1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2020 Intel
4 *
5 * Based on drivers/base/devres.c
6 */
7
8 #include <drm/drm_managed.h>
9
10 #include <linux/list.h>
11 #include <linux/slab.h>
12 #include <linux/spinlock.h>
13
14 #include <drm/drm_device.h>
15 #include <drm/drm_print.h>
16
17 #include "drm_internal.h"
18
19 /**
20 * DOC: managed resources
21 *
22 * Inspired by struct &device managed resources, but tied to the lifetime of
23 * struct &drm_device, which can outlive the underlying physical device, usually
24 * when userspace has some open files and other handles to resources still open.
25 *
26 * Release actions can be added with drmm_add_action(), memory allocations can
27 * be done directly with drmm_kmalloc() and the related functions. Everything
28 * will be released on the final drm_dev_put() in reverse order of how the
29 * release actions have been added and memory has been allocated since driver
30 * loading started with devm_drm_dev_alloc().
31 *
32 * Note that release actions and managed memory can also be added and removed
33 * during the lifetime of the driver, all the functions are fully concurrent
34 * safe. But it is recommended to use managed resources only for resources that
35 * change rarely, if ever, during the lifetime of the &drm_device instance.
36 */
37
38 struct drmres_node {
39 struct list_head entry;
40 drmres_release_t release;
41 const char *name;
42 size_t size;
43 };
44
45 struct drmres {
46 struct drmres_node node;
47 /*
48 * Some archs want to perform DMA into kmalloc caches
49 * and need a guaranteed alignment larger than
50 * the alignment of a 64-bit integer.
51 * Thus we use ARCH_KMALLOC_MINALIGN here and get exactly the same
52 * buffer alignment as if it was allocated by plain kmalloc().
53 */
54 u8 __aligned(ARCH_KMALLOC_MINALIGN) data[];
55 };
56
free_dr(struct drmres * dr)57 static void free_dr(struct drmres *dr)
58 {
59 kfree_const(dr->node.name);
60 kfree(dr);
61 }
62
drm_managed_release(struct drm_device * dev)63 void drm_managed_release(struct drm_device *dev)
64 {
65 struct drmres *dr, *tmp;
66
67 drm_dbg_drmres(dev, "drmres release begin\n");
68 list_for_each_entry_safe(dr, tmp, &dev->managed.resources, node.entry) {
69 drm_dbg_drmres(dev, "REL %p %s (%zu bytes)\n",
70 dr, dr->node.name, dr->node.size);
71
72 if (dr->node.release)
73 dr->node.release(dev, dr->node.size ? *(void **)&dr->data : NULL);
74
75 list_del(&dr->node.entry);
76 free_dr(dr);
77 }
78 drm_dbg_drmres(dev, "drmres release end\n");
79 }
80
81 /*
82 * Always inline so that kmalloc_track_caller tracks the actual interesting
83 * caller outside of drm_managed.c.
84 */
alloc_dr(drmres_release_t release,size_t size,gfp_t gfp,int nid)85 static __always_inline struct drmres * alloc_dr(drmres_release_t release,
86 size_t size, gfp_t gfp, int nid)
87 {
88 size_t tot_size;
89 struct drmres *dr;
90
91 /* We must catch any near-SIZE_MAX cases that could overflow. */
92 if (unlikely(check_add_overflow(sizeof(*dr), size, &tot_size)))
93 return NULL;
94
95 dr = kmalloc_node_track_caller(tot_size, gfp, nid);
96 if (unlikely(!dr))
97 return NULL;
98
99 memset(dr, 0, offsetof(struct drmres, data));
100
101 INIT_LIST_HEAD(&dr->node.entry);
102 dr->node.release = release;
103 dr->node.size = size;
104
105 return dr;
106 }
107
del_dr(struct drm_device * dev,struct drmres * dr)108 static void del_dr(struct drm_device *dev, struct drmres *dr)
109 {
110 list_del_init(&dr->node.entry);
111
112 drm_dbg_drmres(dev, "DEL %p %s (%lu bytes)\n",
113 dr, dr->node.name, (unsigned long) dr->node.size);
114 }
115
add_dr(struct drm_device * dev,struct drmres * dr)116 static void add_dr(struct drm_device *dev, struct drmres *dr)
117 {
118 unsigned long flags;
119
120 spin_lock_irqsave(&dev->managed.lock, flags);
121 list_add(&dr->node.entry, &dev->managed.resources);
122 spin_unlock_irqrestore(&dev->managed.lock, flags);
123
124 drm_dbg_drmres(dev, "ADD %p %s (%lu bytes)\n",
125 dr, dr->node.name, (unsigned long) dr->node.size);
126 }
127
