1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Driver for SMM665 Power Controller / Monitor
4  *
5  * Copyright (C) 2010 Ericsson AB.
6  *
7  * This driver should also work for SMM465, SMM764, and SMM766, but is untested
8  * for those chips. Only monitoring functionality is implemented.
9  *
10  * Datasheets:
11  * http://www.summitmicro.com/prod_select/summary/SMM665/SMM665B_2089_20.pdf
12  * http://www.summitmicro.com/prod_select/summary/SMM766B/SMM766B_2122.pdf
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/init.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/i2c.h>
21 #include <linux/hwmon.h>
22 #include <linux/hwmon-sysfs.h>
23 #include <linux/delay.h>
24 #include <linux/jiffies.h>
25 
26 /* Internal reference voltage (VREF, x 1000 */
27 #define SMM665_VREF_ADC_X1000	1250
28 
29 /* module parameters */
30 static int vref = SMM665_VREF_ADC_X1000;
31 module_param(vref, int, 0);
32 MODULE_PARM_DESC(vref, "Reference voltage in mV");
33 
34 enum chips { smm465, smm665, smm665c, smm764, smm766 };
35 
36 /*
37  * ADC channel addresses
38  */
39 #define	SMM665_MISC16_ADC_DATA_A	0x00
40 #define	SMM665_MISC16_ADC_DATA_B	0x01
41 #define	SMM665_MISC16_ADC_DATA_C	0x02
42 #define	SMM665_MISC16_ADC_DATA_D	0x03
43 #define	SMM665_MISC16_ADC_DATA_E	0x04
44 #define	SMM665_MISC16_ADC_DATA_F	0x05
45 #define	SMM665_MISC16_ADC_DATA_VDD	0x06
46 #define	SMM665_MISC16_ADC_DATA_12V	0x07
47 #define	SMM665_MISC16_ADC_DATA_INT_TEMP	0x08
48 #define	SMM665_MISC16_ADC_DATA_AIN1	0x09
49 #define	SMM665_MISC16_ADC_DATA_AIN2	0x0a
50 
51 /*
52  * Command registers
53  */
54 #define	SMM665_MISC8_CMD_STS		0x80
55 #define	SMM665_MISC8_STATUS1		0x81
56 #define	SMM665_MISC8_STATUSS2		0x82
57 #define	SMM665_MISC8_IO_POLARITY	0x83
58 #define	SMM665_MISC8_PUP_POLARITY	0x84
59 #define	SMM665_MISC8_ADOC_STATUS1	0x85
60 #define	SMM665_MISC8_ADOC_STATUS2	0x86
61 #define	SMM665_MISC8_WRITE_PROT		0x87
62 #define	SMM665_MISC8_STS_TRACK		0x88
63 
64 /*
65  * Configuration registers and register groups
66  */
67 #define SMM665_ADOC_ENABLE		0x0d
68 #define SMM665_LIMIT_BASE		0x80	/* First limit register */
69 
70 /*
71  * Limit register bit masks
72  */
73 #define SMM665_TRIGGER_RST		0x8000
74 #define SMM665_TRIGGER_HEALTHY		0x4000
75 #define SMM665_TRIGGER_POWEROFF		0x2000
76 #define SMM665_TRIGGER_SHUTDOWN		0x1000
77 #define SMM665_ADC_MASK			0x03ff
78 
79 #define smm665_is_critical(lim)	((lim) & (SMM665_TRIGGER_RST \
80 					| SMM665_TRIGGER_POWEROFF \
81 					| SMM665_TRIGGER_SHUTDOWN))
82 /*
83  * Fault register bit definitions
84  * Values are merged from status registers 1/2,
85  * with status register 1 providing the upper 8 bits.
86  */
87 #define SMM665_FAULT_A		0x0001
88 #define SMM665_FAULT_B		0x0002
89 #define SMM665_FAULT_C		0x0004
90 #define SMM665_FAULT_D		0x0008
91 #define SMM665_FAULT_E		0x0010
92 #define SMM665_FAULT_F		0x0020
93 #define SMM665_FAULT_VDD	0x0040
94 #define SMM665_FAULT_12V	0x0080
95 #define SMM665_FAULT_TEMP	0x0100
96 #define SMM665_FAULT_AIN1	0x0200
97 #define SMM665_FAULT_AIN2	0x0400
98 
99 /*
100  * I2C Register addresses
101  *
102  * The configuration register needs to be the configured base register.
