1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3 * Copyright (C) 2013 Red Hat
4 * Author: Rob Clark <robdclark@gmail.com>
5 */
6
7 #ifndef __MSM_GPU_H__
8 #define __MSM_GPU_H__
9
10 #include <linux/adreno-smmu-priv.h>
11 #include <linux/clk.h>
12 #include <linux/interconnect.h>
13 #include <linux/pm_opp.h>
14 #include <linux/regulator/consumer.h>
15
16 #include "msm_drv.h"
17 #include "msm_fence.h"
18 #include "msm_ringbuffer.h"
19 #include "msm_gem.h"
20
21 struct msm_gem_submit;
22 struct msm_gpu_perfcntr;
23 struct msm_gpu_state;
24
25 struct msm_gpu_config {
26 const char *ioname;
27 unsigned int nr_rings;
28 };
29
30 /* So far, with hardware that I've seen to date, we can have:
31 * + zero, one, or two z180 2d cores
32 * + a3xx or a2xx 3d core, which share a common CP (the firmware
33 * for the CP seems to implement some different PM4 packet types
34 * but the basics of cmdstream submission are the same)
35 *
36 * Which means that the eventual complete "class" hierarchy, once
37 * support for all past and present hw is in place, becomes:
38 * + msm_gpu
39 * + adreno_gpu
40 * + a3xx_gpu
41 * + a2xx_gpu
42 * + z180_gpu
43 */
44 struct msm_gpu_funcs {
45 int (*get_param)(struct msm_gpu *gpu, uint32_t param, uint64_t *value);
46 int (*hw_init)(struct msm_gpu *gpu);
47 int (*pm_suspend)(struct msm_gpu *gpu);
48 int (*pm_resume)(struct msm_gpu *gpu);
49 void (*submit)(struct msm_gpu *gpu, struct msm_gem_submit *submit);
50 void (*flush)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
51 irqreturn_t (*irq)(struct msm_gpu *irq);
52 struct msm_ringbuffer *(*active_ring)(struct msm_gpu *gpu);
53 void (*recover)(struct msm_gpu *gpu);
54 void (*destroy)(struct msm_gpu *gpu);
55 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
56 /* show GPU status in debugfs: */
57 void (*show)(struct msm_gpu *gpu, struct msm_gpu_state *state,
58 struct drm_printer *p);
59 /* for generation specific debugfs: */
60 void (*debugfs_init)(struct msm_gpu *gpu, struct drm_minor *minor);
61 #endif
62 unsigned long (*gpu_busy)(struct msm_gpu *gpu);
63 struct msm_gpu_state *(*gpu_state_get)(struct msm_gpu *gpu);
64 int (*gpu_state_put)(struct msm_gpu_state *state);
65 unsigned long (*gpu_get_freq)(struct msm_gpu *gpu);
66 void (*gpu_set_freq)(struct msm_gpu *gpu, struct dev_pm_opp *opp);
67 struct msm_gem_address_space *(*create_address_space)
68 (struct msm_gpu *gpu, struct platform_device *pdev);
69 struct msm_gem_address_space *(*create_private_address_space)
70 (struct msm_gpu *gpu);
71 uint32_t (*get_rptr)(struct msm_gpu *gpu, struct msm_ringbuffer *ring);
72 };
73
74 /* Additional state for iommu faults: */
75 struct msm_gpu_fault_info {
76 u64 ttbr0;
77 unsigned long iova;
78 int flags;
79 const char *type;
80 const char *block;
81 };
82
83 /**
84 * struct msm_gpu_devfreq - devfreq related state
85 */
86 struct msm_gpu_devfreq {
87 /** devfreq: devfreq instance */
88 struct devfreq *devfreq;
89
90 /**
91 * busy_cycles:
92 *
93 * Used by implementation of gpu->gpu_busy() to track the last
94 * busy counter value, for calculating elapsed busy cycles since
95 * last sampling period.
96 */
97 u64 busy_cycles;
98
99 /** time: Time of last sampling period. */
100 ktime_t time;
101
102 /** idle_time: Time of last transition to idle: */
103 ktime_t idle_time;
104
105 /**
106 * idle_freq:
107 *
108 * Shadow frequency used while the GPU is idle. From the PoV of
109 * the devfreq governor, we are continuing to sample busyness and
110 * adjust frequency while the GPU is idle, but we use this shadow
111 * value as the GPU is actually clamped to minimum frequency while
112 * it is inactive.
