1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2019 Intel Corporation
4 */
5
6 #include "i915_drv.h"
7 #include "intel_lrc_reg.h"
8 #include "intel_sseu.h"
9
intel_sseu_set_info(struct sseu_dev_info * sseu,u8 max_slices,u8 max_subslices,u8 max_eus_per_subslice)10 void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices,
11 u8 max_subslices, u8 max_eus_per_subslice)
12 {
13 sseu->max_slices = max_slices;
14 sseu->max_subslices = max_subslices;
15 sseu->max_eus_per_subslice = max_eus_per_subslice;
16
17 sseu->ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices);
18 GEM_BUG_ON(sseu->ss_stride > GEN_MAX_SUBSLICE_STRIDE);
19 sseu->eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
20 GEM_BUG_ON(sseu->eu_stride > GEN_MAX_EU_STRIDE);
21 }
22
23 unsigned int
intel_sseu_subslice_total(const struct sseu_dev_info * sseu)24 intel_sseu_subslice_total(const struct sseu_dev_info *sseu)
25 {
26 unsigned int i, total = 0;
27
28 for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask); i++)
29 total += hweight8(sseu->subslice_mask[i]);
30
31 return total;
32 }
33
intel_sseu_get_subslices(const struct sseu_dev_info * sseu,u8 slice)34 u32 intel_sseu_get_subslices(const struct sseu_dev_info *sseu, u8 slice)
35 {
36 int i, offset = slice * sseu->ss_stride;
37 u32 mask = 0;
38
39 GEM_BUG_ON(slice >= sseu->max_slices);
40
41 for (i = 0; i < sseu->ss_stride; i++)
42 mask |= (u32)sseu->subslice_mask[offset + i] <<
43 i * BITS_PER_BYTE;
44
45 return mask;
46 }
47
intel_sseu_set_subslices(struct sseu_dev_info * sseu,int slice,u8 * subslice_mask,u32 ss_mask)48 void intel_sseu_set_subslices(struct sseu_dev_info *sseu, int slice,
49 u8 *subslice_mask, u32 ss_mask)
50 {
51 int offset = slice * sseu->ss_stride;
52
53 memcpy(&subslice_mask[offset], &ss_mask, sseu->ss_stride);
54 }
55
56 unsigned int
intel_sseu_subslices_per_slice(const struct sseu_dev_info * sseu,u8 slice)57 intel_sseu_subslices_per_slice(const struct sseu_dev_info *sseu, u8 slice)
58 {
59 return hweight32(intel_sseu_get_subslices(sseu, slice));
60 }
61
sseu_eu_idx(const struct sseu_dev_info * sseu,int slice,int subslice)62 static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
63 int subslice)
64 {
65 int slice_stride = sseu->max_subslices * sseu->eu_stride;
66
67 return slice * slice_stride + subslice * sseu->eu_stride;
68 }
69
sseu_get_eus(const struct sseu_dev_info * sseu,int slice,int subslice)70 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
71 int subslice)
72 {
73 int i, offset = sseu_eu_idx(sseu, slice, subslice);
74 u16 eu_mask = 0;
75
76 for (i = 0; i < sseu->eu_stride; i++)
77 eu_mask |=
78 ((u16)sseu->eu_mask[offset + i]) << (i * BITS_PER_BYTE);
79
80 return eu_mask;
81 }
82
sseu_set_eus(struct sseu_dev_info * sseu,int slice,int subslice,u16 eu_mask)83 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
84 u16 eu_mask)
85 {
86 int i, offset = sseu_eu_idx(sseu, slice, subslice);
87
88 for (i = 0; i < sseu->eu_stride; i++)
89 sseu->eu_mask[offset + i] =
90 (eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
91 }
92
compute_eu_total(const struct sseu_dev_info * sseu)93 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
94 {
95 u16 i, total = 0;
96
97 for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
98 total += hweight8(sseu->eu_mask[i]);
99
100 return total;
101 }
102
get_ss_stride_mask(struct sseu_dev_info * sseu,u8 s,u32 ss_en)103 static u32 get_ss_stride_mask(struct sseu_dev_info *sseu, u8 s, u32 ss_en)
104 {
105 u32 ss_mask;
106
107 ss_mask = ss_en >> (s * sseu->max_subslices);
108 ss_mask &= GENMASK(sseu->max_subslices - 1, 0);
109
110 return ss_mask;
111 }
112
gen11_compute_sseu_info(struct sseu_dev_info * sseu,u8 s_en,u32 g_ss_en,u32 c_ss_en,u16 eu_en)113 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu, u8 s_en,
114 u32 g_ss_en, u32 c_ss_en, u16 eu_en)
115 {
116 int s, ss;
117
118 /* g_ss_en/c_ss_en represent entire subslice mask across all slices */
119 GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
120 sizeof(g_ss_en) * BITS_PER_BYTE);
121
122 for (s = 0; s < sseu->max_slices; s++) {
123 if ((s_en & BIT(s)) == 0)
124 continue;
125
126 sseu->slice_mask |= BIT(s);
127
128 /*
129 * XeHP introduces the concept of compute vs geometry DSS. To
130 * reduce variation between GENs around subslice usage, store a
131 * mask for both the geometry and compute enabled masks since
132 * userspace will need to be able to query these masks
133 * independently. Also compute a total enabled subslice count
134 * for the purposes of selecting subslices to use in a
135 * particular GEM context.
