1 // SPDX-License-Identifier: MIT
2 /*
3 * Copyright © 2020,2021 Intel Corporation
4 */
5
6 #include "i915_drv.h"
7 #include "intel_step.h"
8
9 /*
10 * Some platforms have unusual ways of mapping PCI revision ID to GT/display
11 * steppings. E.g., in some cases a higher PCI revision may translate to a
12 * lower stepping of the GT and/or display IP. This file provides lookup
13 * tables to map the PCI revision into a standard set of stepping values that
14 * can be compared numerically.
15 *
16 * Also note that some revisions/steppings may have been set aside as
17 * placeholders but never materialized in real hardware; in those cases there
18 * may be jumps in the revision IDs or stepping values in the tables below.
19 */
20
21 /*
22 * Some platforms always have the same stepping value for GT and display;
23 * use a macro to define these to make it easier to identify the platforms
24 * where the two steppings can deviate.
25 */
26 #define COMMON_STEP(x) .gt_step = STEP_##x, .display_step = STEP_##x
27
28 static const struct intel_step_info skl_revids[] = {
29 [0x6] = { COMMON_STEP(G0) },
30 [0x7] = { COMMON_STEP(H0) },
31 [0x9] = { COMMON_STEP(J0) },
32 [0xA] = { COMMON_STEP(I1) },
33 };
34
35 static const struct intel_step_info kbl_revids[] = {
36 [1] = { .gt_step = STEP_B0, .display_step = STEP_B0 },
37 [2] = { .gt_step = STEP_C0, .display_step = STEP_B0 },
38 [3] = { .gt_step = STEP_D0, .display_step = STEP_B0 },
39 [4] = { .gt_step = STEP_F0, .display_step = STEP_C0 },
40 [5] = { .gt_step = STEP_C0, .display_step = STEP_B1 },
41 [6] = { .gt_step = STEP_D1, .display_step = STEP_B1 },
42 [7] = { .gt_step = STEP_G0, .display_step = STEP_C0 },
43 };
44
45 static const struct intel_step_info bxt_revids[] = {
46 [0xA] = { COMMON_STEP(C0) },
47 [0xB] = { COMMON_STEP(C0) },
48 [0xC] = { COMMON_STEP(D0) },
49 [0xD] = { COMMON_STEP(E0) },
50 };
51
52 static const struct intel_step_info glk_revids[] = {
53 [3] = { COMMON_STEP(B0) },
54 };
55
56 static const struct intel_step_info icl_revids[] = {
57 [7] = { COMMON_STEP(D0) },
58 };
59
60 static const struct intel_step_info jsl_ehl_revids[] = {
61 [0] = { COMMON_STEP(A0) },
62 [1] = { COMMON_STEP(B0) },
63 };
64
65 static const struct intel_step_info tgl_uy_revids[] = {
66 [0] = { .gt_step = STEP_A0, .display_step = STEP_A0 },
67 [1] = { .gt_step = STEP_B0, .display_step = STEP_C0 },
68 [2] = { .gt_step = STEP_B1, .display_step = STEP_C0 },
69 [3] = { .gt_step = STEP_C0, .display_step = STEP_D0 },
70 };
71
72 /* Same GT stepping between tgl_uy_revids and tgl_revids don't mean the same HW */
73 static const struct intel_step_info tgl_revids[] = {
74 [0] = { .gt_step = STEP_A0, .display_step = STEP_B0 },
75 [1] = { .gt_step = STEP_B0, .display_step = STEP_D0 },
76 };
77
78 static const struct intel_step_info rkl_revids[] = {
79 [0] = { COMMON_STEP(A0) },
80 [1] = { COMMON_STEP(B0) },
81 [4] = { COMMON_STEP(C0) },
82 };
83
84 static const struct intel_step_info dg1_revids[] = {
85 [0] = { COMMON_STEP(A0) },
86 [1] = { COMMON_STEP(B0) },
87 };
88
89 static const struct intel_step_info adls_revids[] = {
90 [0x0] = { .gt_step = STEP_A0, .display_step = STEP_A0 },
91 [0x1] = { .gt_step = STEP_A0, .display_step = STEP_A2 },
92 [0x4] = { .gt_step = STEP_B0, .display_step = STEP_B0 },
93 [0x8] = { .gt_step = STEP_C0, .display_step = STEP_B0 },
94 [0xC] = { .gt_step = STEP_D0, .display_step = STEP_C0 },
95 };
96
97 static const struct intel_step_info adlp_revids[] = {
98 [0x0] = { .gt_step = STEP_A0, .display_step = STEP_A0 },
99 [0x4] = { .gt_step = STEP_B0, .display_step = STEP_B0 },
100 [0x8] = { .gt_step = STEP_C0, .display_step = STEP_C0 },
101 [0xC] = { .gt_step = STEP_C0, .display_step = STEP_D0 },
102 };
103
104 static const struct intel_step_info xehpsdv_revids[] = {
105 [0x0] = { .gt_step = STEP_A0 },