113 */
114 unsigned long idle_freq;
115
116 /**
117 * idle_work:
118 *
119 * Used to delay clamping to idle freq on active->idle transition.
120 */
121 struct msm_hrtimer_work idle_work;
122 };
123
124 struct msm_gpu {
125 const char *name;
126 struct drm_device *dev;
127 struct platform_device *pdev;
128 const struct msm_gpu_funcs *funcs;
129
130 struct adreno_smmu_priv adreno_smmu;
131
132 /* performance counters (hw & sw): */
133 spinlock_t perf_lock;
134 bool perfcntr_active;
135 struct {
136 bool active;
137 ktime_t time;
138 } last_sample;
139 uint32_t totaltime, activetime; /* sw counters */
140 uint32_t last_cntrs[5]; /* hw counters */
141 const struct msm_gpu_perfcntr *perfcntrs;
142 uint32_t num_perfcntrs;
143
144 struct msm_ringbuffer *rb[MSM_GPU_MAX_RINGS];
145 int nr_rings;
146
147 /*
148 * List of GEM active objects on this gpu. Protected by
149 * msm_drm_private::mm_lock
150 */
151 struct list_head active_list;
152
153 /**
154 * active_submits:
155 *
156 * The number of submitted but not yet retired submits, used to
157 * determine transitions between active and idle.
158 *
159 * Protected by lock
160 */
161 int active_submits;
162
163 /** lock: protects active_submits and idle/active transitions */
164 struct mutex active_lock;
165
166 /* does gpu need hw_init? */
167 bool needs_hw_init;
168
169 /* number of GPU hangs (for all contexts) */
170 int global_faults;
171
172 void __iomem *mmio;
173 int irq;
174
175 struct msm_gem_address_space *aspace;
176
177 /* Power Control: */
178 struct regulator *gpu_reg, *gpu_cx;
179 struct clk_bulk_data *grp_clks;
180 int nr_clocks;
181 struct clk *ebi1_clk, *core_clk, *rbbmtimer_clk;
182 uint32_t fast_rate;
183
184 /* Hang and Inactivity Detection:
185 */
186 #define DRM_MSM_INACTIVE_PERIOD 66 /* in ms (roughly four frames) */
187
188 #define DRM_MSM_HANGCHECK_DEFAULT_PERIOD 500 /* in ms */
189 struct timer_list hangcheck_timer;
190
191 /* Fault info for most recent iova fault: */
192 struct msm_gpu_fault_info fault_info;
193
194 /* work for handling GPU ioval faults: */
195 struct kthread_work fault_work;
196
197 /* work for handling GPU recovery: */
198 struct kthread_work recover_work;
199
200 /* work for handling active-list retiring: */
201 struct kthread_work retire_work;
202
203 /* worker for retire/recover: */
204 struct kthread_worker *worker;
205
206 struct drm_gem_object *memptrs_bo;
207
208 struct msm_gpu_devfreq devfreq;
209
210 uint32_t suspend_count;
211
212 struct msm_gpu_state *crashstate;
213
214 /* Enable clamping to idle freq when inactive: */
215 bool clamp_to_idle;
216
217 /* True if the hardware supports expanded apriv (a650 and newer) */
218 bool hw_apriv;
219
220 struct thermal_cooling_device *cooling;
221 };
222
dev_to_gpu(struct device * dev)223 static inline struct msm_gpu *dev_to_gpu(struct device *dev)
224 {
225 struct adreno_smmu_priv *adreno_smmu = dev_get_drvdata(dev);
226 return container_of(adreno_smmu, struct msm_gpu, adreno_smmu);
227 }
228
229 /* It turns out that all targets use the same ringbuffer size */
230 #define MSM_GPU_RINGBUFFER_SZ SZ_32K
231 #define MSM_GPU_RINGBUFFER_BLKSIZE 32
232
233 #define MSM_GPU_RB_CNTL_DEFAULT \
234 (AXXX_CP_RB_CNTL_BUFSZ(ilog2(MSM_GPU_RINGBUFFER_SZ / 8)) | \
235 AXXX_CP_RB_CNTL_BLKSZ(ilog2(MSM_GPU_RINGBUFFER_BLKSIZE / 8)))
236
msm_gpu_active(struct msm_gpu * gpu)237 static inline bool msm_gpu_active(struct msm_gpu *gpu)
238 {
239 int i;
240
241 for (i = 0; i < gpu->nr_rings; i++) {
242 struct msm_ringbuffer *ring = gpu->rb[i];
243
244 if (ring->seqno > ring->memptrs->fence)
245 return true;
246 }
247
248 return false;
249 }
250
251 /* Perf-Counters:
252 * The select_reg and select_val are just there for the benefit of the child
253 * class that actually enables the perf counter.. but msm_gpu base class
254 * will handle sampling/displaying the counters.
