1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * AD7887 SPI ADC driver
4  *
5  * Copyright 2010-2011 Analog Devices Inc.
6  */
7 
8 #include <linux/device.h>
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/sysfs.h>
12 #include <linux/spi/spi.h>
13 #include <linux/regulator/consumer.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/buffer.h>
22 
23 #include <linux/iio/trigger_consumer.h>
24 #include <linux/iio/triggered_buffer.h>
25 
26 #include <linux/platform_data/ad7887.h>
27 
28 #define AD7887_REF_DIS		BIT(5)	/* on-chip reference disable */
29 #define AD7887_DUAL		BIT(4)	/* dual-channel mode */
30 #define AD7887_CH_AIN1		BIT(3)	/* convert on channel 1, DUAL=1 */
31 #define AD7887_CH_AIN0		0	/* convert on channel 0, DUAL=0,1 */
32 #define AD7887_PM_MODE1		0	/* CS based shutdown */
33 #define AD7887_PM_MODE2		1	/* full on */
34 #define AD7887_PM_MODE3		2	/* auto shutdown after conversion */
35 #define AD7887_PM_MODE4		3	/* standby mode */
36 
37 enum ad7887_channels {
38 	AD7887_CH0,
39 	AD7887_CH0_CH1,
40 	AD7887_CH1,
41 };
42 
43 /**
44  * struct ad7887_chip_info - chip specifc information
45  * @int_vref_mv:	the internal reference voltage
46  * @channels:		channels specification
47  * @num_channels:	number of channels
48  * @dual_channels:	channels specification in dual mode
49  * @num_dual_channels:	number of channels in dual mode
50  */
51 struct ad7887_chip_info {
52 	u16				int_vref_mv;
53 	const struct iio_chan_spec	*channels;
54 	unsigned int			num_channels;
55 	const struct iio_chan_spec	*dual_channels;
56 	unsigned int			num_dual_channels;
57 };
58 
59 struct ad7887_state {
60 	struct spi_device		*spi;
61 	const struct ad7887_chip_info	*chip_info;
62 	struct regulator		*reg;
63 	struct spi_transfer		xfer[4];
64 	struct spi_message		msg[3];
65 	struct spi_message		*ring_msg;
66 	unsigned char			tx_cmd_buf[4];
67 
68 	/*
69 	 * DMA (thus cache coherency maintenance) requires the
70 	 * transfer buffers to live in their own cache lines.
71 	 * Buffer needs to be large enough to hold two 16 bit samples and a
72 	 * 64 bit aligned 64 bit timestamp.
73 	 */
74 	unsigned char data[ALIGN(4, sizeof(s64)) + sizeof(s64)]
75 		____cacheline_aligned;
76 };
77 
78 enum ad7887_supported_device_ids {
79 	ID_AD7887
80 };
81 
ad7887_ring_preenable(struct iio_dev * indio_dev)82 static int ad7887_ring_preenable(struct iio_dev *indio_dev)
83 {
84 	struct ad7887_state *st = iio_priv(indio_dev);
85 
86 	/* We know this is a single long so can 'cheat' */
87 	switch (*indio_dev->active_scan_mask) {
88 	case (1 << 0):
89 		st->ring_msg = &st->msg[AD7887_CH0];
90 		break;
91 	case (1 << 1):
92 		st->ring_msg = &st->msg[AD7887_CH1];
93 		/* Dummy read: push CH1 setting down to hardware */
94 		spi_sync(st->spi, st->ring_msg);
95 		break;
96 	case ((1 << 1) | (1 << 0)):
97 		st->ring_msg = &st->msg[AD7887_CH0_CH1];
98 		break;
99 	}
100 
101 	return 0;
102 }
103 
ad7887_ring_postdisable(struct iio_dev * indio_dev)104 static int ad7887_ring_postdisable(struct iio_dev *indio_dev)
105 {
106 	struct ad7887_state *st = iio_priv(indio_dev);
107 
108 	/* dummy read: restore default CH0 settin */
109 	return spi_sync(st->spi, &st->msg[AD7887_CH0]);
110 }
111 
ad7887_trigger_handler(int irq,void * p)112 static irqreturn_t ad7887_trigger_handler(int irq, void *p)
113 {
114 	struct iio_poll_func *pf = p;