103  * The command/status register address is derived from it.
104  */
105 #define SMM665_REGMASK		0x78
106 #define SMM665_CMDREG_BASE	0x48
107 #define SMM665_CONFREG_BASE	0x50
108 
109 /*
110  *  Equations given by chip manufacturer to calculate voltage/temperature values
111  *  vref = Reference voltage on VREF_ADC pin (module parameter)
112  *  adc  = 10bit ADC value read back from registers
113  */
114 
115 /* Voltage A-F and VDD */
116 #define SMM665_VMON_ADC_TO_VOLTS(adc)  ((adc) * vref / 256)
117 
118 /* Voltage 12VIN */
119 #define SMM665_12VIN_ADC_TO_VOLTS(adc) ((adc) * vref * 3 / 256)
120 
121 /* Voltage AIN1, AIN2 */
122 #define SMM665_AIN_ADC_TO_VOLTS(adc)   ((adc) * vref / 512)
123 
124 /* Temp Sensor */
125 #define SMM665_TEMP_ADC_TO_CELSIUS(adc) (((adc) <= 511) ?		   \
126 					 ((int)(adc) * 1000 / 4) :	   \
127 					 (((int)(adc) - 0x400) * 1000 / 4))
128 
129 #define SMM665_NUM_ADC		11
130 
131 /*
132  * Chip dependent ADC conversion time, in uS
133  */
134 #define SMM665_ADC_WAIT_SMM665	70
135 #define SMM665_ADC_WAIT_SMM766	185
136 
137 struct smm665_data {
138 	enum chips type;
139 	int conversion_time;		/* ADC conversion time */
140 	struct i2c_client *client;
141 	struct mutex update_lock;
142 	bool valid;
143 	unsigned long last_updated;	/* in jiffies */
144 	u16 adc[SMM665_NUM_ADC];	/* adc values (raw) */
145 	u16 faults;			/* fault status */
146 	/* The following values are in mV */
147 	int critical_min_limit[SMM665_NUM_ADC];
148 	int alarm_min_limit[SMM665_NUM_ADC];
149 	int critical_max_limit[SMM665_NUM_ADC];
150 	int alarm_max_limit[SMM665_NUM_ADC];
151 	struct i2c_client *cmdreg;
152 };
153 
154 /*
155  * smm665_read16()
156  *
157  * Read 16 bit value from <reg>, <reg+1>. Upper 8 bits are in <reg>.
158  */
smm665_read16(struct i2c_client * client,int reg)159 static int smm665_read16(struct i2c_client *client, int reg)
160 {
161 	int rv, val;
162 
163 	rv = i2c_smbus_read_byte_data(client, reg);
164 	if (rv < 0)
165 		return rv;
166 	val = rv << 8;
167 	rv = i2c_smbus_read_byte_data(client, reg + 1);
168 	if (rv < 0)
169 		return rv;
170 	val |= rv;
171 	return val;
172 }
173 
174 /*
175  * Read adc value.
176  */
smm665_read_adc(struct smm665_data * data,int adc)177 static int smm665_read_adc(struct smm665_data *data, int adc)
178 {
179 	struct i2c_client *client = data->cmdreg;
180 	int rv;
181 	int radc;
182 
183 	/*
184 	 * Algorithm for reading ADC, per SMM665 datasheet
185 	 *
186 	 *  {[S][addr][W][Ack]} {[offset][Ack]} {[S][addr][R][Nack]}
187 	 * [wait conversion time]
188 	 *  {[S][addr][R][Ack]} {[datahi][Ack]} {[datalo][Ack][P]}
189 	 *
190 	 * To implement the first part of this exchange,
191 	 * do a full read transaction and expect a failure/Nack.
192 	 * This sets up the address pointer on the SMM665
193 	 * and starts the ADC conversion.
194 	 * Then do a two-byte read transaction.