255 */
256
257 struct msm_gpu_perfcntr {
258 uint32_t select_reg;
259 uint32_t sample_reg;
260 uint32_t select_val;
261 const char *name;
262 };
263
264 /*
265 * The number of priority levels provided by drm gpu scheduler. The
266 * DRM_SCHED_PRIORITY_KERNEL priority level is treated specially in some
267 * cases, so we don't use it (no need for kernel generated jobs).
268 */
269 #define NR_SCHED_PRIORITIES (1 + DRM_SCHED_PRIORITY_HIGH - DRM_SCHED_PRIORITY_MIN)
270
271 /**
272 * struct msm_file_private - per-drm_file context
273 *
274 * @queuelock: synchronizes access to submitqueues list
275 * @submitqueues: list of &msm_gpu_submitqueue created by userspace
276 * @queueid: counter incremented each time a submitqueue is created,
277 * used to assign &msm_gpu_submitqueue.id
278 * @aspace: the per-process GPU address-space
279 * @ref: reference count
280 * @seqno: unique per process seqno
281 */
282 struct msm_file_private {
283 rwlock_t queuelock;
284 struct list_head submitqueues;
285 int queueid;
286 struct msm_gem_address_space *aspace;
287 struct kref ref;
288 int seqno;
289
290 /**
291 * entities:
292 *
293 * Table of per-priority-level sched entities used by submitqueues
294 * associated with this &drm_file. Because some userspace apps
295 * make assumptions about rendering from multiple gl contexts
296 * (of the same priority) within the process happening in FIFO
297 * order without requiring any fencing beyond MakeCurrent(), we
298 * create at most one &drm_sched_entity per-process per-priority-
299 * level.
300 */
301 struct drm_sched_entity *entities[NR_SCHED_PRIORITIES * MSM_GPU_MAX_RINGS];
302 };
303
304 /**
305 * msm_gpu_convert_priority - Map userspace priority to ring # and sched priority
306 *
307 * @gpu: the gpu instance
308 * @prio: the userspace priority level
309 * @ring_nr: [out] the ringbuffer the userspace priority maps to
310 * @sched_prio: [out] the gpu scheduler priority level which the userspace
311 * priority maps to
312 *
313 * With drm/scheduler providing it's own level of prioritization, our total
314 * number of available priority levels is (nr_rings * NR_SCHED_PRIORITIES).
315 * Each ring is associated with it's own scheduler instance. However, our
316 * UABI is that lower numerical values are higher priority. So mapping the
317 * single userspace priority level into ring_nr and sched_prio takes some
318 * care. The userspace provided priority (when a submitqueue is created)
319 * is mapped to ring nr and scheduler priority as such:
320 *
321 * ring_nr = userspace_prio / NR_SCHED_PRIORITIES
322 * sched_prio = NR_SCHED_PRIORITIES -
323 * (userspace_prio % NR_SCHED_PRIORITIES) - 1
324 *
325 * This allows generations without preemption (nr_rings==1) to have some
326 * amount of prioritization, and provides more priority levels for gens
327 * that do have preemption.
328 */
msm_gpu_convert_priority(struct msm_gpu * gpu,int prio,unsigned * ring_nr,enum drm_sched_priority * sched_prio)329 static inline int msm_gpu_convert_priority(struct msm_gpu *gpu, int prio,
330 unsigned *ring_nr, enum drm_sched_priority *sched_prio)
331 {
332 unsigned rn, sp;
333
334 rn = div_u64_rem(prio, NR_SCHED_PRIORITIES, &sp);
335
336 /* invert sched priority to map to higher-numeric-is-higher-
337 * priority convention
338 */
339 sp = NR_SCHED_PRIORITIES - sp - 1;
340
341 if (rn >= gpu->nr_rings)
342 return -EINVAL;
343
344 *ring_nr = rn;
345 *sched_prio = sp;
346
347 return 0;
348 }
349
350 /**
351 * struct msm_gpu_submitqueues - Userspace created context.
352 *
353 * A submitqueue is associated with a gl context or vk queue (or equiv)
354 * in userspace.