136 */
137 intel_sseu_set_subslices(sseu, s, sseu->compute_subslice_mask,
138 get_ss_stride_mask(sseu, s, c_ss_en));
139 intel_sseu_set_subslices(sseu, s, sseu->geometry_subslice_mask,
140 get_ss_stride_mask(sseu, s, g_ss_en));
141 intel_sseu_set_subslices(sseu, s, sseu->subslice_mask,
142 get_ss_stride_mask(sseu, s,
143 g_ss_en | c_ss_en));
144
145 for (ss = 0; ss < sseu->max_subslices; ss++)
146 if (intel_sseu_has_subslice(sseu, s, ss))
147 sseu_set_eus(sseu, s, ss, eu_en);
148 }
149 sseu->eu_per_subslice = hweight16(eu_en);
150 sseu->eu_total = compute_eu_total(sseu);
151 }
152
gen12_sseu_info_init(struct intel_gt * gt)153 static void gen12_sseu_info_init(struct intel_gt *gt)
154 {
155 struct sseu_dev_info *sseu = >->info.sseu;
156 struct intel_uncore *uncore = gt->uncore;
157 u32 g_dss_en, c_dss_en = 0;
158 u16 eu_en = 0;
159 u8 eu_en_fuse;
160 u8 s_en;
161 int eu;
162
163 /*
164 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
165 * Instead of splitting these, provide userspace with an array
166 * of DSS to more closely represent the hardware resource.
167 *
168 * In addition, the concept of slice has been removed in Xe_HP.
169 * To be compatible with prior generations, assume a single slice
170 * across the entire device. Then calculate out the DSS for each
171 * workload type within that software slice.
172 */
173 if (IS_DG2(gt->i915) || IS_XEHPSDV(gt->i915))
174 intel_sseu_set_info(sseu, 1, 32, 16);
175 else
176 intel_sseu_set_info(sseu, 1, 6, 16);
177
178 /*
179 * As mentioned above, Xe_HP does not have the concept of a slice.
180 * Enable one for software backwards compatibility.
181 */
182 if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50))
183 s_en = 0x1;
184 else
185 s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
186 GEN11_GT_S_ENA_MASK;
187
188 g_dss_en = intel_uncore_read(uncore, GEN12_GT_GEOMETRY_DSS_ENABLE);
189 if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50))
190 c_dss_en = intel_uncore_read(uncore, GEN12_GT_COMPUTE_DSS_ENABLE);
191
192 /* one bit per pair of EUs */
193 if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50))
194 eu_en_fuse = intel_uncore_read(uncore, XEHP_EU_ENABLE) & XEHP_EU_ENA_MASK;
195 else
196 eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
197 GEN11_EU_DIS_MASK);
198
199 for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
200 if (eu_en_fuse & BIT(eu))
201 eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
202
203 gen11_compute_sseu_info(sseu, s_en, g_dss_en, c_dss_en, eu_en);
204
205 /* TGL only supports slice-level power gating */
206 sseu->has_slice_pg = 1;
207 }
208
gen11_sseu_info_init(struct intel_gt * gt)209 static void gen11_sseu_info_init(struct intel_gt *gt)
210 {
211 struct sseu_dev_info *sseu = >->info.sseu;
212 struct intel_uncore *uncore = gt->uncore;
213 u32 ss_en;
214 u8 eu_en;
215 u8 s_en;
216
217 if (IS_JSL_EHL(gt->i915))
218 intel_sseu_set_info(sseu, 1, 4, 8);
219 else
220 intel_sseu_set_info(sseu, 1, 8, 8);
221
222 s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
223 GEN11_GT_S_ENA_MASK;
224 ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE);
225
226 eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
227 GEN11_EU_DIS_MASK);
228
229 gen11_compute_sseu_info(sseu, s_en, ss_en, 0, eu_en);
230
231 /* ICL has no power gating restrictions. */
232 sseu->has_slice_pg = 1;
233 sseu->has_subslice_pg = 1;
234 sseu->has_eu_pg = 1;
235 }
236
cherryview_sseu_info_init(struct intel_gt * gt)237 static void cherryview_sseu_info_init(struct intel_gt *gt)
238 {
239 struct sseu_dev_info *sseu = >->info.sseu;
240 u32 fuse;
241 u8 subslice_mask = 0;
242
243 fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT);
244
245 sseu->slice_mask = BIT(0);
246 intel_sseu_set_info(sseu, 1, 2, 8);
