1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright(c) 2020 Intel Corporation.
4  */
5 #include <linux/workqueue.h>
6 #include "intel_pxp.h"
7 #include "intel_pxp_irq.h"
8 #include "intel_pxp_session.h"
9 #include "intel_pxp_tee.h"
10 #include "gem/i915_gem_context.h"
11 #include "gt/intel_context.h"
12 #include "i915_drv.h"
13 
14 /**
15  * DOC: PXP
16  *
17  * PXP (Protected Xe Path) is a feature available in Gen12 and newer platforms.
18  * It allows execution and flip to display of protected (i.e. encrypted)
19  * objects. The SW support is enabled via the CONFIG_DRM_I915_PXP kconfig.
20  *
21  * Objects can opt-in to PXP encryption at creation time via the
22  * I915_GEM_CREATE_EXT_PROTECTED_CONTENT create_ext flag. For objects to be
23  * correctly protected they must be used in conjunction with a context created
24  * with the I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. See the documentation
25  * of those two uapi flags for details and restrictions.
26  *
27  * Protected objects are tied to a pxp session; currently we only support one
28  * session, which i915 manages and whose index is available in the uapi
29  * (I915_PROTECTED_CONTENT_DEFAULT_SESSION) for use in instructions targeting
30  * protected objects.
31  * The session is invalidated by the HW when certain events occur (e.g.
32  * suspend/resume). When this happens, all the objects that were used with the
33  * session are marked as invalid and all contexts marked as using protected
34  * content are banned. Any further attempt at using them in an execbuf call is
35  * rejected, while flips are converted to black frames.
36  *
37  * Some of the PXP setup operations are performed by the Management Engine,
38  * which is handled by the mei driver; communication between i915 and mei is
39  * performed via the mei_pxp component module.
40  */
41 
pxp_to_gt(const struct intel_pxp * pxp)42 struct intel_gt *pxp_to_gt(const struct intel_pxp *pxp)
43 {
44 	return container_of(pxp, struct intel_gt, pxp);
45 }
46 
intel_pxp_is_active(const struct intel_pxp * pxp)47 bool intel_pxp_is_active(const struct intel_pxp *pxp)
48 {
49 	return pxp->arb_is_valid;
50 }
51 
52 /* KCR register definitions */
53 #define KCR_INIT _MMIO(0x320f0)
54 /* Setting KCR Init bit is required after system boot */
55 #define KCR_INIT_ALLOW_DISPLAY_ME_WRITES REG_BIT(14)
56 
kcr_pxp_enable(struct intel_gt * gt)57 static void kcr_pxp_enable(struct intel_gt *gt)
58 {
59 	intel_uncore_write(gt->uncore, KCR_INIT,
60 			   _MASKED_BIT_ENABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES));
61 }
62 
kcr_pxp_disable(struct intel_gt * gt)63 static void kcr_pxp_disable(struct intel_gt *gt)
64 {
65 	intel_uncore_write(gt->uncore, KCR_INIT,
66 			   _MASKED_BIT_DISABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES));
67 }
68 
create_vcs_context(struct intel_pxp * pxp)69 static int create_vcs_context(struct intel_pxp *pxp)
70 {
71 	static struct lock_class_key pxp_lock;
72 	struct intel_gt *gt = pxp_to_gt(pxp);
73 	struct intel_engine_cs *engine;
74 	struct intel_context *ce;
75 	int i;
76 
77 	/*
78 	 * Find the first VCS engine present. We're guaranteed there is one
79 	 * if we're in this function due to the check in has_pxp
80 	 */
81 	for (i = 0, engine = NULL; !engine; i++)
82 		engine = gt->engine_class[VIDEO_DECODE_CLASS][i];
83 
84 	GEM_BUG_ON(!engine || engine->class != VIDEO_DECODE_CLASS);
85 
86 	ce = intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
87 						I915_GEM_HWS_PXP_ADDR,
88 						&pxp_lock, "pxp_context");
89 	if (IS_ERR(ce)) {
90 		drm_err(&gt->i915->drm, "failed to create VCS ctx for PXP\n");
91 		return PTR_ERR(ce);
92 	}
93 
94 	pxp->ce = ce;
95 
96 	return 0;
97 }
98 
destroy_vcs_context(struct intel_pxp * pxp)99 static void destroy_vcs_context(struct intel_pxp *pxp)
100 {
101 	intel_engine_destroy_pinned_context(fetch_and_zero(&pxp->ce));
102 }
103 
intel_pxp_init(struct intel_pxp * pxp)104 void intel_pxp_init(struct intel_pxp *pxp)
105 {
106 	struct intel_gt *gt = pxp_to_gt(pxp);
107 	int ret;
108 
109 	if (!HAS_PXP(gt->i915))
110 		return;
111 
112 	mutex_init(&pxp->tee_mutex);
113 
114 	/*
115 	 * we'll use the completion to check if there is a termination pending,
116 	 * so we start it as completed and we reinit it when a termination
117 	 * is triggered.