106 [0x1] = { .gt_step = STEP_A1 },
107 [0x4] = { .gt_step = STEP_B0 },
108 [0x8] = { .gt_step = STEP_C0 },
109 };
110
111 static const struct intel_step_info dg2_g10_revid_step_tbl[] = {
112 [0x0] = { .gt_step = STEP_A0, .display_step = STEP_A0 },
113 [0x1] = { .gt_step = STEP_A1, .display_step = STEP_A0 },
114 [0x4] = { .gt_step = STEP_B0, .display_step = STEP_B0 },
115 [0x8] = { .gt_step = STEP_C0, .display_step = STEP_C0 },
116 };
117
118 static const struct intel_step_info dg2_g11_revid_step_tbl[] = {
119 [0x0] = { .gt_step = STEP_A0, .display_step = STEP_B0 },
120 [0x4] = { .gt_step = STEP_B0, .display_step = STEP_C0 },
121 [0x5] = { .gt_step = STEP_B1, .display_step = STEP_C0 },
122 };
123
intel_step_init(struct drm_i915_private * i915)124 void intel_step_init(struct drm_i915_private *i915)
125 {
126 const struct intel_step_info *revids = NULL;
127 int size = 0;
128 int revid = INTEL_REVID(i915);
129 struct intel_step_info step = {};
130
131 if (IS_DG2_G10(i915)) {
132 revids = dg2_g10_revid_step_tbl;
133 size = ARRAY_SIZE(dg2_g10_revid_step_tbl);
134 } else if (IS_DG2_G11(i915)) {
135 revids = dg2_g11_revid_step_tbl;
136 size = ARRAY_SIZE(dg2_g11_revid_step_tbl);
137 } else if (IS_XEHPSDV(i915)) {
138 revids = xehpsdv_revids;
139 size = ARRAY_SIZE(xehpsdv_revids);
140 } else if (IS_ALDERLAKE_P(i915)) {
141 revids = adlp_revids;
142 size = ARRAY_SIZE(adlp_revids);
143 } else if (IS_ALDERLAKE_S(i915)) {
144 revids = adls_revids;
145 size = ARRAY_SIZE(adls_revids);
146 } else if (IS_DG1(i915)) {
147 revids = dg1_revids;
148 size = ARRAY_SIZE(dg1_revids);
149 } else if (IS_ROCKETLAKE(i915)) {
150 revids = rkl_revids;
151 size = ARRAY_SIZE(rkl_revids);
152 } else if (IS_TGL_U(i915) || IS_TGL_Y(i915)) {
153 revids = tgl_uy_revids;
154 size = ARRAY_SIZE(tgl_uy_revids);
155 } else if (IS_TIGERLAKE(i915)) {
156 revids = tgl_revids;
157 size = ARRAY_SIZE(tgl_revids);
158 } else if (IS_JSL_EHL(i915)) {
159 revids = jsl_ehl_revids;
160 size = ARRAY_SIZE(jsl_ehl_revids);
161 } else if (IS_ICELAKE(i915)) {
162 revids = icl_revids;
163 size = ARRAY_SIZE(icl_revids);
164 } else if (IS_GEMINILAKE(i915)) {
165 revids = glk_revids;
166 size = ARRAY_SIZE(glk_revids);
167 } else if (IS_BROXTON(i915)) {
168 revids = bxt_revids;
169 size = ARRAY_SIZE(bxt_revids);
170 } else if (IS_KABYLAKE(i915)) {
171 revids = kbl_revids;
172 size = ARRAY_SIZE(kbl_revids);
173 } else if (IS_SKYLAKE(i915)) {
174 revids = skl_revids;
175 size = ARRAY_SIZE(skl_revids);
176 }
177
178 /* Not using the stepping scheme for the platform yet. */
179 if (!revids)
180 return;
181
182 if (revid < size && revids[revid].gt_step != STEP_NONE) {
183 step = revids[revid];
184 } else {
185 drm_warn(&i915->drm, "Unknown revid 0x%02x\n", revid);
186
187 /*
188 * If we hit a gap in the revid array, use the information for
189 * the next revid.
190 *
191 * This may be wrong in all sorts of ways, especially if the
192 * steppings in the array are not monotonically increasing, but
193 * it's better than defaulting to 0.
194 */
195 while (revid < size && revids[revid].gt_step == STEP_NONE)
196 revid++;
197
198 if (revid < size) {
199 drm_dbg(&i915->drm, "Using steppings for revid 0x%02x\n",
200 revid);
201 step = revids[revid];
202 } else {
203 drm_dbg(&i915->drm, "Using future steppings\n");
204 step.gt_step = STEP_FUTURE;
205 step.display_step = STEP_FUTURE;
206 }
207 }
208
209 if (drm_WARN_ON(&i915->drm, step.gt_step == STEP_NONE))
210 return;
211
212 RUNTIME_INFO(i915)->step = step;
213 }
214
215 #define STEP_NAME_CASE(name) \
216 case STEP_##name: \
217 return #name;
218
intel_step_name(enum intel_step step)219 const char *intel_step_name(enum intel_step step)
220 {
221 switch (step) {
222 STEP_NAME_LIST(STEP_NAME_CASE);
223
224 default:
225 return "**";
226 }
227 }
228