247
248 if (!(fuse & CHV_FGT_DISABLE_SS0)) {
249 u8 disabled_mask =
250 ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
251 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
252 (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
253 CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
254
255 subslice_mask |= BIT(0);
256 sseu_set_eus(sseu, 0, 0, ~disabled_mask);
257 }
258
259 if (!(fuse & CHV_FGT_DISABLE_SS1)) {
260 u8 disabled_mask =
261 ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
262 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
263 (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
264 CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
265
266 subslice_mask |= BIT(1);
267 sseu_set_eus(sseu, 0, 1, ~disabled_mask);
268 }
269
270 intel_sseu_set_subslices(sseu, 0, sseu->subslice_mask, subslice_mask);
271
272 sseu->eu_total = compute_eu_total(sseu);
273
274 /*
275 * CHV expected to always have a uniform distribution of EU
276 * across subslices.
277 */
278 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
279 sseu->eu_total /
280 intel_sseu_subslice_total(sseu) :
281 0;
282 /*
283 * CHV supports subslice power gating on devices with more than
284 * one subslice, and supports EU power gating on devices with
285 * more than one EU pair per subslice.
286 */
287 sseu->has_slice_pg = 0;
288 sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
289 sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
290 }
291
gen9_sseu_info_init(struct intel_gt * gt)292 static void gen9_sseu_info_init(struct intel_gt *gt)
293 {
294 struct drm_i915_private *i915 = gt->i915;
295 struct intel_device_info *info = mkwrite_device_info(i915);
296 struct sseu_dev_info *sseu = >->info.sseu;
297 struct intel_uncore *uncore = gt->uncore;
298 u32 fuse2, eu_disable, subslice_mask;
299 const u8 eu_mask = 0xff;
300 int s, ss;
301
302 fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
303 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
304
305 /* BXT has a single slice and at most 3 subslices. */
306 intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3,
307 IS_GEN9_LP(i915) ? 3 : 4, 8);
308
309 /*
310 * The subslice disable field is global, i.e. it applies
311 * to each of the enabled slices.
312 */
313 subslice_mask = (1 << sseu->max_subslices) - 1;
314 subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
315 GEN9_F2_SS_DIS_SHIFT);
316
317 /*
318 * Iterate through enabled slices and subslices to
319 * count the total enabled EU.
320 */
321 for (s = 0; s < sseu->max_slices; s++) {
322 if (!(sseu->slice_mask & BIT(s)))
323 /* skip disabled slice */
324 continue;
325
326 intel_sseu_set_subslices(sseu, s, sseu->subslice_mask,
327 subslice_mask);
328
329 eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s));
330 for (ss = 0; ss < sseu->max_subslices; ss++) {
331 int eu_per_ss;
332 u8 eu_disabled_mask;
333
334 if (!intel_sseu_has_subslice(sseu, s, ss))
335 /* skip disabled subslice */
336 continue;
337
338 eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
339
340 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
341
342 eu_per_ss = sseu->max_eus_per_subslice -
343 hweight8(eu_disabled_mask);
344
345 /*
346 * Record which subslice(s) has(have) 7 EUs. we
347 * can tune the hash used to spread work among
348 * subslices if they are unbalanced.
349 */
350 if (eu_per_ss == 7)
351 sseu->subslice_7eu[s] |= BIT(ss);
352 }
353 }
354
355 sseu->eu_total = compute_eu_total(sseu);
356
357 /*
358 * SKL is expected to always have a uniform distribution
359 * of EU across subslices with the exception that any one
360 * EU in any one subslice may be fused off for die
361 * recovery. BXT is expected to be perfectly uniform in EU
362 * distribution.