195 	 */
196 	rv = i2c_smbus_read_byte_data(client, adc << 3);
197 	if (rv != -ENXIO) {
198 		/*
199 		 * We expect ENXIO to reflect NACK
200 		 * (per Documentation/i2c/fault-codes.rst).
201 		 * Everything else is an error.
202 		 */
203 		dev_dbg(&client->dev,
204 			"Unexpected return code %d when setting ADC index", rv);
205 		return (rv < 0) ? rv : -EIO;
206 	}
207 
208 	udelay(data->conversion_time);
209 
210 	/*
211 	 * Now read two bytes.
212 	 *
213 	 * Neither i2c_smbus_read_byte() nor
214 	 * i2c_smbus_read_block_data() worked here,
215 	 * so use i2c_smbus_read_word_swapped() instead.
216 	 * We could also try to use i2c_master_recv(),
217 	 * but that is not always supported.
218 	 */
219 	rv = i2c_smbus_read_word_swapped(client, 0);
220 	if (rv < 0) {
221 		dev_dbg(&client->dev, "Failed to read ADC value: error %d", rv);
222 		return rv;
223 	}
224 	/*
225 	 * Validate/verify readback adc channel (in bit 11..14).
226 	 */
227 	radc = (rv >> 11) & 0x0f;
228 	if (radc != adc) {
229 		dev_dbg(&client->dev, "Unexpected RADC: Expected %d got %d",
230 			adc, radc);
231 		return -EIO;
232 	}
233 
234 	return rv & SMM665_ADC_MASK;
235 }
236 
smm665_update_device(struct device * dev)237 static struct smm665_data *smm665_update_device(struct device *dev)
238 {
239 	struct smm665_data *data = dev_get_drvdata(dev);
240 	struct i2c_client *client = data->client;
241 	struct smm665_data *ret = data;
242 
243 	mutex_lock(&data->update_lock);
244 
245 	if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
246 		int i, val;
247 
248 		/*
249 		 * read status registers
250 		 */
251 		val = smm665_read16(client, SMM665_MISC8_STATUS1);
252 		if (unlikely(val < 0)) {
253 			ret = ERR_PTR(val);
254 			goto abort;
255 		}
256 		data->faults = val;
257 
258 		/* Read adc registers */
259 		for (i = 0; i < SMM665_NUM_ADC; i++) {
260 			val = smm665_read_adc(data, i);
261 			if (unlikely(val < 0)) {
262 				ret = ERR_PTR(val);
263 				goto abort;
264 			}
265 			data->adc[i] = val;
266 		}
267 		data->last_updated = jiffies;
268 		data->valid = true;
269 	}
270 abort:
271 	mutex_unlock(&data->update_lock);
272 	return ret;
273 }
274 
275 /* Return converted value from given adc */
smm665_convert(u16 adcval,int index)276 static int smm665_convert(u16 adcval, int index)
277 {
278 	int val = 0;
279 
280 	switch (index) {
281 	case SMM665_MISC16_ADC_DATA_12V:
282 		val = SMM665_12VIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
283 		break;
284 
285 	case SMM665_MISC16_ADC_DATA_VDD:
286 	case SMM665_MISC16_ADC_DATA_A:
287 	case SMM665_MISC16_ADC_DATA_B:
288 	case SMM665_MISC16_ADC_DATA_C:
289 	case SMM665_MISC16_ADC_DATA_D:
290 	case SMM665_MISC16_ADC_DATA_E:
291 	case SMM665_MISC16_ADC_DATA_F:
292 		val = SMM665_VMON_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
293 		break;
294 
295 	case SMM665_MISC16_ADC_DATA_AIN1:
296 	case SMM665_MISC16_ADC_DATA_AIN2:
297 		val = SMM665_AIN_ADC_TO_VOLTS(adcval & SMM665_ADC_MASK);