118 	 */
119 	init_completion(&pxp->termination);
120 	complete_all(&pxp->termination);
121 
122 	mutex_init(&pxp->arb_mutex);
123 	INIT_WORK(&pxp->session_work, intel_pxp_session_work);
124 
125 	ret = create_vcs_context(pxp);
126 	if (ret)
127 		return;
128 
129 	ret = intel_pxp_tee_component_init(pxp);
130 	if (ret)
131 		goto out_context;
132 
133 	drm_info(&gt->i915->drm, "Protected Xe Path (PXP) protected content support initialized\n");
134 
135 	return;
136 
137 out_context:
138 	destroy_vcs_context(pxp);
139 }
140 
intel_pxp_fini(struct intel_pxp * pxp)141 void intel_pxp_fini(struct intel_pxp *pxp)
142 {
143 	if (!intel_pxp_is_enabled(pxp))
144 		return;
145 
146 	pxp->arb_is_valid = false;
147 
148 	intel_pxp_tee_component_fini(pxp);
149 
150 	destroy_vcs_context(pxp);
151 }
152 
intel_pxp_mark_termination_in_progress(struct intel_pxp * pxp)153 void intel_pxp_mark_termination_in_progress(struct intel_pxp *pxp)
154 {
155 	pxp->arb_is_valid = false;
156 	reinit_completion(&pxp->termination);
157 }
158 
pxp_queue_termination(struct intel_pxp * pxp)159 static void pxp_queue_termination(struct intel_pxp *pxp)
160 {
161 	struct intel_gt *gt = pxp_to_gt(pxp);
162 
163 	/*
164 	 * We want to get the same effect as if we received a termination
165 	 * interrupt, so just pretend that we did.
166 	 */
167 	spin_lock_irq(&gt->irq_lock);
168 	intel_pxp_mark_termination_in_progress(pxp);
169 	pxp->session_events |= PXP_TERMINATION_REQUEST;
170 	queue_work(system_unbound_wq, &pxp->session_work);
171 	spin_unlock_irq(&gt->irq_lock);
172 }
173 
174 /*
175  * the arb session is restarted from the irq work when we receive the
176  * termination completion interrupt
177  */
intel_pxp_start(struct intel_pxp * pxp)178 int intel_pxp_start(struct intel_pxp *pxp)
179 {
180 	int ret = 0;
181 
182 	if (!intel_pxp_is_enabled(pxp))
183 		return -ENODEV;
184 
185 	mutex_lock(&pxp->arb_mutex);
186 
187 	if (pxp->arb_is_valid)
188 		goto unlock;
189 
190 	pxp_queue_termination(pxp);
191 
192 	if (!wait_for_completion_timeout(&pxp->termination,
193 					msecs_to_jiffies(250))) {
194 		ret = -ETIMEDOUT;
195 		goto unlock;
196 	}
197 
198 	/* make sure the compiler doesn't optimize the double access */
199 	barrier();
200 
201 	if (!pxp->arb_is_valid)
202 		ret = -EIO;
203 
204 unlock:
205 	mutex_unlock(&pxp->arb_mutex);
206 	return ret;
207 }
208 
intel_pxp_init_hw(struct intel_pxp * pxp)209 void intel_pxp_init_hw(struct intel_pxp *pxp)
210 {
211 	kcr_pxp_enable(pxp_to_gt(pxp));
212 	intel_pxp_irq_enable(pxp);
213 }
214 
intel_pxp_fini_hw(struct intel_pxp * pxp)215 void intel_pxp_fini_hw(struct intel_pxp *pxp)
216 {
217 	kcr_pxp_disable(pxp_to_gt(pxp));
218 
219 	intel_pxp_irq_disable(pxp);
220 }
221 