363 */
364 sseu->eu_per_subslice =
365 intel_sseu_subslice_total(sseu) ?
366 DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
367 0;
368
369 /*
370 * SKL+ supports slice power gating on devices with more than
371 * one slice, and supports EU power gating on devices with
372 * more than one EU pair per subslice. BXT+ supports subslice
373 * power gating on devices with more than one subslice, and
374 * supports EU power gating on devices with more than one EU
375 * pair per subslice.
376 */
377 sseu->has_slice_pg =
378 !IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1;
379 sseu->has_subslice_pg =
380 IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1;
381 sseu->has_eu_pg = sseu->eu_per_subslice > 2;
382
383 if (IS_GEN9_LP(i915)) {
384 #define IS_SS_DISABLED(ss) (!(sseu->subslice_mask[0] & BIT(ss)))
385 info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
386
387 sseu->min_eu_in_pool = 0;
388 if (info->has_pooled_eu) {
389 if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
390 sseu->min_eu_in_pool = 3;
391 else if (IS_SS_DISABLED(1))
392 sseu->min_eu_in_pool = 6;
393 else
394 sseu->min_eu_in_pool = 9;
395 }
396 #undef IS_SS_DISABLED
397 }
398 }
399
bdw_sseu_info_init(struct intel_gt * gt)400 static void bdw_sseu_info_init(struct intel_gt *gt)
401 {
402 struct sseu_dev_info *sseu = >->info.sseu;
403 struct intel_uncore *uncore = gt->uncore;
404 int s, ss;
405 u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
406 u32 eu_disable0, eu_disable1, eu_disable2;
407
408 fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
409 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
410 intel_sseu_set_info(sseu, 3, 3, 8);
411
412 /*
413 * The subslice disable field is global, i.e. it applies
414 * to each of the enabled slices.
415 */
416 subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
417 subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
418 GEN8_F2_SS_DIS_SHIFT);
419 eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0);
420 eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1);
421 eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2);
422 eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK;
423 eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) |
424 ((eu_disable1 & GEN8_EU_DIS1_S1_MASK) <<
425 (32 - GEN8_EU_DIS0_S1_SHIFT));
426 eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) |
427 ((eu_disable2 & GEN8_EU_DIS2_S2_MASK) <<
428 (32 - GEN8_EU_DIS1_S2_SHIFT));
429
430 /*
431 * Iterate through enabled slices and subslices to
432 * count the total enabled EU.
433 */
434 for (s = 0; s < sseu->max_slices; s++) {
435 if (!(sseu->slice_mask & BIT(s)))
436 /* skip disabled slice */
437 continue;
438
439 intel_sseu_set_subslices(sseu, s, sseu->subslice_mask,
440 subslice_mask);
441
442 for (ss = 0; ss < sseu->max_subslices; ss++) {
443 u8 eu_disabled_mask;
444 u32 n_disabled;
445
446 if (!intel_sseu_has_subslice(sseu, s, ss))
447 /* skip disabled subslice */
448 continue;
449
450 eu_disabled_mask =
451 eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
452
453 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
454
455 n_disabled = hweight8(eu_disabled_mask);
456
457 /*
458 * Record which subslices have 7 EUs.
459 */
460 if (sseu->max_eus_per_subslice - n_disabled == 7)
461 sseu->subslice_7eu[s] |= 1 << ss;
462 }
463 }
464
465 sseu->eu_total = compute_eu_total(sseu);
466
467 /*
468 * BDW is expected to always have a uniform distribution of EU across
469 * subslices with the exception that any one EU in any one subslice may
470 * be fused off for die recovery.
471 */
472 sseu->eu_per_subslice =
473 intel_sseu_subslice_total(sseu) ?
474 DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
475 0;
476
477 /*
478 * BDW supports slice power gating on devices with more than
479 * one slice.
480 */
481 sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
482 sseu->has_subslice_pg = 0;
483 sseu->has_eu_pg = 0;
484 }
485
hsw_sseu_info_init(struct intel_gt * gt)486 static void hsw_sseu_info_init(struct intel_gt *gt)
487 {
488 struct drm_i915_private *i915 = gt->i915;
489 struct sseu_dev_info *sseu = >->info.sseu;
490 u32 fuse1;
491 u8 subslice_mask = 0;
492 int s, ss;
493
494 /*
495 * There isn't a register to tell us how many slices/subslices. We
496 * work off the PCI-ids here.