355 *
356 * @id: userspace id for the submitqueue, unique within the drm_file
357 * @flags: userspace flags for the submitqueue, specified at creation
358 * (currently unusued)
359 * @ring_nr: the ringbuffer used by this submitqueue, which is determined
360 * by the submitqueue's priority
361 * @faults: the number of GPU hangs associated with this submitqueue
362 * @last_fence: the sequence number of the last allocated fence (for error
363 * checking)
364 * @ctx: the per-drm_file context associated with the submitqueue (ie.
365 * which set of pgtables do submits jobs associated with the
366 * submitqueue use)
367 * @node: node in the context's list of submitqueues
368 * @fence_idr: maps fence-id to dma_fence for userspace visible fence
369 * seqno, protected by submitqueue lock
370 * @lock: submitqueue lock
371 * @ref: reference count
372 * @entity: the submit job-queue
373 */
374 struct msm_gpu_submitqueue {
375 int id;
376 u32 flags;
377 u32 ring_nr;
378 int faults;
379 uint32_t last_fence;
380 struct msm_file_private *ctx;
381 struct list_head node;
382 struct idr fence_idr;
383 struct mutex lock;
384 struct kref ref;
385 struct drm_sched_entity *entity;
386 };
387
388 struct msm_gpu_state_bo {
389 u64 iova;
390 size_t size;
391 void *data;
392 bool encoded;
393 };
394
395 struct msm_gpu_state {
396 struct kref ref;
397 struct timespec64 time;
398
399 struct {
400 u64 iova;
401 u32 fence;
402 u32 seqno;
403 u32 rptr;
404 u32 wptr;
405 void *data;
406 int data_size;
407 bool encoded;
408 } ring[MSM_GPU_MAX_RINGS];
409
410 int nr_registers;
411 u32 *registers;
412
413 u32 rbbm_status;
414
415 char *comm;
416 char *cmd;
417
418 struct msm_gpu_fault_info fault_info;
419
420 int nr_bos;
421 struct msm_gpu_state_bo *bos;
422 };
423
gpu_write(struct msm_gpu * gpu,u32 reg,u32 data)424 static inline void gpu_write(struct msm_gpu *gpu, u32 reg, u32 data)
425 {
426 msm_writel(data, gpu->mmio + (reg << 2));
427 }
428
gpu_read(struct msm_gpu * gpu,u32 reg)429 static inline u32 gpu_read(struct msm_gpu *gpu, u32 reg)
430 {
431 return msm_readl(gpu->mmio + (reg << 2));
432 }
433
gpu_rmw(struct msm_gpu * gpu,u32 reg,u32 mask,u32 or)434 static inline void gpu_rmw(struct msm_gpu *gpu, u32 reg, u32 mask, u32 or)
435 {
436 msm_rmw(gpu->mmio + (reg << 2), mask, or);
437 }
438
gpu_read64(struct msm_gpu * gpu,u32 lo,u32 hi)439 static inline u64 gpu_read64(struct msm_gpu *gpu, u32 lo, u32 hi)
440 {
441 u64 val;
442
443 /*
444 * Why not a readq here? Two reasons: 1) many of the LO registers are
445 * not quad word aligned and 2) the GPU hardware designers have a bit
446 * of a history of putting registers where they fit, especially in
447 * spins. The longer a GPU family goes the higher the chance that
448 * we'll get burned. We could do a series of validity checks if we
449 * wanted to, but really is a readq() that much better? Nah.