intel_pxp_key_check(struct intel_pxp * pxp,struct drm_i915_gem_object * obj,bool assign)222 int intel_pxp_key_check(struct intel_pxp *pxp,
223 			struct drm_i915_gem_object *obj,
224 			bool assign)
225 {
226 	if (!intel_pxp_is_active(pxp))
227 		return -ENODEV;
228 
229 	if (!i915_gem_object_is_protected(obj))
230 		return -EINVAL;
231 
232 	GEM_BUG_ON(!pxp->key_instance);
233 
234 	/*
235 	 * If this is the first time we're using this object, it's not
236 	 * encrypted yet; it will be encrypted with the current key, so mark it
237 	 * as such. If the object is already encrypted, check instead if the
238 	 * used key is still valid.
239 	 */
240 	if (!obj->pxp_key_instance && assign)
241 		obj->pxp_key_instance = pxp->key_instance;
242 
243 	if (obj->pxp_key_instance != pxp->key_instance)
244 		return -ENOEXEC;
245 
246 	return 0;
247 }
248 
intel_pxp_invalidate(struct intel_pxp * pxp)249 void intel_pxp_invalidate(struct intel_pxp *pxp)
250 {
251 	struct drm_i915_private *i915 = pxp_to_gt(pxp)->i915;
252 	struct i915_gem_context *ctx, *cn;
253 
254 	/* ban all contexts marked as protected */
255 	spin_lock_irq(&i915->gem.contexts.lock);
256 	list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
257 		struct i915_gem_engines_iter it;
258 		struct intel_context *ce;
259 
260 		if (!kref_get_unless_zero(&ctx->ref))
261 			continue;
262 
263 		if (likely(!i915_gem_context_uses_protected_content(ctx))) {
264 			i915_gem_context_put(ctx);
265 			continue;
266 		}
267 
268 		spin_unlock_irq(&i915->gem.contexts.lock);
269 
270 		/*
271 		 * By the time we get here we are either going to suspend with
272 		 * quiesced execution or the HW keys are already long gone and
273 		 * in this case it is worthless to attempt to close the context
274 		 * and wait for its execution. It will hang the GPU if it has
275 		 * not already. So, as a fast mitigation, we can ban the
276 		 * context as quick as we can. That might race with the
277 		 * execbuffer, but currently this is the best that can be done.
278 		 */
279 		for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it)
280 			intel_context_ban(ce, NULL);
281 		i915_gem_context_unlock_engines(ctx);
282 
283 		/*
284 		 * The context has been banned, no need to keep the wakeref.
285 		 * This is safe from races because the only other place this
286 		 * is touched is context_release and we're holding a ctx ref
287 		 */
288 		if (ctx->pxp_wakeref) {
289 			intel_runtime_pm_put(&i915->runtime_pm,
290 					     ctx->pxp_wakeref);
291 			ctx->pxp_wakeref = 0;
292 		}
293 
294 		spin_lock_irq(&i915->gem.contexts.lock);
295 		list_safe_reset_next(ctx, cn, link);
296 		i915_gem_context_put(ctx);
297 	}
298 	spin_unlock_irq(&i915->gem.contexts.lock);
299 }
300