298 		break;
299 
300 	case SMM665_MISC16_ADC_DATA_INT_TEMP:
301 		val = SMM665_TEMP_ADC_TO_CELSIUS(adcval & SMM665_ADC_MASK);
302 		break;
303 
304 	default:
305 		/* If we get here, the developer messed up */
306 		WARN_ON_ONCE(1);
307 		break;
308 	}
309 
310 	return val;
311 }
312 
smm665_get_min(struct device * dev,int index)313 static int smm665_get_min(struct device *dev, int index)
314 {
315 	struct smm665_data *data = dev_get_drvdata(dev);
316 
317 	return data->alarm_min_limit[index];
318 }
319 
smm665_get_max(struct device * dev,int index)320 static int smm665_get_max(struct device *dev, int index)
321 {
322 	struct smm665_data *data = dev_get_drvdata(dev);
323 
324 	return data->alarm_max_limit[index];
325 }
326 
smm665_get_lcrit(struct device * dev,int index)327 static int smm665_get_lcrit(struct device *dev, int index)
328 {
329 	struct smm665_data *data = dev_get_drvdata(dev);
330 
331 	return data->critical_min_limit[index];
332 }
333 
smm665_get_crit(struct device * dev,int index)334 static int smm665_get_crit(struct device *dev, int index)
335 {
336 	struct smm665_data *data = dev_get_drvdata(dev);
337 
338 	return data->critical_max_limit[index];
339 }
340 
smm665_show_crit_alarm(struct device * dev,struct device_attribute * da,char * buf)341 static ssize_t smm665_show_crit_alarm(struct device *dev,
342 				      struct device_attribute *da, char *buf)
343 {
344 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
345 	struct smm665_data *data = smm665_update_device(dev);
346 	int val = 0;
347 
348 	if (IS_ERR(data))
349 		return PTR_ERR(data);
350 
351 	if (data->faults & (1 << attr->index))
352 		val = 1;
353 
354 	return sysfs_emit(buf, "%d\n", val);
355 }
356 
smm665_show_input(struct device * dev,struct device_attribute * da,char * buf)357 static ssize_t smm665_show_input(struct device *dev,
358 				 struct device_attribute *da, char *buf)
359 {
360 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da);
361 	struct smm665_data *data = smm665_update_device(dev);
362 	int adc = attr->index;
363 	int val;
364 
365 	if (IS_ERR(data))
366 		return PTR_ERR(data);
367 
368 	val = smm665_convert(data->adc[adc], adc);
369 	return sysfs_emit(buf, "%d\n", val);
370 }
371 
372 #define SMM665_SHOW(what) \
373 static ssize_t smm665_show_##what(struct device *dev, \
374 				    struct device_attribute *da, char *buf) \
375 { \
376 	struct sensor_device_attribute *attr = to_sensor_dev_attr(da); \
377 	const int val = smm665_get_##what(dev, attr->index); \
378 	return snprintf(buf, PAGE_SIZE, "%d\n", val); \
379 }
380 
381 SMM665_SHOW(min);
382 SMM665_SHOW(max);
383 SMM665_SHOW(lcrit);
384 SMM665_SHOW(crit);
385 
386 /*
387  * These macros are used below in constructing device attribute objects
388  * for use with sysfs_create_group() to make a sysfs device file
389  * for each register.
390  */
391 
392 #define SMM665_ATTR(name, type, cmd_idx) \