497 */
498 switch (INTEL_INFO(i915)->gt) {
499 default:
500 MISSING_CASE(INTEL_INFO(i915)->gt);
501 fallthrough;
502 case 1:
503 sseu->slice_mask = BIT(0);
504 subslice_mask = BIT(0);
505 break;
506 case 2:
507 sseu->slice_mask = BIT(0);
508 subslice_mask = BIT(0) | BIT(1);
509 break;
510 case 3:
511 sseu->slice_mask = BIT(0) | BIT(1);
512 subslice_mask = BIT(0) | BIT(1);
513 break;
514 }
515
516 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
517 switch (REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)) {
518 default:
519 MISSING_CASE(REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1));
520 fallthrough;
521 case HSW_F1_EU_DIS_10EUS:
522 sseu->eu_per_subslice = 10;
523 break;
524 case HSW_F1_EU_DIS_8EUS:
525 sseu->eu_per_subslice = 8;
526 break;
527 case HSW_F1_EU_DIS_6EUS:
528 sseu->eu_per_subslice = 6;
529 break;
530 }
531
532 intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
533 hweight8(subslice_mask),
534 sseu->eu_per_subslice);
535
536 for (s = 0; s < sseu->max_slices; s++) {
537 intel_sseu_set_subslices(sseu, s, sseu->subslice_mask,
538 subslice_mask);
539
540 for (ss = 0; ss < sseu->max_subslices; ss++) {
541 sseu_set_eus(sseu, s, ss,
542 (1UL << sseu->eu_per_subslice) - 1);
543 }
544 }
545
546 sseu->eu_total = compute_eu_total(sseu);
547
548 /* No powergating for you. */
549 sseu->has_slice_pg = 0;
550 sseu->has_subslice_pg = 0;
551 sseu->has_eu_pg = 0;
552 }
553
intel_sseu_info_init(struct intel_gt * gt)554 void intel_sseu_info_init(struct intel_gt *gt)
555 {
556 struct drm_i915_private *i915 = gt->i915;
557
558 if (IS_HASWELL(i915))
559 hsw_sseu_info_init(gt);
560 else if (IS_CHERRYVIEW(i915))
561 cherryview_sseu_info_init(gt);
562 else if (IS_BROADWELL(i915))
563 bdw_sseu_info_init(gt);
564 else if (GRAPHICS_VER(i915) == 9)
565 gen9_sseu_info_init(gt);
566 else if (GRAPHICS_VER(i915) == 11)
567 gen11_sseu_info_init(gt);
568 else if (GRAPHICS_VER(i915) >= 12)
569 gen12_sseu_info_init(gt);
570 }
571
intel_sseu_make_rpcs(struct intel_gt * gt,const struct intel_sseu * req_sseu)572 u32 intel_sseu_make_rpcs(struct intel_gt *gt,
573 const struct intel_sseu *req_sseu)
574 {
575 struct drm_i915_private *i915 = gt->i915;
576 const struct sseu_dev_info *sseu = >->info.sseu;
577 bool subslice_pg = sseu->has_subslice_pg;
578 u8 slices, subslices;
579 u32 rpcs = 0;
580
581 /*
582 * No explicit RPCS request is needed to ensure full
583 * slice/subslice/EU enablement prior to Gen9.
584 */
585 if (GRAPHICS_VER(i915) < 9)
586 return 0;
587
588 /*
589 * If i915/perf is active, we want a stable powergating configuration
590 * on the system. Use the configuration pinned by i915/perf.
591 */
592 if (i915->perf.exclusive_stream)
593 req_sseu = &i915->perf.sseu;
594
595 slices = hweight8(req_sseu->slice_mask);
596 subslices = hweight8(req_sseu->subslice_mask);
597
598 /*
599 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
600 * wide and Icelake has up to eight subslices, specfial programming is
601 * needed in order to correctly enable all subslices.
602 *
603 * According to documentation software must consider the configuration
604 * as 2x4x8 and hardware will translate this to 1x8x8.
605 *
606 * Furthemore, even though SScount is three bits, maximum documented
607 * value for it is four. From this some rules/restrictions follow:
608 *
609 * 1.
610 * If enabled subslice count is greater than four, two whole slices must
611 * be enabled instead.
612 *
613 * 2.