450 */
451
452 /*
453 * For some lo/hi registers (like perfcounters), the hi value is latched
454 * when the lo is read, so make sure to read the lo first to trigger
455 * that
456 */
457 val = (u64) msm_readl(gpu->mmio + (lo << 2));
458 val |= ((u64) msm_readl(gpu->mmio + (hi << 2)) << 32);
459
460 return val;
461 }
462
gpu_write64(struct msm_gpu * gpu,u32 lo,u32 hi,u64 val)463 static inline void gpu_write64(struct msm_gpu *gpu, u32 lo, u32 hi, u64 val)
464 {
465 /* Why not a writeq here? Read the screed above */
466 msm_writel(lower_32_bits(val), gpu->mmio + (lo << 2));
467 msm_writel(upper_32_bits(val), gpu->mmio + (hi << 2));
468 }
469
470 int msm_gpu_pm_suspend(struct msm_gpu *gpu);
471 int msm_gpu_pm_resume(struct msm_gpu *gpu);
472
473 int msm_submitqueue_init(struct drm_device *drm, struct msm_file_private *ctx);
474 struct msm_gpu_submitqueue *msm_submitqueue_get(struct msm_file_private *ctx,
475 u32 id);
476 int msm_submitqueue_create(struct drm_device *drm,
477 struct msm_file_private *ctx,
478 u32 prio, u32 flags, u32 *id);
479 int msm_submitqueue_query(struct drm_device *drm, struct msm_file_private *ctx,
480 struct drm_msm_submitqueue_query *args);
481 int msm_submitqueue_remove(struct msm_file_private *ctx, u32 id);
482 void msm_submitqueue_close(struct msm_file_private *ctx);
483
484 void msm_submitqueue_destroy(struct kref *kref);
485
486 void __msm_file_private_destroy(struct kref *kref);
487
msm_file_private_put(struct msm_file_private * ctx)488 static inline void msm_file_private_put(struct msm_file_private *ctx)
489 {
490 kref_put(&ctx->ref, __msm_file_private_destroy);
491 }
492
msm_file_private_get(struct msm_file_private * ctx)493 static inline struct msm_file_private *msm_file_private_get(
494 struct msm_file_private *ctx)
495 {
496 kref_get(&ctx->ref);
497 return ctx;
498 }
499
500 void msm_devfreq_init(struct msm_gpu *gpu);
501 void msm_devfreq_cleanup(struct msm_gpu *gpu);
502 void msm_devfreq_resume(struct msm_gpu *gpu);
503 void msm_devfreq_suspend(struct msm_gpu *gpu);
504 void msm_devfreq_active(struct msm_gpu *gpu);
505 void msm_devfreq_idle(struct msm_gpu *gpu);
506
507 int msm_gpu_hw_init(struct msm_gpu *gpu);
508
509 void msm_gpu_perfcntr_start(struct msm_gpu *gpu);
510 void msm_gpu_perfcntr_stop(struct msm_gpu *gpu);
511 int msm_gpu_perfcntr_sample(struct msm_gpu *gpu, uint32_t *activetime,
512 uint32_t *totaltime, uint32_t ncntrs, uint32_t *cntrs);
513
514 void msm_gpu_retire(struct msm_gpu *gpu);
515 void msm_gpu_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit);
516
517 int msm_gpu_init(struct drm_device *drm, struct platform_device *pdev,
518 struct msm_gpu *gpu, const struct msm_gpu_funcs *funcs,
519 const char *name, struct msm_gpu_config *config);
520
521 struct msm_gem_address_space *
522 msm_gpu_create_private_address_space(struct msm_gpu *gpu, struct task_struct *task);
523
524 void msm_gpu_cleanup(struct msm_gpu *gpu);
525
526 struct msm_gpu *adreno_load_gpu(struct drm_device *dev);
527 void __init adreno_register(void);
528 void __exit adreno_unregister(void);
529
msm_submitqueue_put(struct msm_gpu_submitqueue * queue)530 static inline void msm_submitqueue_put(struct msm_gpu_submitqueue *queue)
531 {
532 if (queue)
533 kref_put(&queue->ref, msm_submitqueue_destroy);
534 }
535
msm_gpu_crashstate_get(struct msm_gpu * gpu)536 static inline struct msm_gpu_state *msm_gpu_crashstate_get(struct msm_gpu *gpu)
537 {
538 struct msm_gpu_state *state = NULL;
539
540 mutex_lock(&gpu->dev->struct_mutex);
541
542 if (gpu->crashstate) {
543 kref_get(&gpu->crashstate->ref);
544 state = gpu->crashstate;
545 }
546
547 mutex_unlock(&gpu->dev->struct_mutex);
548
549 return state;
550 }
551
msm_gpu_crashstate_put(struct msm_gpu * gpu)552 static inline void msm_gpu_crashstate_put(struct msm_gpu *gpu)
553 {
554 mutex_lock(&gpu->dev->struct_mutex);
555
556 if (gpu->crashstate) {
557 if (gpu->funcs->gpu_state_put(gpu->crashstate))
558 gpu->crashstate = NULL;
559 }
560
561 mutex_unlock(&gpu->dev->struct_mutex);
562 }
563
564 /*
565 * Simple macro to semi-cleanly add the MAP_PRIV flag for targets that can
566 * support expanded privileges
567 */
568 #define check_apriv(gpu, flags) \
569 (((gpu)->hw_apriv ? MSM_BO_MAP_PRIV : 0) | (flags))
570
571
572 #endif /* __MSM_GPU_H__ */
573