393 	static SENSOR_DEVICE_ATTR(name##_##type, S_IRUGO, \
394 				  smm665_show_##type, NULL, cmd_idx)
395 
396 /* Construct a sensor_device_attribute structure for each register */
397 
398 /* Input voltages */
399 SMM665_ATTR(in1, input, SMM665_MISC16_ADC_DATA_12V);
400 SMM665_ATTR(in2, input, SMM665_MISC16_ADC_DATA_VDD);
401 SMM665_ATTR(in3, input, SMM665_MISC16_ADC_DATA_A);
402 SMM665_ATTR(in4, input, SMM665_MISC16_ADC_DATA_B);
403 SMM665_ATTR(in5, input, SMM665_MISC16_ADC_DATA_C);
404 SMM665_ATTR(in6, input, SMM665_MISC16_ADC_DATA_D);
405 SMM665_ATTR(in7, input, SMM665_MISC16_ADC_DATA_E);
406 SMM665_ATTR(in8, input, SMM665_MISC16_ADC_DATA_F);
407 SMM665_ATTR(in9, input, SMM665_MISC16_ADC_DATA_AIN1);
408 SMM665_ATTR(in10, input, SMM665_MISC16_ADC_DATA_AIN2);
409 
410 /* Input voltages min */
411 SMM665_ATTR(in1, min, SMM665_MISC16_ADC_DATA_12V);
412 SMM665_ATTR(in2, min, SMM665_MISC16_ADC_DATA_VDD);
413 SMM665_ATTR(in3, min, SMM665_MISC16_ADC_DATA_A);
414 SMM665_ATTR(in4, min, SMM665_MISC16_ADC_DATA_B);
415 SMM665_ATTR(in5, min, SMM665_MISC16_ADC_DATA_C);
416 SMM665_ATTR(in6, min, SMM665_MISC16_ADC_DATA_D);
417 SMM665_ATTR(in7, min, SMM665_MISC16_ADC_DATA_E);
418 SMM665_ATTR(in8, min, SMM665_MISC16_ADC_DATA_F);
419 SMM665_ATTR(in9, min, SMM665_MISC16_ADC_DATA_AIN1);
420 SMM665_ATTR(in10, min, SMM665_MISC16_ADC_DATA_AIN2);
421 
422 /* Input voltages max */
423 SMM665_ATTR(in1, max, SMM665_MISC16_ADC_DATA_12V);
424 SMM665_ATTR(in2, max, SMM665_MISC16_ADC_DATA_VDD);
425 SMM665_ATTR(in3, max, SMM665_MISC16_ADC_DATA_A);
426 SMM665_ATTR(in4, max, SMM665_MISC16_ADC_DATA_B);
427 SMM665_ATTR(in5, max, SMM665_MISC16_ADC_DATA_C);
428 SMM665_ATTR(in6, max, SMM665_MISC16_ADC_DATA_D);
429 SMM665_ATTR(in7, max, SMM665_MISC16_ADC_DATA_E);
430 SMM665_ATTR(in8, max, SMM665_MISC16_ADC_DATA_F);
431 SMM665_ATTR(in9, max, SMM665_MISC16_ADC_DATA_AIN1);
432 SMM665_ATTR(in10, max, SMM665_MISC16_ADC_DATA_AIN2);
433 
434 /* Input voltages lcrit */
435 SMM665_ATTR(in1, lcrit, SMM665_MISC16_ADC_DATA_12V);
436 SMM665_ATTR(in2, lcrit, SMM665_MISC16_ADC_DATA_VDD);
437 SMM665_ATTR(in3, lcrit, SMM665_MISC16_ADC_DATA_A);
438 SMM665_ATTR(in4, lcrit, SMM665_MISC16_ADC_DATA_B);
439 SMM665_ATTR(in5, lcrit, SMM665_MISC16_ADC_DATA_C);
440 SMM665_ATTR(in6, lcrit, SMM665_MISC16_ADC_DATA_D);
441 SMM665_ATTR(in7, lcrit, SMM665_MISC16_ADC_DATA_E);
442 SMM665_ATTR(in8, lcrit, SMM665_MISC16_ADC_DATA_F);
443 SMM665_ATTR(in9, lcrit, SMM665_MISC16_ADC_DATA_AIN1);
444 SMM665_ATTR(in10, lcrit, SMM665_MISC16_ADC_DATA_AIN2);
445 
446 /* Input voltages crit */
447 SMM665_ATTR(in1, crit, SMM665_MISC16_ADC_DATA_12V);
448 SMM665_ATTR(in2, crit, SMM665_MISC16_ADC_DATA_VDD);
449 SMM665_ATTR(in3, crit, SMM665_MISC16_ADC_DATA_A);
450 SMM665_ATTR(in4, crit, SMM665_MISC16_ADC_DATA_B);
451 SMM665_ATTR(in5, crit, SMM665_MISC16_ADC_DATA_C);
452 SMM665_ATTR(in6, crit, SMM665_MISC16_ADC_DATA_D);
453 SMM665_ATTR(in7, crit, SMM665_MISC16_ADC_DATA_E);
454 SMM665_ATTR(in8, crit, SMM665_MISC16_ADC_DATA_F);