614 * When more than one slice is enabled, hardware ignores the subslice
615 * count altogether.
616 *
617 * From these restrictions it follows that it is not possible to enable
618 * a count of subslices between the SScount maximum of four restriction,
619 * and the maximum available number on a particular SKU. Either all
620 * subslices are enabled, or a count between one and four on the first
621 * slice.
622 */
623 if (GRAPHICS_VER(i915) == 11 &&
624 slices == 1 &&
625 subslices > min_t(u8, 4, hweight8(sseu->subslice_mask[0]) / 2)) {
626 GEM_BUG_ON(subslices & 1);
627
628 subslice_pg = false;
629 slices *= 2;
630 }
631
632 /*
633 * Starting in Gen9, render power gating can leave
634 * slice/subslice/EU in a partially enabled state. We
635 * must make an explicit request through RPCS for full
636 * enablement.
637 */
638 if (sseu->has_slice_pg) {
639 u32 mask, val = slices;
640
641 if (GRAPHICS_VER(i915) >= 11) {
642 mask = GEN11_RPCS_S_CNT_MASK;
643 val <<= GEN11_RPCS_S_CNT_SHIFT;
644 } else {
645 mask = GEN8_RPCS_S_CNT_MASK;
646 val <<= GEN8_RPCS_S_CNT_SHIFT;
647 }
648
649 GEM_BUG_ON(val & ~mask);
650 val &= mask;
651
652 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
653 }
654
655 if (subslice_pg) {
656 u32 val = subslices;
657
658 val <<= GEN8_RPCS_SS_CNT_SHIFT;
659
660 GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
661 val &= GEN8_RPCS_SS_CNT_MASK;
662
663 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
664 }
665
666 if (sseu->has_eu_pg) {
667 u32 val;
668
669 val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
670 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
671 val &= GEN8_RPCS_EU_MIN_MASK;
672
673 rpcs |= val;
674
675 val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
676 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
677 val &= GEN8_RPCS_EU_MAX_MASK;
678
679 rpcs |= val;
680
681 rpcs |= GEN8_RPCS_ENABLE;
682 }
683
684 return rpcs;
685 }
686
intel_sseu_dump(const struct sseu_dev_info * sseu,struct drm_printer * p)687 void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
688 {
689 int s;
690
691 drm_printf(p, "slice total: %u, mask=%04x\n",
692 hweight8(sseu->slice_mask), sseu->slice_mask);
693 drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
694 for (s = 0; s < sseu->max_slices; s++) {
695 drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
696 s, intel_sseu_subslices_per_slice(sseu, s),
697 intel_sseu_get_subslices(sseu, s));
698 }
699 drm_printf(p, "EU total: %u\n", sseu->eu_total);
700 drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
701 drm_printf(p, "has slice power gating: %s\n",
702 yesno(sseu->has_slice_pg));
703 drm_printf(p, "has subslice power gating: %s\n",
704 yesno(sseu->has_subslice_pg));
705 drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
706 }
707
intel_sseu_print_topology(const struct sseu_dev_info * sseu,struct drm_printer * p)708 void intel_sseu_print_topology(const struct sseu_dev_info *sseu,
709 struct drm_printer *p)
710 {
711 int s, ss;
712
713 if (sseu->max_slices == 0) {
714 drm_printf(p, "Unavailable\n");
715 return;
716 }
717
718 for (s = 0; s < sseu->max_slices; s++) {
719 drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
720 s, intel_sseu_subslices_per_slice(sseu, s),
721 intel_sseu_get_subslices(sseu, s));
722
723 for (ss = 0; ss < sseu->max_subslices; ss++) {
724 u16 enabled_eus = sseu_get_eus(sseu, s, ss);
725
726 drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
727 ss, hweight16(enabled_eus), enabled_eus);
728 }
729 }
730 }
731
intel_slicemask_from_dssmask(u64 dss_mask,int dss_per_slice)732 u16 intel_slicemask_from_dssmask(u64 dss_mask, int dss_per_slice)
733 {
734 u16 slice_mask = 0;
735 int i;
736
737 WARN_ON(sizeof(dss_mask) * 8 / dss_per_slice > 8 * sizeof(slice_mask));
738
739 for (i = 0; dss_mask; i++) {
740 if (dss_mask & GENMASK(dss_per_slice - 1, 0))
741 slice_mask |= BIT(i);
742
743 dss_mask >>= dss_per_slice;
744 }
745
746 return slice_mask;
747 }
748
749