drmm_add_final_kfree(struct drm_device * dev,void * container)128 void drmm_add_final_kfree(struct drm_device *dev, void *container)
129 {
130 WARN_ON(dev->managed.final_kfree);
131 WARN_ON(dev < (struct drm_device *) container);
132 WARN_ON(dev + 1 > (struct drm_device *) (container + ksize(container)));
133 dev->managed.final_kfree = container;
134 }
135
__drmm_add_action(struct drm_device * dev,drmres_release_t action,void * data,const char * name)136 int __drmm_add_action(struct drm_device *dev,
137 drmres_release_t action,
138 void *data, const char *name)
139 {
140 struct drmres *dr;
141 void **void_ptr;
142
143 dr = alloc_dr(action, data ? sizeof(void*) : 0,
144 GFP_KERNEL | __GFP_ZERO,
145 dev_to_node(dev->dev));
146 if (!dr) {
147 drm_dbg_drmres(dev, "failed to add action %s for %p\n",
148 name, data);
149 return -ENOMEM;
150 }
151
152 dr->node.name = kstrdup_const(name, GFP_KERNEL);
153 if (data) {
154 void_ptr = (void **)&dr->data;
155 *void_ptr = data;
156 }
157
158 add_dr(dev, dr);
159
160 return 0;
161 }
162 EXPORT_SYMBOL(__drmm_add_action);
163
__drmm_add_action_or_reset(struct drm_device * dev,drmres_release_t action,void * data,const char * name)164 int __drmm_add_action_or_reset(struct drm_device *dev,
165 drmres_release_t action,
166 void *data, const char *name)
167 {
168 int ret;
169
170 ret = __drmm_add_action(dev, action, data, name);
171 if (ret)
172 action(dev, data);
173
174 return ret;
175 }
176 EXPORT_SYMBOL(__drmm_add_action_or_reset);
177
178 /**
179 * drmm_kmalloc - &drm_device managed kmalloc()
180 * @dev: DRM device
181 * @size: size of the memory allocation
182 * @gfp: GFP allocation flags
183 *
184 * This is a &drm_device managed version of kmalloc(). The allocated memory is
185 * automatically freed on the final drm_dev_put(). Memory can also be freed
186 * before the final drm_dev_put() by calling drmm_kfree().
187 */
drmm_kmalloc(struct drm_device * dev,size_t size,gfp_t gfp)188 void *drmm_kmalloc(struct drm_device *dev, size_t size, gfp_t gfp)
189 {
190 struct drmres *dr;
191
192 dr = alloc_dr(NULL, size, gfp, dev_to_node(dev->dev));
193 if (!dr) {
194 drm_dbg_drmres(dev, "failed to allocate %zu bytes, %u flags\n",
195 size, gfp);
196 return NULL;
197 }
198 dr->node.name = kstrdup_const("kmalloc", GFP_KERNEL);
199
200 add_dr(dev, dr);
201
202 return dr->data;
203 }
204 EXPORT_SYMBOL(drmm_kmalloc);
205
206 /**
207 * drmm_kstrdup - &drm_device managed kstrdup()
208 * @dev: DRM device
209 * @s: 0-terminated string to be duplicated
210 * @gfp: GFP allocation flags
211 *
212 * This is a &drm_device managed version of kstrdup(). The allocated memory is
213 * automatically freed on the final drm_dev_put() and works exactly like a
214 * memory allocation obtained by drmm_kmalloc().
215 */
drmm_kstrdup(struct drm_device * dev,const char * s,gfp_t gfp)216 char *drmm_kstrdup(struct drm_device *dev, const char *s, gfp_t gfp)
217 {
218 size_t size;
219 char *buf;
220
221 if (!s)
222 return NULL;
223
224 size = strlen(s) + 1;
225 buf = drmm_kmalloc(dev, size, gfp);
226 if (buf)
227 memcpy(buf, s, size);
228 return buf;
229 }
230 EXPORT_SYMBOL_GPL(drmm_kstrdup);
231
232 /**
233 * drmm_kfree - &drm_device managed kfree()
234 * @dev: DRM device
235 * @data: memory allocation to be freed
236 *
237 * This is a &drm_device managed version of kfree() which can be used to
238 * release memory allocated through drmm_kmalloc() or any of its related
239 * functions before the final drm_dev_put() of @dev.
240 */
drmm_kfree(struct drm_device * dev,void * data)241 void drmm_kfree(struct drm_device *dev, void *data)
242 {
243 struct drmres *dr_match = NULL, *dr;
244 unsigned long flags;
245
246 if (!data)
247 return;
248
249 spin_lock_irqsave(&dev->managed.lock, flags);
250 list_for_each_entry(dr, &dev->managed.resources, node.entry) {
251 if (dr->data == data) {
252 dr_match = dr;
253 del_dr(dev, dr_match);
254 break;
255 }
256 }
257 spin_unlock_irqrestore(&dev->managed.lock, flags);
258
259 if (WARN_ON(!dr_match))
260 return;
261
262 free_dr(dr_match);
263 }
264 EXPORT_SYMBOL(drmm_kfree);
265