455 SMM665_ATTR(in9, crit, SMM665_MISC16_ADC_DATA_AIN1);
456 SMM665_ATTR(in10, crit, SMM665_MISC16_ADC_DATA_AIN2);
457 
458 /* critical alarms */
459 SMM665_ATTR(in1, crit_alarm, SMM665_FAULT_12V);
460 SMM665_ATTR(in2, crit_alarm, SMM665_FAULT_VDD);
461 SMM665_ATTR(in3, crit_alarm, SMM665_FAULT_A);
462 SMM665_ATTR(in4, crit_alarm, SMM665_FAULT_B);
463 SMM665_ATTR(in5, crit_alarm, SMM665_FAULT_C);
464 SMM665_ATTR(in6, crit_alarm, SMM665_FAULT_D);
465 SMM665_ATTR(in7, crit_alarm, SMM665_FAULT_E);
466 SMM665_ATTR(in8, crit_alarm, SMM665_FAULT_F);
467 SMM665_ATTR(in9, crit_alarm, SMM665_FAULT_AIN1);
468 SMM665_ATTR(in10, crit_alarm, SMM665_FAULT_AIN2);
469 
470 /* Temperature */
471 SMM665_ATTR(temp1, input, SMM665_MISC16_ADC_DATA_INT_TEMP);
472 SMM665_ATTR(temp1, min, SMM665_MISC16_ADC_DATA_INT_TEMP);
473 SMM665_ATTR(temp1, max, SMM665_MISC16_ADC_DATA_INT_TEMP);
474 SMM665_ATTR(temp1, lcrit, SMM665_MISC16_ADC_DATA_INT_TEMP);
475 SMM665_ATTR(temp1, crit, SMM665_MISC16_ADC_DATA_INT_TEMP);
476 SMM665_ATTR(temp1, crit_alarm, SMM665_FAULT_TEMP);
477 
478 /*
479  * Finally, construct an array of pointers to members of the above objects,
480  * as required for sysfs_create_group()
481  */
482 static struct attribute *smm665_attrs[] = {
483 	&sensor_dev_attr_in1_input.dev_attr.attr,
484 	&sensor_dev_attr_in1_min.dev_attr.attr,
485 	&sensor_dev_attr_in1_max.dev_attr.attr,
486 	&sensor_dev_attr_in1_lcrit.dev_attr.attr,
487 	&sensor_dev_attr_in1_crit.dev_attr.attr,
488 	&sensor_dev_attr_in1_crit_alarm.dev_attr.attr,
489 
490 	&sensor_dev_attr_in2_input.dev_attr.attr,
491 	&sensor_dev_attr_in2_min.dev_attr.attr,
492 	&sensor_dev_attr_in2_max.dev_attr.attr,
493 	&sensor_dev_attr_in2_lcrit.dev_attr.attr,
494 	&sensor_dev_attr_in2_crit.dev_attr.attr,
495 	&sensor_dev_attr_in2_crit_alarm.dev_attr.attr,
496 
497 	&sensor_dev_attr_in3_input.dev_attr.attr,
498 	&sensor_dev_attr_in3_min.dev_attr.attr,
499 	&sensor_dev_attr_in3_max.dev_attr.attr,
500 	&sensor_dev_attr_in3_lcrit.dev_attr.attr,
501 	&sensor_dev_attr_in3_crit.dev_attr.attr,
502 	&sensor_dev_attr_in3_crit_alarm.dev_attr.attr,
503 
504 	&sensor_dev_attr_in4_input.dev_attr.attr,
505 	&sensor_dev_attr_in4_min.dev_attr.attr,
506 	&sensor_dev_attr_in4_max.dev_attr.attr,
507 	&sensor_dev_attr_in4_lcrit.dev_attr.attr,
508 	&sensor_dev_attr_in4_crit.dev_attr.attr,
509 	&sensor_dev_attr_in4_crit_alarm.dev_attr.attr,
510 
511 	&sensor_dev_attr_in5_input.dev_attr.attr,
512 	&sensor_dev_attr_in5_min.dev_attr.attr,
513 	&sensor_dev_attr_in5_max.dev_attr.attr,
514 	&sensor_dev_attr_in5_lcrit.dev_attr.attr,
515 	&sensor_dev_attr_in5_crit.dev_attr.attr,
516 	&sensor_dev_attr_in5_crit_alarm.dev_attr.attr,
517 
518 	&sensor_dev_attr_in6_input.dev_attr.attr,
519 	&sensor_dev_attr_in6_min.dev_attr.attr,
520 	&sensor_dev_attr_in6_max.dev_attr.attr,
521 	&sensor_dev_attr_in6_lcrit.dev_attr.attr,
522 	&sensor_dev_attr_in6_crit.dev_attr.attr,
