITES, 1);
731
732 WREG32_SOC15(GC, 0, mmGRBM_GFX_INDEX, data);
733 mutex_unlock(&adev->grbm_idx_mutex);
734
735 return 0;
736 }
737
kgd_address_watch_get_offset(struct kgd_dev * kgd,unsigned int watch_point_id,unsigned int reg_offset)738 static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
739 unsigned int watch_point_id,
740 unsigned int reg_offset)
741 {
742 return 0;
743 }
744
set_vm_context_page_table_base(struct kgd_dev * kgd,uint32_t vmid,uint64_t page_table_base)745 static void set_vm_context_page_table_base(struct kgd_dev *kgd, uint32_t vmid,
746 uint64_t page_table_base)
747 {
748 struct amdgpu_device *adev = get_amdgpu_device(kgd);
749
750 if (!amdgpu_amdkfd_is_kfd_vmid(adev, vmid)) {
751 pr_err("trying to set page table base for wrong VMID %u\n",
752 vmid);
753 return;
754 }
755
756 /* SDMA is on gfxhub as well for Navi1* series */
757 adev->gfxhub.funcs->setup_vm_pt_regs(adev, vmid, page_table_base);
758 }
759
program_trap_handler_settings(struct kgd_dev * kgd,uint32_t vmid,uint64_t tba_addr,uint64_t tma_addr)760 static void program_trap_handler_settings(struct kgd_dev *kgd,
761 uint32_t vmid, uint64_t tba_addr, uint64_t tma_addr)
762 {
763 struct amdgpu_device *adev = get_amdgpu_device(kgd);
764
765 lock_srbm(kgd, 0, 0, 0, vmid);
766
767 /*
768 * Program TBA registers
769 */
770 WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TBA_LO),
771 lower_32_bits(tba_addr >> 8));
772 WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TBA_HI),
773 upper_32_bits(tba_addr >> 8) |
774 (1 << SQ_SHADER_TBA_HI__TRAP_EN__SHIFT));
775
776 /*
777 * Program TMA registers
778 */
779 WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TMA_LO),
780 lower_32_bits(tma_addr >> 8));
781 WREG32(SOC15_REG_OFFSET(GC, 0, mmSQ_SHADER_TMA_HI),
782 upper_32_bits(tma_addr >> 8));
783
784 unlock_srbm(kgd);
785 }
786
787 const struct kfd2kgd_calls gfx_v10_kfd2kgd = {
788 .program_sh_mem_settings = kgd_program_sh_mem_settings,
789 .set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
790 .init_interrupts = kgd_init_interrupts,
791 .hqd_load = kgd_hqd_load,
792 .hiq_mqd_load = kgd_hiq_mqd_load,
793 .hqd_sdma_load = kgd_hqd_sdma_load,
794 .hqd_dump = kgd_hqd_dump,
795 .hqd_sdma_dump = kgd_hqd_sdma_dump,
796 .hqd_is_occupied = kgd_hqd_is_occupied,
797 .hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
798 .hqd_destroy = kgd_hqd_destroy,
799 .hqd_sdma_destroy = kgd_hqd_sdma_destroy,
800 .address_watch_disable = kgd_address_watch_disable,
801 .address_watch_execute = kgd_address_watch_execute,
802 .wave_control_execute = kgd_wave_control_execute,
803 .address_watch_get_offset = kgd_address_watch_get_offset,
804 .get_atc_vmid_pasid_mapping_info =
805 get_atc_vmid_pasid_mapping_info,
806 .set_vm_context_page_table_base = set_vm_context_page_table_base,
807 .program_trap_handler_settings = program_trap_handler_settings,
808 };
809