115 	struct iio_dev *indio_dev = pf->indio_dev;
116 	struct ad7887_state *st = iio_priv(indio_dev);
117 	int b_sent;
118 
119 	b_sent = spi_sync(st->spi, st->ring_msg);
120 	if (b_sent)
121 		goto done;
122 
123 	iio_push_to_buffers_with_timestamp(indio_dev, st->data,
124 		iio_get_time_ns(indio_dev));
125 done:
126 	iio_trigger_notify_done(indio_dev->trig);
127 
128 	return IRQ_HANDLED;
129 }
130 
131 static const struct iio_buffer_setup_ops ad7887_ring_setup_ops = {
132 	.preenable = &ad7887_ring_preenable,
133 	.postdisable = &ad7887_ring_postdisable,
134 };
135 
ad7887_scan_direct(struct ad7887_state * st,unsigned ch)136 static int ad7887_scan_direct(struct ad7887_state *st, unsigned ch)
137 {
138 	int ret = spi_sync(st->spi, &st->msg[ch]);
139 	if (ret)
140 		return ret;
141 
142 	return (st->data[(ch * 2)] << 8) | st->data[(ch * 2) + 1];
143 }
144 
ad7887_read_raw(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,int * val,int * val2,long m)145 static int ad7887_read_raw(struct iio_dev *indio_dev,
146 			   struct iio_chan_spec const *chan,
147 			   int *val,
148 			   int *val2,
149 			   long m)
150 {
151 	int ret;
152 	struct ad7887_state *st = iio_priv(indio_dev);
153 
154 	switch (m) {
155 	case IIO_CHAN_INFO_RAW:
156 		ret = iio_device_claim_direct_mode(indio_dev);
157 		if (ret)
158 			return ret;
159 		ret = ad7887_scan_direct(st, chan->address);
160 		iio_device_release_direct_mode(indio_dev);
161 
162 		if (ret < 0)
163 			return ret;
164 		*val = ret >> chan->scan_type.shift;
165 		*val &= GENMASK(chan->scan_type.realbits - 1, 0);
166 		return IIO_VAL_INT;
167 	case IIO_CHAN_INFO_SCALE:
168 		if (st->reg) {
169 			*val = regulator_get_voltage(st->reg);
170 			if (*val < 0)
171 				return *val;
172 			*val /= 1000;
173 		} else {
174 			*val = st->chip_info->int_vref_mv;
175 		}
176 
177 		*val2 = chan->scan_type.realbits;
178 
179 		return IIO_VAL_FRACTIONAL_LOG2;
180 	}
181 	return -EINVAL;
182 }
183 
184 #define AD7887_CHANNEL(x) { \
185 	.type = IIO_VOLTAGE, \
186 	.indexed = 1, \
187 	.channel = (x), \
188 	.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
189 	.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
190 	.address = (x), \
191 	.scan_index = (x), \
192 	.scan_type = { \
193 		.sign = 'u', \
194 		.realbits = 12, \
195 		.storagebits = 16, \
196 		.shift = 0, \
197 		.endianness = IIO_BE, \
198 	}, \
199 }
200 
201 static const struct iio_chan_spec ad7887_channels[] = {
202 	AD7887_CHANNEL(0),
203 	IIO_CHAN_SOFT_TIMESTAMP(1),
204 };
205 
206 static const struct iio_chan_spec ad7887_dual_channels[] = {
207 	AD7887_CHANNEL(0),
208 	AD7887_CHANNEL(1),
209 	IIO_CHAN_SOFT_TIMESTAMP(2),
210 };
211 
212 static const struct ad7887_chip_info ad7887_chip_info_tbl[] = {
213 	/*
214 	 * More devices added in future
215 	 */
216 	[ID_AD7887] = {
217 		.channels = ad7887_channels,
218 		.num_channels = ARRAY_SIZE(ad7887_channels),
219 		.dual_channels = ad7887_dual_channels,
220 		.num_dual_channels = ARRAY_SIZE(ad7887_dual_channels),
221 		.int_vref_mv = 2500,
222 	},
223 };
224 
225 static const struct iio_info ad7887_info = {
226 	.read_raw = &ad7887_read_raw,
227 };
228 
ad7887_reg_disable(void * data)229 static void ad7887_reg_disable(void *data)
230 {
231 	struct regulator *reg = data;
232 
233 	regulator_disable(reg);
234 }
235 