523 	&sensor_dev_attr_in6_crit_alarm.dev_attr.attr,
524 
525 	&sensor_dev_attr_in7_input.dev_attr.attr,
526 	&sensor_dev_attr_in7_min.dev_attr.attr,
527 	&sensor_dev_attr_in7_max.dev_attr.attr,
528 	&sensor_dev_attr_in7_lcrit.dev_attr.attr,
529 	&sensor_dev_attr_in7_crit.dev_attr.attr,
530 	&sensor_dev_attr_in7_crit_alarm.dev_attr.attr,
531 
532 	&sensor_dev_attr_in8_input.dev_attr.attr,
533 	&sensor_dev_attr_in8_min.dev_attr.attr,
534 	&sensor_dev_attr_in8_max.dev_attr.attr,
535 	&sensor_dev_attr_in8_lcrit.dev_attr.attr,
536 	&sensor_dev_attr_in8_crit.dev_attr.attr,
537 	&sensor_dev_attr_in8_crit_alarm.dev_attr.attr,
538 
539 	&sensor_dev_attr_in9_input.dev_attr.attr,
540 	&sensor_dev_attr_in9_min.dev_attr.attr,
541 	&sensor_dev_attr_in9_max.dev_attr.attr,
542 	&sensor_dev_attr_in9_lcrit.dev_attr.attr,
543 	&sensor_dev_attr_in9_crit.dev_attr.attr,
544 	&sensor_dev_attr_in9_crit_alarm.dev_attr.attr,
545 
546 	&sensor_dev_attr_in10_input.dev_attr.attr,
547 	&sensor_dev_attr_in10_min.dev_attr.attr,
548 	&sensor_dev_attr_in10_max.dev_attr.attr,
549 	&sensor_dev_attr_in10_lcrit.dev_attr.attr,
550 	&sensor_dev_attr_in10_crit.dev_attr.attr,
551 	&sensor_dev_attr_in10_crit_alarm.dev_attr.attr,
552 
553 	&sensor_dev_attr_temp1_input.dev_attr.attr,
554 	&sensor_dev_attr_temp1_min.dev_attr.attr,
555 	&sensor_dev_attr_temp1_max.dev_attr.attr,
556 	&sensor_dev_attr_temp1_lcrit.dev_attr.attr,
557 	&sensor_dev_attr_temp1_crit.dev_attr.attr,
558 	&sensor_dev_attr_temp1_crit_alarm.dev_attr.attr,
559 
560 	NULL,
561 };
562 
563 ATTRIBUTE_GROUPS(smm665);
564 
565 static const struct i2c_device_id smm665_id[];
566 
smm665_probe(struct i2c_client * client)567 static int smm665_probe(struct i2c_client *client)
568 {
569 	struct i2c_adapter *adapter = client->adapter;
570 	struct smm665_data *data;
571 	struct device *hwmon_dev;
572 	int i, ret;
573 
574 	if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA
575 				     | I2C_FUNC_SMBUS_WORD_DATA))
576 		return -ENODEV;
577 
578 	if (i2c_smbus_read_byte_data(client, SMM665_ADOC_ENABLE) < 0)
579 		return -ENODEV;
580 
581 	data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
582 	if (!data)
583 		return -ENOMEM;
584 
585 	i2c_set_clientdata(client, data);
586 	mutex_init(&data->update_lock);
587 
588 	data->client = client;
589 	data->type = i2c_match_id(smm665_id, client)->driver_data;
590 	data->cmdreg = i2c_new_dummy_device(adapter, (client->addr & ~SMM665_REGMASK)
591 				     | SMM665_CMDREG_BASE);
592 	if (IS_ERR(data->cmdreg))
593 		return PTR_ERR(data->cmdreg);
594 
595 	switch (data->type) {
596 	case smm465:
597 	case smm665:
598 		data->conversion_time = SMM665_ADC_WAIT_SMM665;
599 		break;
600 	case smm665c:
601 	case smm764:
602 	case smm766:
603 		data->conversion_time = SMM665_ADC_WAIT_SMM766;
604 		break;
605 	}
606 
607 	ret = -ENODEV;
608 	if (i2c_smbus_read_byte_data(data->cmdreg, SMM665_MISC8_CMD_STS) < 0)
609 		goto out_unregister;
610 
611 	/*
612 	 * Read limits.
613 	 *
614 	 * Limit registers start with register SMM665_LIMIT_BASE.
615 	 * Each channel uses 8 registers, providing four limit values
616 	 * per channel. Each limit value requires two registers, with the
617 	 * high byte in the first register and the low byte in the second
618 	 * register. The first two limits are under limit values, followed
619 	 * by two over limit values.
620 	 *
621 	 * Limit register order matches the ADC register order, so we use
622 	 * ADC register defines throughout the code to index limit registers.
623 	 *
624 	 * We save the first retrieved value both as "critical" and "alarm"
625 	 * value. The second value overwrites either the critical or the
626 	 * alarm value, depending on its configuration. This ensures that both
627 	 * critical and alarm values are initialized, even if both registers are
628 	 * configured as critical or non-critical.
629 	 */
630 	for (i = 0; i < SMM665_NUM_ADC; i++) {
631 		int val;
632 
633 		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8);
634 		if (unlikely(val < 0))
635 			goto out_unregister;
636 		data->critical_min_limit[i] = data->alarm_min_limit[i]
637 		  = smm665_convert(val, i);
638 		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 2);
639 		if (unlikely(val < 0))
640 			goto out_unregister;
641 		if (smm665_is_critical(val))
642 			data->critical_min_limit[i] = smm665_convert(val, i);
643 		else
644 			data->alarm_min_limit[i] = smm665_convert(val, i);
645 		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 4);
646 		if (unlikely(val < 0))
647 			goto out_unregister;
648 		data->critical_max_limit[i] = data->alarm_max_limit[i]
649 		  = smm665_convert(val, i);
650 		val = smm665_read16(client, SMM665_LIMIT_BASE + i * 8 + 6);
651 		if (unlikely(val < 0))
652 			goto out_unregister;
653 		if (smm665_is_critical(val))
654 			data->critical_max_limit[i] = smm665_convert(val, i);
655 		else
656 			data->alarm_max_limit[i] = smm665_convert(val, i);
657 	}
658 
659 	hwmon_dev = devm_hwmon_device_register_with_groups(&client->dev,
660 							   client->name, data,
661 							   smm665_groups);
662 	if (IS_ERR(hwmon_dev)) {
663 		ret = PTR_ERR(hwmon_dev);
664 		goto out_unregister;
665 	}
666 
667 	return 0;
668 
669 out_unregister:
670 	i2c_unregister_device(data->cmdreg);
671 	return ret;
672 }
673 
smm665_remove(struct i2c_client * client)674 static int smm665_remove(struct i2c_client *client)
675 {
676 	struct smm665_data *data = i2c_get_clientdata(client);
677 
678 	i2c_unregister_device(data->cmdreg);
679 	return 0;
680 }
681 
682 static const struct i2c_device_id smm665_id[] = {
683 	{"smm465", smm465},
684 	{"smm665", smm665},
685 	{"smm665c", smm665c},
686 	{"smm764", smm764},
687 	{"smm766", smm766},
688 	{}
689 };
690 
691 MODULE_DEVICE_TABLE(i2c, smm665_id);
692 
693 /* This is the driver that will be inserted */
694 static struct i2c_driver smm665_driver = {
695 	.driver = {
696 		   .name = "smm665",
697 		   },
698 	.probe_new = smm665_probe,
699 	.remove = smm665_remove,
700 	.id_table = smm665_id,
701 };
702 
703 module_i2c_driver(smm665_driver);
704 
705 MODULE_AUTHOR("Guenter Roeck");
706 MODULE_DESCRIPTION("SMM665 driver");
707 MODULE_LICENSE("GPL");
708