ad7887_probe(struct spi_device * spi)236 static int ad7887_probe(struct spi_device *spi)
237 {
238 	struct ad7887_platform_data *pdata = spi->dev.platform_data;
239 	struct ad7887_state *st;
240 	struct iio_dev *indio_dev;
241 	uint8_t mode;
242 	int ret;
243 
244 	indio_dev = devm_iio_device_alloc(&spi->dev, sizeof(*st));
245 	if (indio_dev == NULL)
246 		return -ENOMEM;
247 
248 	st = iio_priv(indio_dev);
249 
250 	st->reg = devm_regulator_get_optional(&spi->dev, "vref");
251 	if (IS_ERR(st->reg)) {
252 		if (PTR_ERR(st->reg) != -ENODEV)
253 			return PTR_ERR(st->reg);
254 
255 		st->reg = NULL;
256 	}
257 
258 	if (st->reg) {
259 		ret = regulator_enable(st->reg);
260 		if (ret)
261 			return ret;
262 
263 		ret = devm_add_action_or_reset(&spi->dev, ad7887_reg_disable, st->reg);
264 		if (ret)
265 			return ret;
266 	}
267 
268 	st->chip_info =
269 		&ad7887_chip_info_tbl[spi_get_device_id(spi)->driver_data];
270 
271 	st->spi = spi;
272 
273 	indio_dev->name = spi_get_device_id(spi)->name;
274 	indio_dev->info = &ad7887_info;
275 	indio_dev->modes = INDIO_DIRECT_MODE;
276 
277 	/* Setup default message */
278 
279 	mode = AD7887_PM_MODE4;
280 	if (!st->reg)
281 		mode |= AD7887_REF_DIS;
282 	if (pdata && pdata->en_dual)
283 		mode |= AD7887_DUAL;
284 
285 	st->tx_cmd_buf[0] = AD7887_CH_AIN0 | mode;
286 
287 	st->xfer[0].rx_buf = &st->data[0];
288 	st->xfer[0].tx_buf = &st->tx_cmd_buf[0];
289 	st->xfer[0].len = 2;
290 
291 	spi_message_init(&st->msg[AD7887_CH0]);
292 	spi_message_add_tail(&st->xfer[0], &st->msg[AD7887_CH0]);
293 
294 	if (pdata && pdata->en_dual) {
295 		st->tx_cmd_buf[2] = AD7887_CH_AIN1 | mode;
296 
297 		st->xfer[1].rx_buf = &st->data[0];
298 		st->xfer[1].tx_buf = &st->tx_cmd_buf[2];
299 		st->xfer[1].len = 2;
300 
301 		st->xfer[2].rx_buf = &st->data[2];
302 		st->xfer[2].tx_buf = &st->tx_cmd_buf[0];
303 		st->xfer[2].len = 2;
304 
305 		spi_message_init(&st->msg[AD7887_CH0_CH1]);
306 		spi_message_add_tail(&st->xfer[1], &st->msg[AD7887_CH0_CH1]);
307 		spi_message_add_tail(&st->xfer[2], &st->msg[AD7887_CH0_CH1]);
308 
309 		st->xfer[3].rx_buf = &st->data[2];
310 		st->xfer[3].tx_buf = &st->tx_cmd_buf[2];
311 		st->xfer[3].len = 2;
312 
313 		spi_message_init(&st->msg[AD7887_CH1]);
314 		spi_message_add_tail(&st->xfer[3], &st->msg[AD7887_CH1]);
315 
316 		indio_dev->channels = st->chip_info->dual_channels;
317 		indio_dev->num_channels = st->chip_info->num_dual_channels;
318 	} else {
319 		indio_dev->channels = st->chip_info->channels;
320 		indio_dev->num_channels = st->chip_info->num_channels;
321 	}
322 
323 	ret = devm_iio_triggered_buffer_setup(&spi->dev, indio_dev,
324 			&iio_pollfunc_store_time,
325 			&ad7887_trigger_handler, &ad7887_ring_setup_ops);
326 	if (ret)
327 		return ret;
328 
329 	return devm_iio_device_register(&spi->dev, indio_dev);
330 }
331 
332 static const struct spi_device_id ad7887_id[] = {
333 	{"ad7887", ID_AD7887},
334 	{}
335 };
336 MODULE_DEVICE_TABLE(spi, ad7887_id);
337 
338 static struct spi_driver ad7887_driver = {
339 	.driver = {
340 		.name	= "ad7887",
341 	},
342 	.probe		= ad7887_probe,
343 	.id_table	= ad7887_id,
344 };
345 module_spi_driver(ad7887_driver);
346 
347 MODULE_AUTHOR("Michael Hennerich <michael.hennerich@analog.com>");
348 MODULE_DESCRIPTION("Analog Devices AD7887 ADC");
349 MODULE_LICENSE("GPL v2");
350